范文资料网>反思报告>教案大全>《《圆锥的体积》教案

《圆锥的体积》教案

时间:2023-03-24 12:36:33 教案大全 我要投稿

《圆锥的体积》教案15篇

  作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案有助于顺利而有效地开展教学活动。我们应该怎么写教案呢?以下是小编整理的《圆锥的体积》教案,希望对大家有所帮助。

《圆锥的体积》教案15篇

《圆锥的体积》教案1

  教学目标:

  1、通过实验发现等底等高的圆柱和圆锥体积之间的关系,从而得出体积的计算公式,能运用公式解答有关实际问题。

  2、通过动手操作参与实验,发现等底等高的圆柱和圆锥体积之间的关系,并通过猜想、探索和发现的过程,推导出圆锥的体积公式。

  3、通过实验,引导学生探索知识的内在联系,渗透转化思想,感受数学方法的内在魅力,激发学生参加探索的兴趣。

  教学重点: 通过实验的方法,得到计算圆锥的体积。

  教学难点:运用圆锥的体积公式进行正确地计算。

  教学准备:等底等高的圆柱和圆锥容器模型各一个。

  教学过程:

  一、复习导入

  师:同学们,请看大屏幕(课件出示圆柱削成最大圆锥)。

  1、圆柱体积的计算公式是什么? (指名学生回答)

  2、圆锥有什么特征?

  同学们,圆柱的体积我们已经知道怎么求,那与它等底等高的圆锥的体积同学们知道怎么求吗?让我们一同走进圆锥的体积与等底等高的圆柱体体积有什么关系的知识课堂吧!(板书:圆锥的体积)

  二、探究新知

  课件出示等底等高的圆柱和圆锥

  1、引导学生观察:这个圆柱和圆锥有什么相同的地方?

  学生回答:它们是等底等高的。

  猜想:

  (1)、你认为圆锥体积的大小与它的什么有关?

  (2)、你认为圆锥的体积和什么图形的体积关系最密切?猜一猜它们的体积有什么关系?

  2、学生动手操作实验

  (1)、用圆锥装满水(要装满但不能溢出来)往圆柱倒,倒几次才把圆柱倒满?

  (2)、通过实验,你发现了什么?

  小结:通过实验我们发现圆柱的体积是与它等底等高圆锥体积的`3倍。也可以说成圆锥的体积是与它等底等高圆柱体积的三分之一 。

  3、教师课件边演示边叙述:现在圆锥和圆柱里都是空的。看看圆柱和圆锥有什么相同的地方?(等底等高)请同学们注意观察, 用圆锥装满水往圆柱里倒,倒几次才把圆柱倒满?

  问:把圆柱装满一共倒了几次?

  生:3次。

  师:这说明了什么?

  生:这说明圆锥的体积是和它等底等高的圆柱体积的三分之一。(板书:圆锥的体积= 1/3×圆柱体积 )

  师:圆柱的体积等于什么?

  生:等于“底面积×高”。

  师:那么,圆锥的体积可以怎样表示呢? (板书:圆锥的体积= 1/3×底面积×高)

  师:用字母应该怎样表示? (V=1/3sh)

  师:在这个公式里你觉得哪里最应该注意?

  三、教学试一试

  一个圆柱形零件,底面积是170平方厘米,高是12厘米。这个零件的体积是多少立方厘米?

  四、巩固练习

  1、计算圆锥的体积

  2、判一判

  3、算一算

  4、拓展延伸

  五、总结

  通过这节课的学习,你有什么收获呢?

  六、板书:

  圆锥的体积=圆柱的体积×1/3

  圆锥的体积=底面积×高×1/3

  用字母表示V=1/3sh

《圆锥的体积》教案2

  教学目标

  1.理解求圆锥体积的计算公式。

  2.会运用公式计算圆锥的体积。

  3.培养同学们初步的空间观念和思维能力;让同学们认识转化的思考方法。

  教学重点

  圆锥体体积计算公式的推导过程。

  教学难点

  正确理解圆锥体积计算公式。

  教学过程

  一、铺垫孕伏

  1.提问:

  (1)圆柱的体积公式是什么?

  (2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高。

  2.导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题。(板书:圆锥的体积)

  二、探究新知

  (一)指导探究圆锥体积的计算公式

  1.教师谈话:

  下面我们利用实验的方法来探究圆锥体积的计算方法。老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土。实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里。倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

  2.学生分组实验。

  学生汇报实验结果:

  ①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满。

  ②圆柱和圆锥的'底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满。

  ③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满。

  4.引导学生发现:

  圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的 。

  板书:

  5.推导圆锥的体积公式:用字母表示圆锥的体积公式.板书: 。

  6.思考:要求圆锥的体积,必须知道哪两个条件?

  7.反馈练习

  圆锥的底面积是5,高是3,体积是( )。

  圆锥的底面积是10,高是9,体积是( )。

  (二)算一算

  学生独立计算,集体订正。

  说说解题方法。

  三、全课小结

  通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)

《圆锥的体积》教案3

  1、学生通过自己的实验,非常顺利地得到等底等高的圆柱和圆锥体积之间的关系,推导出来圆锥的体积计算公式。原因之处有:(1)猜想:发挥学生的空间想象,使学生初步建立圆锥与圆柱体积之间的关系,教师预设学生可能粗略地知道有“三分之一”这一关系,“那么三分之一这一关系怎样推导呢”引起以下怎样推导圆锥的体积这一过程。

  (2)在推导过程中,带着思考题(思考题实际就是学生实验的过程),让学生带有目标进行实验,让学生更有目的性,也非常方便,有操作性。

  (3)学具准备充分,各小组选择水、沙子,增强趣味性,主动性,积极性高。

  (4)公式推导完之后的一个反例子(出示一个非常大的圆柱和一个非常小的圆锥),让学生明确并不是所有的圆锥的体积都是圆柱体积的三分之一,从而强调了等底等高。

  2、练习题由浅入深,判断题主要是要加深学生对概念、公式的运用和理解,第2题是书上的一组题,为提高效率只列式不计算,这三道题分别是告诉底面积和高、底面半径和高、底面直径和高,把几种类型都呈现出来。最后一题是动手实践题,一要考察学生的公式运用情况,二要考察学生的解决实际问题的能力及策略,虽然没做几道题,但我觉得:解决问题比什么都重要。

  3、本来想用不等底、不等高的圆柱和圆锥参与实验,考虑到可能会得出错误结论而影响体积公式的.推导,所以把这一环节省去。设计了一组大的等底等高的圆锥和圆柱,让学生明确不管大小,只要等底等高就有3倍这样的关系。

  4、时间分配上不到位,例题的处理中,考虑到本节的重点是理解公式并运用公式,所以没花多的时间,由于数字教大,部分学生没做完。

《圆锥的体积》教案4

  一.教材依据

  本节课所讲的《圆锥的体积》是九年义务教育人教实验版,第十二册第二章第二节的内容。

  二.设计思想

  为了落实素质教育,积极推进新改革,充分发挥学生的主体作用,甘做学生的朋友,引导其积极主动地进行探究性学习。通过“小组活动”、“合作探究”全面调动每一位学生的学习积极性和参与性。通过学生的自主学习、互助学习,自主探究所学的内容,完全改变过去被动的“填鸭式”的教学模式,切实提高课堂效率。

  本节教材我想通过向等底等高的圆柱和圆锥中倒水或沙的实验,得到圆锥体积的计算公式V=1/3sh.即就是等底等高的圆锥体积是圆柱体积的三分之一。例2是已知圆锥形沙堆的`底面直径和高,求沙子的体积。这是一个简单的实际问题,通过这个例子教学使学生初步学会解决一些与计算圆锥形物体的体积有关的实际问题。前面学生对圆锥、圆柱立体图形的特征已进行了学习,对其特征也有了较深刻的认识,可以熟练地计算圆柱的体积、表面积、侧面积。这是学习本节课的基础。

  三.教学目标

  知 识 技能:理解并掌握圆锥体积的计算方法,能运用公式解决

  简单的实际问题。

  过程与方法:在实践操作中掌握圆锥体积公式的推导。

  情 感 态度:培养学生乐于学习,热爱生活,勇于探索的精神。

  四.教学重点

  进一步理解圆锥的体积公式,能运用公式进行计算,能解决

  简单的实际问题。

  五.教学难点:圆锥体积公式的推导。

  六、教法选择

  利用多媒体、观察法、实验法、师生互动启发式教学

  七、学法指导

  观察实验 —合作探究—达标反馈— 归纳总结

  八.教学准备

  多媒体课件、同样的圆柱形容器若干、与圆柱等底等高的圆锥形容器若干、水和沙土。

  九.教学过程

  【复习旧知】

  1. 课件展示圆柱和圆锥的立体图形,并请学生说出图形各部分的名称。

  2. 圆柱的体积公式是什么?

  【创设情境,引发猜想】

  1.多媒体课件呈现出动画情景故事(配音乐):

  盛夏的一天,森林里闷热极了,小动物们热得喘不过气来,都想吃点解暑的东西。漂亮的小白兔去冷饮店买了一块圆柱形的冰麒麟,聪明的狐狸拿着一块圆锥形的冰麒麟想和它交换…… (多媒体课件展示两块冰麒麟等底等高)

  2.引导学生围绕问题展开讨论。

  问题一:小白兔上当了吗?

  问题二:狐狸和小白兔怎样交换才算公平?

  3. 导入新课,板书课题:同学们,要解决这些问题我们就来学习《圆锥的体积》这一节课,然后帮帮小白兔好吗?

  【自主探索,动手实验】

  出示思考题:通过实验,你们发现圆柱的体积和圆锥的体积之间有什么关系?你们小组是怎样实验的?

  1. 小组实验。按照实验程序要求和注意事项(多媒体课件展示)

  每四人为一小组,各小组长带领三个成员动手操作实验,教师在教室巡回指导。

  2. 全班交流。

  组织收集信息 —— 引导整理信息 —— 参与处理信息

  3. 引导反思。实验过程让学生积极发散思维,各抒己见。

  4. 公式推导。

  全班同学集体观看多媒体课件的实验过程,并结合自己的实验活动试着推导圆锥的体积计算公式。

  圆柱的体积等于和它等底等高的圆锥体积的3倍;或者圆锥的体积等于和它等底等高的圆柱体积1/3。

  用字母表示为: V=1/3sh

  5.思考:如果要计算圆锥的体积,必须知道那些条件?

  6.问题解决。

  故事中的小白兔和狐狸怎样交换才公平合理呢?它需要什么前提条件?(课件出示:等底等高)

  【运用公式,解决问题】

  例2:建筑工地上有许多沙子,堆起来近似一个圆锥,这堆沙子大约

  有多少立方米?(结果保留两位小数)

  具体解题过程让同学们自己大显身手,个别学生可以上讲台板演,然后教师作最后讲评。

  【练习巩固】课件出示,师生共同完成。

  一.判断。

  1、圆柱体的体积一定比圆锥体的体积大。 ( )

  2、圆锥的体积等于和它等底等高的圆柱体的。 ( ) 3、正方体、长方体、圆锥体的体积都等于底面积×高。( ) 。

  4、等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米。( )

  二.填表。

  已 知 条 件 体积

  圆锥底面半径2厘米,高9厘米

  圆锥底面直径6厘米,高3厘米

  圆锥底面周长6.28分米,高6分米

  【拓展延伸】:

  有一根底面直径是6厘米,长是15厘米的圆柱形钢材,要把它削成与它等底等高的圆锥形零件。要削去钢材多少立方厘米?

  【质疑问难,总结升华】

  通过这节课的学习,你们对圆锥的体积有哪些新的认识?请谈谈自己的感想和收获。

  【作业布置】

  课本25页第3、5、8题

《圆锥的体积》教案5

  目 标:

  1、理解和掌握圆锥体体积的计算方法,并能运用公式求圆锥体的体积,并能解决简单的实际问题。

  2、通过动手实践,自主探求圆锥体积的计算方法,培养学生初步的逻辑推理能力和创新意识,发展空间观念。

  3、激发学生热爱生活,勇于探索、乐于与人合作的情趣。

  重 点:掌握圆锥体积的方法

  难 点:公式的推导

  准 备:沙,圆柱教具若干个,圆锥一个,其中要有一组等底等高的圆柱和圆锥

  教 程:

  一、准备

  同学们,我们以前研究过一些立体图形,如长方体,正方体,圆柱体,它们的体积各是怎样计算的呢?

  二、诱发

  课件演示稻谷丰收的景象。师述:稻谷丰收了,农民伯伯忙着收割稻谷,他们把收好的稻谷堆成一个这样的图形(圆锥形谷堆),同学们你们认识吗?你能算出这堆稻谷的`体积吗?它和圆柱的体积有什么联系呢?这就是我们这节课要学习的内容。

  三、探究释疑

  1、初次猜想

  ⑴根据我们所学过的内容,请同学们猜一猜,圆锥的体积应该怎样计算?

  ⑵圆锥的体积是否能用“底面积×高”来计算呢

  ⑶学生通过观察,发现“底面积×高”不是圆锥的体积,而是与它等底等高的圆柱的体积。

  2、再次猜想

  ⑴通过模型演示,

  ⑵根据学生回答,从而得到如下结论:

  圆锥的体积 = ×圆柱的体积(等底等高)

  3、分组实验进行验证

  ⑴让学生用三个不同的圆柱体和一个圆锥(其中必有一组等底等高的圆柱和圆锥)来进行实验。

  ⑵分组讨论,分组汇报

  圆锥的体积 = ×圆柱的体积(等底等高)

  用字母表示:V=1/3Sh

  4、联系实际,进行运用

  ⑴出示例1,学生尝试练习,集体订正。

  ⑵教学例2、课件出示:

  麦收季节,张小红把她家收的小麦堆成一个近似圆锥的麦堆,又给出测量的数据,让学生看图编一道求小麦重量的应用题。

  编好后,分组讨论计算

  学生自己列式计算,集体订正

  四、转化

  1、基础题

  ⑴下面有四组图形,你能根据每组图形中左图的体积,求出右图的体积吗?为什么?

  24立方米 9立方米 12立方米

  ⑵一个圆锥的底面直径是4厘米,高5厘米,它的体积是多少?

  2、提高题

  有一块正方体的木材,它的棱长是9分米,把这块木料加工成一个最大的圆柱体,被削去的体积是多少?

  3、思考题

  把一个棱长6厘米的正方体铁块和底面直径、高都是6厘米的圆柱形铁块,熔铸成一个直圆锥体,如果这个直圆锥体和圆柱的底面大小一样,这个直圆锥体的高是多少厘米?(得数保留整数)

  五、应用

  1、 基础题:P44-T3、4

  2、 提高题:P45-T10

  3、 思考题:P45-T11、12

《圆锥的体积》教案6

  教学内容:

  第25~26页,例2、例3及练习四的第3~8题。

  教学目的:

  1、过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。

  2、已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。

  3、过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。

  教学重点:

  掌握圆锥体积的计算公式。

  教学难点:

  正确探索出圆锥体积和圆柱体积之间的关系

  教具准备:

  每生准备一组等底等高的圆柱和圆锥模具,大米,水,沙子等

  教学过程:

  一、复习

  1、圆锥有什么特征?(使学生进一步熟悉圆锥的.特征:底面、侧面、高和顶点)

  2、圆柱体积的计算公式是什么?

  指名学生回答,并板书公式:圆柱的体积=底面积高。

  二、新课

  1、教学圆锥体积的计算公式。

  (1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的.

  (2)圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)

  (3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?组织学生实验分组合作学习

  (4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?(教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)

  (5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的 )

  学生叙述实验过程并总结结论,得出计算公式

  板书:圆锥的体积= 1/3圆柱的体积=1/3 底面积高,

  字母公式:V= 1/3Sh

  2、教学练习四第3题

  这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?

《圆锥的体积》教案7

  教学目标:

  1、通过动手操作参与实验,发现等底等高的圆柱圆锥体积之间的关系,从而得出圆锥体积的计算公式。

  2、能运用公式解答有关的实际问题。

  3、渗透转化、实验、猜测、验证等数学思想方法,培养动手能力和探索意识。

  教学过程

  一、创设情境,引发猜想

  1. 电脑呈现出动画情境(伴图配音)。

  夏天,森林里闷热极了,小动物们都热得喘不过气来。一只小白兔去动物超市购物,在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)

  2. 引导学生围绕问题展开讨论。

  问题一:狐狸贪婪地问:小白兔,用我手中的雪糕跟你换一个,怎么样?(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)

  问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。(小白兔这时和狐狸换雪糕,你觉得公平吗?)

  问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法与小组同学交流一下,再向全班同学汇报)

  过渡:小白兔究竟跟狐狸怎样交换才公平合理呢?学习了圆锥的体积后,就会弄明白这个问题。

  二、自主探索,操作实验

  下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的`圆柱与圆锥体积间的关系,解决电脑博士给我们提出的问题。

  出示思考题:

  (1)通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?

  (2)你们的小组是怎样进行实验的?

  1. 小组实验。

  (1)学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子等,既不等底也不等高的圆柱形和圆锥形容器各一个,体积有8倍关系的,也有5倍关系的。

  (2)同组的学生做完实验后,进行交流,并把实验结果写在长条黑板上。

  2. 大组交流。

  (1)组织收集信息。

  学生汇报时可能会出现下面几种情况,教师把这些信息逐一呈现在插式黑板上:

  ① 圆柱的体积正好是圆锥体积的3倍。

  ② 圆柱的体积不是圆锥体积的3倍。

  ③ 圆柱的体积正好是圆锥体积的8倍。

  ④ 圆柱的体积正好是圆锥体积的5倍。

  ⑤ 圆柱的体积是等底等高的圆锥体积的3倍。

  ⑥ 圆锥的体积是等底等高的圆柱体积的1/3 。

  (2)引导整理信息。

  指导学生仔细观察,把黑板上的信息分类整理。(根据学生反馈的实际情况灵活进行)

  (3)参与处理信息。

  围绕3倍关系的情况讨论:

  ① 请这几个小组同学说出他们是怎样通过实验得出这一结论的?

  ② 哪个小组得出的结论更加科学合理一些?

  圆锥的体积是等底等高的圆柱体积的1/3。

  (突出等底等高,并请他们拿出实验用的器材,自己比划、验证这个结论。)

  ③引导学生自主修正另外两个结论。

  3. 诱导反思。

  (1)为什么有两个小组实验的结果不是3倍关系呢?

  (2)把一个空心的圆锥慢慢按入等底等高且装满水的圆柱形容器里,剩下水的体积是多少?这时和圆柱体积有什么关系?

  4. 推导公式。

  尝试运用信息推导圆锥的体积计算公式。

  (1)这里Sh表示什么?为什么要乘1/3?

  (2)要求圆锥体积需要知道哪两个条件?

  5. 问题解决。

  童话故事中的小白兔和狐狸怎样交换才公平合理呢?它需要什么前提条件?(动画演示:等底等高)之后播放狐狸拿着圆锥形雪糕离去的画面。

  三、运用公式,解决问题

  1. 教学例1。一个圆锥形的零件,底面积是19平万厘米,高是12厘米。这个零件的体积是多少?

  2. 学生尝试行算,指名板演,集体订正。

  3. 引导小结:不要漏乘1/3;计算时,能约分时要先约分。

  四、巩固练习,拓展深化(略)

  五、质疑问难,总结升华

  通过这节课的学习,你们探索到了什么?怎样推导出圆锥体积公式的?

  回到童话情节。我们发现三个圆锥形的雪糕换一个与它等底等高的圆柱形雪糕公平合理,如果狐狸只用一个圆锥形的雪糕和小白兔交换,而不使小白兔吃亏,那么圆锥形的雪糕应该是什么样的?配合用课件演示。

《圆锥的体积》教案8

  【教材分析】

  本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力.

  【设计理念】

  数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。

  【教学目标】

  1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。

  2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。

  3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。

  【教学重点】

  圆锥体积公式的理解,并能运用公式求圆锥的体积。

  【教学难点】

  圆锥体积公式的推导

  【学情分析】

  学生已学习了圆柱的`体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。所以对于新的知识教学,他们一定能表现出极大的热情。

  【教法学法】

  试验探究法小组合作学习法

  【教具学具准备】

  多媒体课件,等底等高圆柱圆锥各6个,水槽6个(装有适量的水)

  【教学课时】

  2课时

  【教学流程】

  第一课时

  一、回顾旧知识

  1、你能计算哪些规则物体的体积?

  2、你能说出圆锥各部分的名称吗?

  【设计意图】通过对旧知识的回顾,进一步为学习新知识作好铺垫。

  二、创设情景激发激情

  展示砖工师傅使用的铅锤体(圆锥),你能测试出它的体积吗?

  【设计意图】以生活中的数学的形式进行设置情景,引疑激趣迁移,激发学生好奇心和求知欲。(揭示课题:圆锥的体积)

  三、试验探究合作学习(探讨圆柱与圆锥体积之间的关系)

  探究一:(分组试验)圆柱与圆锥的底和高各有什么关系?

  1、猜想:猜想它们的底、高之间各有什么关系?

  2、试验验证猜想:每组拿出圆柱、圆锥各1个,分组试验,试验后记录结果;

  3、小组汇报试验结论,集体评议:(注意汇报出试验步骤和结论)

  4、教师介绍数学专用名词:等底等高

  【设计意图】通过探究一活动,初步突破了本课的难点,为探究二活动活动开展作好了铺垫。

  探究二:(分组试验)研讨等底等高圆柱与圆锥的体积之间有什么关系?

  1、大胆猜想:等底等高圆柱与圆锥体积之间的关系

  2、试验验证猜想:每组拿出水槽(装有适量的水),通过试验,你发现了圆柱的体积和圆锥的体积有什么关系?边试验边记录试验数据(教师巡视指导每组的试验)

  3、小组汇报试验结论(提醒学生汇报出试验步骤)

  教学预设:

  (1)圆椎的体积是圆柱体积的3倍;

  (2)圆锥的体积是圆柱体积的三分之一;

  (3)当等底等高时,圆柱体积是圆锥体积的3倍,或圆锥的体积是圆柱体积的三分之一等等。

  4、通过学生汇报的试验结论,分析归纳总结试验结论。

  5、你能用字母表示出它们的关系吗?要求圆锥的体积必须知道什么条件呢?(学生反复朗读公式)

  【设计意图】通过学生分组试验探究,在实验过程中自主猜想、感知、验证、得出结论的过程,充分调动学生主动探索的意识,激发了学生的求知欲,培养了学生的动手能力,突破了本课的难点,突出了教学的重点。

  探究三:(伸展试验---演示试验)研讨不等底等高圆柱与圆锥题的体积是否具有三分之一的关系。

  1、观察老师的试验,你发现了圆柱与圆锥的底和高各有什么关系?

  2、观察老师的试验,你发现了不等底等高的圆柱与圆锥的体积之间还有三分之一的关系吗?

  3、学生通过观看试验汇报结论。

  4、教师引导学生分析归纳总结圆锥体积是圆柱体积的三分之一所存在的条件。

  5、结合探究二和探究三,进一步引导学生掌握圆锥的体积公式。

  【设计意图】通过教师课件演示试验,进一步让学生明白圆锥体积是圆柱体积的三分之一所存在的条件,更进一步加强学生对圆锥体积公式理解,再次突出了本课的难点,培养了学生的观察能,分析能力,逻辑思维能力等,进一步让学生从感性认识上升到了理性认识。

  四、实践运用提升技能

  1、判断题:【题目内容见多媒体展示】独立思考---抽生汇报---说明理由---师生评议

  2、口答题:【题目内容见多媒体展示】独立思考---抽生汇报---学生评议

  3、拓展运用:【课本例题3】学生分析题意---小组合作解答---学生解答展示---师生评议

  【设计意图】通过判断题、口答题题型的训练,及时检查学生对所学知识的理解程度,巩固了圆锥体的体积公式。而拓展题型具有开放性给学生提供思维发展的空间,让他们有跳起来摘果子的机会,以达到培养能力、发展个性的目的。

  五、谈谈收获:

  这节课你学到了什么呢?

  六、课堂作业:

  1、做在书上作业:练习四第4、7题

  2、坐在作业本上作业:练习四第3题

  【课后反思】

  【板书设计】

《圆锥的体积》教案9

  教学目标

  1、使学生理解求圆锥体积的计算公式.

  2、会运用公式计算圆锥的体积.

  教学重点

  圆锥体体积计算公式的推导过程.

  教学难点

  正确理解圆锥体积计算公式.

  教学步骤

  一、铺垫孕伏

  1、提问:

  (1)圆柱的体积公式是什么?

  (2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.

  2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)

  二、探究新知

  (一)指导探究圆锥体积的计算公式.

  1、教师谈话:

  下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

  2、学生分组实验

  3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5) 下载1 下载2 下载3 下载4 下载5

  ①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.

  ②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.

  ③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.

  ……

  4、引导学生发现:

  圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的 .

  板书:

  5、推导圆锥的体积公式:用字母表示圆锥的体积公式.板书:

  6、思考:要求圆锥的体积,必须知道哪两个条件?

  7、反馈练习

  圆锥的底面积是5,高是3,体积是( )

  圆锥的底面积是10,高是9,体积是( )

  (二)教学例1

  1、例1 一个圆锥形的零件,底面积是19平方厘米,高是12厘米.这个零件的体积是多少?

  学生独立计算,集体订正.

  板书:

  答:这个零件的体积是76立方厘米.

  2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?

  3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)

  (1)已知圆锥的底面半径和高,求体积.

  (2)已知圆锥的底面直径和高,求体积.

  (3)已知圆锥的底面周长和高,求体积.

  4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的'体积体积是多少?

  (三)教学例2

  1、例2 在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米.每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)

  思考:这道题已知什么?求什么?

  要求小麦的重量,必须先求什么?

  要求小麦的体积应怎么办?

  这道题应先求什么?再求什么?最后求什么?

  2、学生独立解答,集体订正.

  板书:(1)麦堆底面积:

  =3.14×4

  =12.56(平方米)

  (2)麦堆的体积:

  12.56×1.2

  =15.072(立方米)

  (3)小麦的重量:

  735×15.072

  =11077.92

  ≈11078(千克)

  答:这堆小麦大约重11078千克.

  3、教学如何测量麦堆的底面直径和高.

  (1)启发学生根据自己的生活经验来讨论、谈想法.

  (2)教师补充介绍.

  a.测量麦堆的底面直径可以用绳子在麦堆底部圆周围圈一圈,量得麦堆的周长,再算直径.也可用两根竹竿平行地放在麦堆的两侧,量得两根竹竿的距离,就是麦堆的直径.

  b.测量麦堆的高,可用两根竹竿在麦堆旁边组成两个直角后量得.

  三、全课小结

  通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)

  四、随堂练习

  1、求下面各圆锥的体积.

  (1)底面面积是7.8平方米,高是1.8米.

  (2)底面半径是4厘米,高是21厘米.

  (3)底面直径是6分米,高是6分米.

  2、计算并填表

  3、判断对错,并说明理由.

  (1)圆柱的体积相当于圆锥体积的3倍.( )

  (2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1.( )

  (3)一个圆柱和一个圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米.( )

  五、布置作业

  一堆煤成圆锥形,底面半径是1.5米,高是1.2米.这堆煤的体积有多少立方米?如果每立方米煤约重1.4吨,这堆煤约有多少吨?

  六、板书设计

  数学教案-圆锥的体积

《圆锥的体积》教案10

  教学目标:

  1、通过动手操作实验,推导出圆锥体体积的计算公式。

  2、理解并掌握体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题。

  3、通过学生动脑、动手,培养学生的观察、分析的综合能力。

  教具准备:等底等高的圆柱体和圆锥体5套,大小不同的圆柱体和圆锥体5套、水槽5个,以及多媒体辅助教学课件。

  教学过程设计:

  一、复习旧知,做好铺垫。

  1、认识圆柱(课件演示),并说出怎样计算圆柱的体积?(屏幕出示:圆柱体的体积=底面积×高)

  2、口算下列圆柱的体积。

  (1)底面积是5平方厘米,高 6 厘米,体积 = ?

  (2)底面半径是 2 分米,高10分米,体积 = ?

  (3)底面直径是 6 分米,高10分米,体积 = ?

  3、认识圆锥(课件演示),并说出有什么特征?

  二、沟通知识、探索新知。

  教师导入:同学们,我们已经认识了圆锥,掌握了它的特征,但是,对于圆锥的学习我们不能只停留在认识上,有关圆锥的知识还有很多有待于我们去学习、去探究。这节课我们就来研究“圆锥的体积”。(板书课题)

  1、探讨圆锥的体积计算公式。

  教师:怎样推导圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积计算公式的?

  学生回答,教师板书:

  圆柱------(转化)------长方体

  圆柱体积计算公式--------(推导)长方体体积计算公式

  教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较后,再用课件演示。

  (1)提问学生:你发现到什么?(圆柱和圆锥的底和高有什么关系?)

  (学生得出:底面积相等,高也相等。)

  教师:底面积相等,高也相等,用数学语言说就叫“等底等高”。

  (板书:等底等高)

  (2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?

  (不行,因为圆锥体的体积小)

  教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)

  用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的.圆柱体和圆锥体在体积大小上有什么样的倍数关系。

  (3)学生分组做实验,并借助课件演示。

  (教师深入小组中了解活动情况,对个别小组予以适当的帮助。)

  a、谁来汇报一下,你们组是怎样做实验的?

  b、你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?

  (学生发言:圆柱体的体积是圆锥体体积的3倍)

  教师:同学们得出这个结论非常重要,其他组也是这样的吗?

  学生回答后,教师用教学课件演示实验的全过程,并启发学生在小组内有条理地表述圆锥体体积计算公式的推导过程。

  (板书圆锥体体积计算公式)

  教师:我们学过用字母表示数,谁来把这个公式用字母表示一下?(指名发言,板书)

  (4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?

  学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的 。(教师拿起一个小圆锥、一个大圆柱)如果老师在这个大圆锥体里装满了水,往这个小圆柱体里倒,需要倒三次才能倒满吗?(不需要)

  为什么你们做实验的圆锥体里装满了水往圆柱体里倒,要倒三次才能倒满呢?(因为是等底等高的圆柱体和圆锥体。)

  (教师给体积公式与“等底等高”四个字上连线。)

  进一步完善体积计算公式:

  圆锥的体积=等底等高的圆柱体体积×1/3

  =底面积 × 高×1/3

  V = 1/3Sh

  教师:现在我们得到的这个结论就更完整了。(指名反复叙述公式。)

  课件出示:

  想一想,讨论一下:?

  (1)通过刚才的实验,你发现了什么?

  (2)要求圆锥的体积必须知道什么?

  学生后讨论回答。

  三、 应用求体积、解决问题。

  1、口答。

  (1)有一个圆柱的体积是27立方分米,与它等底等高的圆锥体积是多少?

  (2)有一个圆锥的体积是9立方分米,与它等底等高的圆柱体积是多少?

  2、出示例题,学生读题,理解题意,自己解决问题。

  例1、一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

  a、 学生完成后,进行小组交流。

  b 、 你是怎样想的和怎样解决问题的。(提问学生多人)

  c 、 教师板书:

  1/3×19×12=76(立方厘米)

  答:它的体积是76立方厘米

  3 、练习题。

  一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)

  我们已经学会了求圆锥体的体积,现在我们来解决有关圆锥体体积的问题。

  4、出示例2:要求学生自己读题,理解题意。

  在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)

  (1)提问:从题目中你知道了什么?

  (2)学生独立完成后教师提问,并回答学生的质疑:

  3.14×(4÷2)2×1.2× 1/3 表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思?….

  5、比较:例1和例2有什么不同的地方?

  (1)例1直接告诉了我们底面积,而例2没有直接告诉,要求我们先求出底面积,再求出圆锥体积;(2)例1 是直接求体积,例2是求出体积后再求重量。

《圆锥的体积》教案11

  教学内容:

  练习四第4~12题和第23页思考题

  教学目标:

  1.使学生进步理解、掌握圆锥的体积计算方法,能根据不同的条件计算出圆锥的体积。

  2.提高学生解决生活中实际问题的能力。

  3.养成良好的学习习惯。

  教学重点:

  进步掌握圆锥体积的计算方法。

  教学难点:

  圆柱和圆锥体积之间的联系与区别。

  教学过程:

  一、复习旧知

  1.复习体积计算。

  (1)提问:圆锥的体积怎样计算?

  (2)口答下列各圆锥的体积。

  ①底面积3平方分米,高2分米。

  ②底面积4平方厘米,高4.5厘米。

  2.引入新课。

  今天这节课,我们练习圆锥体积的计算,通过练习,还要能应用圆锥体积计算的方法解决一些简单的实际问题。

  二、教学新课

  组织练习。

  1.做练习四第4题。

  学生独立计算。

  2.做练习四第5题。

  把等底等高的圆柱体积和圆锥体积相互转化,从已知的圆柱体积得出相应的圆锥体积,从已知的圆锥体积得出相应的圆柱体积,继续加强对等底等高圆柱和圆锥体积关系的理解。

  3.做练习四第6题。

  出示第6题的图。

  引导分析:根据图示的各个立体图形的底面直径与高,寻找与圆锥体积相等的`圆柱,可以从圆锥体积是等底等高圆柱体积的1/3,推理出体积相等的圆柱与圆锥,如果底面积相等,圆锥的高是圆柱的3倍圆柱的高是圆锥的1/3;如果高相等,圆锥的底面积是圆柱的3倍圆柱的底面积是圆锥的1/3。还要注意到,大圆的直径是小圆的3倍小圆直径是大圆的1/3,大圆的面积则是小圆的9倍小圆的面积是大圆的1/9。

  4.做练习四第7题。

  (1)提问:圆锥体积最大时与圆柱的关系是什么?(等底等高)

  接着让学生独立练习。

  (2)让学生自主地提出其他问题,进一步的掌握圆锥和圆柱的关系。

  5.做练习四第8题。

  联系实际,解决问题。

  6.做练习四第9题。

  让学生动手操作,理解三角形绕它的两条高旋转一周形成两个大小不同的圆锥。在此基础上让学生独立计算。

  7.做练习四第12题。

  出示圆锥形模型,提问:你有什么办法算山它的体积吗,需要测量哪些数据?怎样测量直径和高。请同学们回去测量你用第115页图制作的圆锥,求出它的体积来。

  三、课堂小结

  这节课练习了圆锥的体积计算和应用:计算体积需要知道底面积和高。如果没有告诉底面积,我们要先求半径算出底面积,再计算体积。应用圆锥体积计算方法,有时候还可以计算出圆锥形物休的重量。

  四、布置作业

  1.练习四第10.11题。

  2.学有余力学生完成思考题。

《圆锥的体积》教案12

  教学目的:使学生系统掌握关于圆柱和圆锥的基础知识,进一步了解圆柱和圆锥的关系,熟练运用所学公式计算解答实际问题;

  教学准备:幻灯片、电脑制图

  教学过程:

  一. 出示课题,引人复习内容;

  1.同学们,今天这节课,我们要进行圆柱体和圆锥体体积的复习;

  板书课题

  2.圆柱体的体积怎么求?

  板书:V圆柱=Sh

  3.圆锥体的体积怎么求?

  板书:V圆锥=1/3 Sh

  4.公式中的 s、h分别表示什么?1/3表示什么?

  小结:求圆柱体和圆锥体的体积,首先要正确应用公式。

  板书:1.正确应用公式

  当题目中没有直接告诉我们底面积,只给出底面的半径、直径或周长时,求它们的体积必须先求出什么?

  二. 基础练习

  根据已知条件求圆柱体和圆锥体的底面积(幻灯出示)

  计算这些形体的体积:

  (1)S底=1.5 平方米 h=5 米 求V圆柱

  (2)S底=1.5 平方米 h=5 米 求V圆锥

  (3)r=10分米 h=2 米 求V圆柱

  (4)C=6.28米 h=6 米 求V圆锥

  (1)、 (2)两题条件相同,所求不同;

  板书:2. 圆锥体积一定要乘 1/3

  (3)、 (4)两题都要先求出底面积;

  板书:3. 单位名称要统一

  三. 实际应用练习:

  我们还可应用到生活中去解决一些实际问题:(幻灯出示)

  1.一根圆柱形钢材长2米,底面周长为6.28厘米,如果1立方厘米钢重8克,100根这样的钢材重多少千克?

  默读后问同学:做这道题前有没有准备工作要做?(单位要统一)

  2.一个圆锥形麦堆,底面直径4米,高1.5米,按每立方米麦重700千克算,这堆麦重多少千克?

  默读后问同学:要注意麦堆是什么形状?

  请两位同学板演,其余在本子上自练;

  3.小结:在解这两题时都用到了什么计算?

  四. 提高练习:

  (幻灯出示)在一只底面半径为30厘米的圆柱形水桶里,放入一段底面半径为10厘米的圆锥形钢材,水面升高了5厘米,这段钢材高为多少?

  (电脑出示图案)观察水面变化情况,求什么?

  1.钢材是什么形状?求圆锥体的高用什么方法?h=3V/S,3V表示什么?

  2. S可以通过哪个条件求?( r=10厘米)

  3.体积是什么呢?(电脑屏幕逐步演示)

  (1)当钢材放入时水面上升,取出时水面下降,和什么有关?

  (2)放入时水面为什么会上升?

  (3)圆锥体占据了水桶里哪一部分水的体积?

  (4)上升的水的.体积等于什么?

  (5)求圆锥形钢材的体积就是求什么?

  (6)求这部分水的体积可通过哪些条件求?(r=30厘米,h=5厘米)

  (7)板演,同学自练;

  五. 圆柱体、圆锥体之间的关系是很密切的,下面我们来研究一下:(电脑出示画面、公式)

  1.当圆柱体与圆锥体等底等高时,圆柱的体积是圆锥体积的3倍;(逆向)

  2.当圆柱体与圆锥体体积相等,底面积相等时,圆锥的高是圆柱的3倍;

  3.当圆柱体与圆锥体体积相等,高也相等时,圆柱的底面积是圆锥底面积的1/3,圆锥底面积是圆柱底面积的3倍。

  六、总结:

  这节课我们复习了什么?

《圆锥的体积》教案13

  教学目的:

  1、知识目标:使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积,《圆锥的体积》教案设计及反思。.

  2、能力目标:培养学生初步的空间观念,动手操作能力和逻辑思维能力。

  3、情感目标:向学生渗透知识间可以相互转化的辩证唯物主义思想,让学生学习将新知识转化为原有知识的学习方法.

  教学重点:圆锥的体积计算

  教学难点:圆锥的体积计算公式的推导.

  教学准备:圆锥形萝卜、绳子,每个小组一个计算器、等底等高的圆柱和圆锥容器模型、沙土水等。

  教学过程:

  一、复习导入。师:同学们,你们知道桌上那个白萝卜,它是什么形体吗?(圆柱体),现在,如是假设它的底面积是5平方厘米,高是4厘米,你怎样求它的体积呢?求出体积后,问:现在老师想请你们帮个忙,把它削成一个最大的圆锥,你们有办法吗?说一说什么样的圆锥体才算最大呢?(与原来的圆柱体萝卜等底等高)

  二、探究新知1、实践猜想.师:好,现在请同学们动手削萝卜,比比哪一组削得最漂亮?学生削完后,问:谁来猜猜,现在削成的圆锥体积与刚才圆柱有什么关系呢?你是怎么猜测的?生1:我猜圆锥的体积可能等于原来那个萝卜体积的,就是5立方厘米。

  生2:我猜圆锥的体积可能等于原来那个萝卜体积的,就是10立方厘米。我是根据我们以前学过的在长方形里剪一个最大的三角形,三角形的面积是长方形的,所以我认为圆锥的体积也是圆柱体积的。

  生3: 我猜圆锥的体积可能等于原来那个萝卜体积的,就是6立方厘米,是把削去的萝卜拼起来和圆锥体萝卜进行比较,发现削去的部分的体积大约是圆锥体积的2倍。

  生4: 我猜圆锥的体积可能等于原来那个萝卜体积的,就是8立方厘米,我是估计的。.师:那你有什么方法可以验证你的猜想呢?

  生5:我可以把削成的圆锥与削去的萝卜都拿去称,再比较它们的重量。.

  生6:我把圆锥体萝卜浸入盛有水的圆柱容器里,算出它的体积,再把削去部分的萝卜也浸入盛有水的圆柱形容器里,根据水面上升的高度求出它的体积就知道了。.

  生7:我可以把刚才那个圆柱体萝卜和削成的圆锥休萝卜分别挖成空心的然后把空圆锥萝卜盛满水倒入圆柱体萝卜中,分别算出体积后进行比较。

  生8:我可以用桌上的这些学具来验证。.再让学生比比哪种方法最合适?

  2、实验验证。师:好,现在让我们利用学具来验证一下自己猜想,请小组合作动手实验,比比哪组实验最准确?

  3、汇报归纳师:通过刚才同学们的认真探讨,谁能说说你是怎么实验的?生:我用圆柱装满沙把它倒入圆锥中,刚好倒了3杯。生:我用圆锥装三次沙,刚好装满这个圆柱。师:这个实验说明等底等高的圆锥和圆柱的体积有怎样的关系?生:说明了圆锥的体积等于和它等底等高的圆柱体积体积的三分之一。师:请同学们思考:如果一个圆柱的体积是24立方米,那么和它等底等高的圆锥的体积是多少立方米?师:圆柱体积计算公式是V=SH,那么和它等底等高的圆锥体积应样计算?生:圆锥的体积V等于和它等底等高的圆柱的体积的三分之一,即V=SH师:同学们,现在你知道刚才我们削的那个圆锥的体积应该是多少了吗?

  4、解决问题,教案《《圆锥的体积》教案设计及反思》。课件出示例1,让学生独立完成。5、教师小结。

  三、扩展应用。(一)、基本练习。1、一个圆锥的底面积是25平方分米,高是9分米,它的体积是多少?2、测量圆锥体学具,求出体积,并说说高是怎么量的?3、一个圆锥的底面积直径是20厘米,高是8厘米,它们体积是多少?(二)扩展练习。!、一个圆锥的体积是8立方分米,底面积是2平方分米,高是()分米?2、圆锥形的容器高12厘米,容器中盛满水,如果水全部倒入等底的圆柱容器中,水面高是( )

  四、归纳小结。师:通过这节课的学习,你学会了什么?你是怎么学会的?

  五、作业。

  选择题。(1)、两个体积相等的等底圆柱和圆锥,圆锥的高一定是圆柱的( )。(2)、把一段圆柱形的木棒削成一个最大的圆锥,削去的体积是圆锥体积的.( )。供选答案:(1)3倍(2)(3)(4)2倍

  教学反思:

  这节课,体现了以下几个特点:

  一、在“动”中获新知。“动”是孩子的天性,每位孩子都充满了“动”的欲望。由于几何知识比较抽象,学生理解和掌握几何图形的概念、性质、求积公式、形成空间观念,都必须有大量具体的、形象的感性材料的积累。所以教材在编排这一知识块的时候,就已安排了很多的实践性练习。教学时,教者能充分利用这一特点,通过摆、剪、折、量、画、分割、拼合等操作活动,使学生获得鲜明、生动、形象的感性认识,在此基础上,抽象概括出圆锥的体积计算方法,形成正确的空间观念。

  二、在“动”中求发展。在教学圆锥的体积时,教者先让学生观察并讨论推导圆锥体积公式的实验方法,当学生由于受圆柱体积公式推导方法的影响,思维受阻时,教者向学生提议:用桌上学具来验证。同时推荐一些实验用品:水或沙、尺等。让学生在实验中选择并设置疑问:圆锥体积与圆柱体积的关系。通过实际操作,学生不仅得出圆锥体积的计算公式。获得了知识的结果,而且经历了知识面发展、发生的过程,同时加强并巩固口头和书面表达能力,发展解决数学问题的能力,增进对数学的理解力。

  三、在“动”中学会与他人合作。学习是学生主体的主动建构过程,其本质是让学生认识客观世界,把书本中的知识结构转化为自己的认知结构。这个过程是学生主体活动的过程,必须由学生亲身参与,学生在动手中运用感官参与学习,自觉主动地去操作、去学习,在浓厚的动手实践中不仅经历了知识的形成过程,而且也学会了如何与他人合作才能取得成功。

《圆锥的体积》教案14

  教学内容:

  教科书第20~21页例5及相应的 试一试,练一练和练习四的第1~3题。

  教学目标:

  1.组织学生参与实验,从而推导出圆锥体积的计算公式。

  2.会运用圆锥的体积计算公式计算圆锥的体积。

  3.培养学生观察、比较、分析、综合的能力以及初步的空间观念。

  4.以小组形式参与学习过程,培养学生的合作意识。

  5.渗透转化的数学思想。

  教学重点:

  理解和掌握圆锥体积的计算公式。

  教学难点:

  理解圆柱和圆锥等底等高时体积间的倍数关系。

  教学资源:

  等底等高的圆柱和圆锥容器一套,一些沙或米等。

  教学过程:

  一、联系旧知,设疑激趣,导入新课。

  1.我们已经知道了哪些立体图形体积的求法?(学生回答时老师出示相应的教具---长方体,正方体圆柱体,然后板书相应的计算公式。)

  2.我们是用什么方法推出圆柱体积的计算公式的?(是把圆柱体转化为长方体来推导的。板书:转化)

  3.(出示教具)大家觉得这个圆锥与哪个立体图形的关系最近呢?(老师比较学生指出的圆柱与圆锥的底和高,引导学生发现这个圆柱与圆锥等底等高。)

  4.大家觉得我们今天要研究的圆锥的体积可能转化为什么图形来研究比较简单呢?能说说自己的理由吗?

  5.它们的体积之间到底有什么关系呢?

  二、实验操作、推导圆锥体积计算公式。

  1.课件出示例5。

  (1)通过演示使学生知道什么叫等底等高。

  (2)让学生猜想:图中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?

  (3)实验操作,发现规律。

  (用学具演示)在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的 。

  老师把圆柱里的'黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?

  (4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的 。

  2.教师课件演示

  3.学生讨论实验情况,汇报实验结果。

  4.启发引导推导出计算公式并用字母表示。

  圆锥的体积=等底等高的圆柱的体积 1/3=底面积高1/3

  用字母表示:V= 1/3Sh

  小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以1/3 ?

  5.教学试一试

  (1)出示题目

  (2)审题后可让学生根据圆锥体积计算公式自己试做。

  (3)批改讲评。注意些什么问题。

  三、发散练习、巩固推展

  1.做练一练第1.2题。

  指名一人板演,其余学生做在练习本上。集体订正,强调要乘以1/3 。

  2.做练习四第1.2题。

  学生做在课本上。之后学生反馈。错的要求说明理由。

  四、小结

  这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?

  学生交流

  五、作业

  练习四第3题。

《圆锥的体积》教案15

  一、学习目标

  (一)学习内容

  《义务教育教科书数学》(人教版)六年级下册第33—34页的例2和例3。例2是以探索圆锥的体积与和它等底等高的圆柱体积之间的关系为例,让学生在探究过程中获得数学活动经验。例3则是在例2的基础上运用圆锥的体积公式解决实际问题,丰富解决问题的策略,感受数学与生活密不可分的联系。

  (二)核心能力

  在探索圆锥的体积与和它等底等高的圆柱体积之间的关系的过程中,渗透转化思想,发展推理能力。

  (三)学习目标

  1.借助已有的知识经验,通过观察、猜测、实验,探求出圆锥体积的计算公式,并能运用公式正确地解决简单的实际问题。

  2.在圆锥体积计算公式的推导过程中,进一步理解圆锥与圆柱的联系,发展推理能力。

  (四)学习重点

  圆锥体积公式的理解,并能运用公式求圆锥的体积。

  (五)学习难点

  圆锥体积公式的推导

  (六)配套资源

  实施资源:《圆锥的体积》名师课件、若干同样的圆柱形容器、若干与圆柱等底等高和不等底等高的圆锥形容器,沙子和水

  二、教学设计

  (一)课前设计

  1.复习任务

  (1)我们学过哪些立体图形?它们的体积计算公式分别是什么?请你整理出来。

  (2)这些立体图形的体积计算公式是怎么推导的?运用了什么方法?请整理出来。

  设计意图:通过复习物体的体积公式以及圆锥体积的推导,深化转化思想在生活中的应用,也为圆锥体积的推导埋下伏笔。

  (二)课堂设计

  1.情境导入

  (出示沙堆)

  师:你们有办法知道这个沙堆的体积吗?

  学生自由发言,提出各种办法。

  预设:把它放进圆柱形的容器里,测量出圆柱的底面积和高就可以知道等等

  师:能不能像其它立体图形一样,探究出一个公式来求圆锥的体积呢?这节课我们来研究。板书课题

  设计意图:利用情境引入,激发学生求知的欲望,引出求圆锥体积公式的必要性。

  2.问题探究

  (1)观察猜想

  师:你们觉得,圆锥的体积和我们认识的哪种立体图形的体积可能有关?为什么?

  学生自由发言。

  (圆柱,圆柱的底面是圆,圆锥的底面也是圆……)

  师:认真观察,它们之间的体积会有什么关系?(出示圆柱、圆锥的教具)

  学生猜想。

  (2)操作验证

  师:圆锥的体积究竟和圆柱的体积有什么关系?请同学们亲自验证。

  实验用具:教师准备等底等高和不等底等高的各种圆柱、圆锥模具,一些水。

  实验要求:各组根据需要先上台选用实验用具,然后小组成员分工合作,做好实验数据的收集和整理。

  1号圆锥2号圆锥3号圆锥

  次数

  与圆柱是否等底等高

  学生选过实验用具后进行试验,教师巡视,发现问题及时指导,收集有用信息。

  (3)交流汇报

  ①汇报实验结果

  各组汇报实验结果。

  ②分析数据

  师:观察全班实验的数据,你能发现什么?

  (大部分实验的结果是能装下三个圆锥的水,也有两次多或四次等)

  师:什么情况下,圆柱刚好能装下三个圆锥的水?

  各组互相观察各自的圆柱和圆锥,发现只有在等底等高的情况下,圆柱的体积是与它等底等高圆锥体积的3倍。也可以说成圆锥的体积是和它等底等高的圆柱的体积的三分之一。

  师:是不是所有符合等底等高条件的圆柱、圆锥,它们的体积之间都具有这种关系呢?

  老师用标准教具装沙土再演示一次,加以验证。

  ③归纳小结

  师:谁能来总结一下,通过实验我们得到的结果是什么?

  (4)公式推导

  师:你能把上面的试验结果用式子表示吗?(学生尝试)

  老师结合学生的回答板书:

  圆锥的体积公式及字母公式:

  圆锥的体积=×圆柱的体积

  =×底面积×高

  S=sh

  师:在探究圆锥体积公式的过程中,你认为哪个条件最重要?(等底等高)

  进一步强调等底等高的圆锥和圆柱才存在这种关系。

  设计意图:通过观察、猜测,让学生感知圆锥的体积与圆柱体积之间存在着一定的关系,渗透转化的思想。再通过对实验数据的分析,进一步感知圆锥的体积是和它等底等高的圆柱的体积的三分之一,在这一过程中,发展学生的推理能力。

  考查目标1、2

  (5)实践应用

  师:还记得这堆沙子吗?如果给你了它的高和底面的直径,你能算出这堆沙的体积大约是多少?如果每立方米沙子重1.5t,这堆沙子大约重多少吨?(得数保留两位小数。)

  师:要求沙堆的体积需要已知哪些条件?

  (由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

  学生试做后交流汇报。

  已知圆锥的底面直径和高,可以直接利用公式

  V=π()h来求圆锥的体积。

  师:在计算过程中我们要注意什么?为什么?

  注意要乘以,因为通过实验,知道圆锥的体积等于与它等底等高的.圆柱体积的。

  3.巩固练习

  (1)填空。

  ①圆柱的体积是12m,与它等底等高的圆锥的体积是()m。

  ②圆锥的体积是2.5m,与它等底等高的圆柱的体积是()m。

  ③圆锥的底面积是3.1m2,高是9m,体积是()m。

  (2)判断,并说明理由。

  ①圆锥的体积等于圆柱体积的。()

  ②圆锥的体积等于和它等底等高的圆柱体积的3倍。()

  (3)课本第34页的做一做。

  ①一个圆锥形的零件,底面积是19cm2,高是12cm,这个零件的体积是多少?

  ②一个用钢铸造成的圆锥形铅锤,底面直径是4cm,高是5cm。每立方厘米钢大约重7.8g。这个铅锤重多少克?(得数保留整数)

  4.课堂总结

  师:这节课你收获了什么?和大家分享一下吧!

  圆柱的体积是与它等底等高圆锥体积的3倍;圆锥的体积是与它等底等高圆柱体积的三分之一;V圆锥=V圆柱=Sh。

  (三)课时作业

  1.王师傅做一件冰雕作品,要将一块棱长30厘米的正方体冰块雕成一个最大的圆锥,雕成的圆锥体积是多少立方厘米?

  答案:30÷2=15(厘米)

  ×3.14×152×30

  =235.5×30

  =7065(立方厘米)

  答:雕成的圆锥的体积是7065立方厘米。

  解析:这是一道考察学生空间思维能力的题,要在正方体里面雕一个最大的圆锥,必须满足圆锥的底面直径等于正方体的棱长,圆锥的高也要等于正方体的棱长,在实际中感受生活和数学的紧密联系,同时为下面在长方体里放一个最大的圆锥做了铺垫。考查目标1、2

  2.看看我们的教室是什么体?(长方体)

  要在我们的教室里放一个尽可能大的圆锥体,想一想,可以怎样放?怎样放体积最大?(测量教室长12m,宽6m,高4m.先计算,再比较怎样放体积最大的圆锥体。)

  解析:这是一道开放题,有一定的难度,在考察学生对圆锥体积理解的基础上,又综合了长方体的知识,对学生的空间想象能力要求比较高。

  ①以长宽所在的面为底面做最大的圆锥,此时圆锥的高为4m,底面圆的直径为6m.

  ②以宽高所在的面为底面做最大的圆锥,此时圆锥的高为12m,底面圆的直径为4m.

  ③以长高所在的面为底面做最大的圆锥,此时圆锥的高为6m,底面圆的直径为4m.

  以上三种情况计算并加以比较,得出结论。考查目标1、2

【《圆锥的体积》教案】相关文章:

圆锥的体积教案02-13

《圆锥的体积》教案03-18

圆锥的体积教案15篇02-24

小学六年级数学《圆锥的体积》教案02-22

《圆锥》教案01-23

体积和体积单位教案02-04

小学六年级数学《圆锥的体积》教案13篇03-01

《圆锥的认识》教案03-02

《圆柱的体积》教案01-02