范文资料网>反思报告>教案大全>《一元二次方程复习教案

一元二次方程复习教案

时间:2023-03-12 10:18:39 教案大全 我要投稿
  • 相关推荐

一元二次方程复习教案

  作为一位无私奉献的人民教师,总归要编写教案,借助教案可以让教学工作更科学化。怎样写教案才更能起到其作用呢?下面是小编收集整理的一元二次方程复习教案,欢迎阅读与收藏。

一元二次方程复习教案

一元二次方程复习教案1

  试讲人:XXX

  知识点:二元一次方程的概念及一般形式,二次项系数、一次项系数、常数项、判别式、一元二次方程解法

  重点、难点:二元一次方程四种解法,直接开平方、配方法、公式法、因式分解法

  教学形式:例题演示,加深印象!学完即用,巩固记忆!你问我答,有来有往!

  1、自我介绍:30s

  大家下午好!我叫XXX,20xx年毕业于暨南大学,学的行政管理,现在教的是初中数学,希望能与大家有一个愉快的下午!

  2、一元二次方程概念、系数、根的判别式:8min30s

  我们今天的课堂内容是复习一元二次方程。首先请同学们看黑板上的这4个等式,请判断等式是否是一元二次方程,如果是请说出该一元二次方程的二次项系数、一次项系数以及常数项:

  (1)x -10x+9=0 是 1 -10 9

  (2)x +2=0 是 1 0 2

  (3)ax +bx+c=0 不是 a必须不等于0(追问为什么)

  (4)3x -5x=3x 不是 整理式子得-5x=0所以为一元一次方程(追问为什么) 好,同学们都回答得非常好!那么我们所说的一元二次方程究竟是什么呢?我们从它的名字可以得出它的定义!

  一元:只含一个未知数

  二次:含未知数项的最高次数为2

  方程:一个等式

  一元二次方程的一般形式为:ax +bx+c=0 (a ≠0)其中,a 为二次项系数、b 为一次项系数、c 为常数项。记住,a 一定不为0,b 、c 都有可能等于0,一元二次方程的形式多种多样,所以大家要注意找系数时先将一元二次方程化为一般式! 至于一个一元二次方程有没有根怎么判断,有同学能告诉老师吗?(没有就自己讲),好非常好!我们知道Δ是等于2-4ac 的,当Δ>0时,方程有2个不相同的实数根;当Δ=0时,方程有两个相同的实数根;当Δ<0时,方程无实根。 那我们在求方程根之前先利用Δ判断一下根的情况,如果小于0,那么就直接判断无解,如果大于等于0,则需要进一步求方程根。

  3、一元二次方程的解法:20min

  那说到求方程的根我们究竟学了几种求一元二次方程根的方法呢?我知道同学们肯定心里有答案,就让老师为你们一一梳理~

  (1)直接开方法

  遇到形如x =n的二元一次方程,可以直接使用开方法来求解。若n <0,方程无解;若n=0,则x=0,若n >0, 则x=±n 。同学们能明白吗?

  (2)配方法

  大家觉得直接开平方好不好用?简不简单?那大家肯定都想用直接开方法来做题,是吧?当然,中考题简单也不至于这么简单~但是我们可以通过配方法来将方程往完全平方形式变化。配方法我们通过2道例题来巩固一下:

  简单的一眼看出来的:x -2x+1=0 (x-1)=0(让同学回答)

  需要变换的:2x +4x-8=0

  步骤:将二次项系数化为1,左右同除2得:x +2x-4=0

  将常数项移到等号右边得:x +2x=4

  左右同时加上一次项系数一半的平方得:x +2x+1=4+1

  所以有方程为:(x+1)=5 形似 x=n

  然后用直接开平方解得x+1=±5 x=±5-1

  大家能听懂吗?现在我们一起来做一道练习题,2min 时间,大家一起报个答案给我!

  题目:1/2x-5x-1=0 答案:x=±+5

  大家都会做吗?还需要讲解详细步骤吗?

  (3)讲完了直接开方法、配方法之后我们来讲一个万能的公式法。只要知道abc ,没有公式法求不出来的解,当然啦,除非是无解~

  首先,公式法里面的公式大家还记得吗?

  x=(-b ±2-4ac )/2a

  这个公式是怎么来的呢?有同学知道的吗?就是将一般式配方法得到的x 的表达式,大家记住,会用就可以了,如果有兴趣可以课后试着用配方法进行推导,也欢迎课后找我探讨~这个公式法用起来非常简单,一找数、二代入、三化简。 我们来做一道简单的例题:

  3x -2x-4=0

  其中a=3,b=-2,c=-4

  带入公式得:x=((-(-2))± 2) 2-4*(-4)*3/(2*3)

  化简得:x1=(1-)/3 x2=(1+)/3

  同学们你们解对了吗?

  使用公式法时要注意的点:系数的符号要看准、代入和化简要细心,不要马失前蹄哈~

  (4)今天的`第四种解方程的方法叫因式分解法。因式分解大家会吗?好那今天由我来带大家一起见识一下因式分解的魅力!

  简单来说,因式分解就是将多项式化为式子的乘积形式。

  比如说ab+ab 可以化成ab (1+a)的乘积形式。

  那么对于二元一次方程,我们的目标是要将其化成(mx+a)*(nx+b)=0 这样就可以解出x=-a/m x=-b/n

  我们一起做一个例题巩固一下:4x +5x+1=0

  则可以化成4x +x+4x+1=0 x(4x+1)+(4x+1)=0 (x+1)(4x+1)=0

  所以有x=-1 x=-1/4

  同学们都能明白吗?就是找出公因式,将多项式化为因式的乘积形式从而求解。 练习题:x -5x+6=0 x=2 x=3

  x-9=0 x=3 x=-3

  4、总结:1min

  好,复习完了二元一次方程我们熟知它的概念。只含有一个未知数且未知数项最高次数为2的等式,叫做二元一次方程。我们还要会找abc 系数,会用Δ=b-4ac 来判别方程实根的情况。还需要熟悉四种方程的解法,这是中考的重点考察内容。当然,具体用哪一种解题方法就需要结合具体的题目来选择了。如果形式简单可以直接用开平方则直接用开平方,否则首选因式分解法,再者选择配方法,最后的底线是公式法~当然每个人的习惯不一样,熟悉的方法也不一样,同学们可以自行选择万无一失的方法,像老师不到万不得已绝对不用公式法,哈哈哈哈~好啦,上完这一个复习课希望大家都能有收获!

一元二次方程复习教案2

  复习目标:

  1、能说出一元二次方程及其相关概念。

  2、能熟练应用配方法、公式法、分解因式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想。

  复习重难点:一元二次方程的解法

  教学过程

  一、情景导入

  前面我们复习了一元一次方程与二元一次方程组的解法,大家掌握得很不错,请同学解方程x(x-1)=1,(学生略作思考后,示意不会做)忘了吧?看来好多学生都已经忘了如何解一元二次方程呢?那么这节课我们就一起来复习一元二次方程的解法(板书课题)

  二、复习指导(学生按照复习提纲解决问题,师做简单的板书准备后,巡视指导,特别要注意帮助有困难的同学,了解学生的情况,为展示归纳做准备。)

  复习提纲

  1.-元二次方程的定义:只含有_______叫做一元二次方程。

  2.一元二次方程的一般形式是________(a_______0),其中ax2叫做_______项,a是_______,bx叫做_______,b是_______,c叫做_______项。

  3.一元二次方程的解法:

  (1)用直接开平方法解方程(2x+1)2=9

  形如x2=p(p≥0)的方程的根为________。

  (2)用配方法解方程x2+2x=3

  用配方法解方程步骤: , , , 。

  (3)用求根公式法解方程x2-3x-5=0 ,x2-3x+5=0。

  一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=________,根x= 。

  (1)当△>0时,方程有两个_______的实数根。

  (2)当△=0时,方程有两个_______的实数根。

  (3)当△<0时,_______。

  三、展示归纳

  1、教师抽有困难的学生逐题汇报复习结果,学生说教师板书。

  2、教师发动全班学生进行评价,补充,完善。

  3、教师画龙点睛的`强调。

  四、变式练习(1、2、4题让学生说出理由,3题让学生观察方程的特点可发现:(1)可用直接开平方法;(2)用配方法或公式法;(3)可用公式法;(4)方程都有共同的因式(x-3),故可用因式分解法。)

  1、判断下列哪些方程是一元二次方程?

  (1)4x2-16x+15=0 (2) 2x2-3=0 (3)ax2+bx+c=0

  2、请将方程(x+1)(2-x)=1化为一般形式_______。

  3、解下列方程:

  (1) (x-3)2-9=0; (2) x2-2x=5;

  (3) x2-4x+2=0; (4) 2(x-3)=3x(x-3)。

  4、不解方程,判断下列方程根的情况。

  (1)2x2-5x-3=0 (2)x2+6x+9=0 (3)x2-4x+5=0

  五、课堂总结

  请谈谈本节课的收获与困惑。(学生自主小结归纳,将本章知识内化为自己的东西,并提高归纳小结的能力。)

  六、布置作业

一元二次方程复习教案3

  一、复习目标:

  1、能说出一元二次方程及其相关概念,;

  2、能熟练应用配方法、公式法、分解因式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想。

  3、能灵活应用一元二次方程的知识解决相关问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力。

  二、复习重难点:

  重点:一元二次方程的解法和应用.

  难点:应用一元二次方程解决实际问题的方法.

  三、知识回顾:

  1、一元二次方程的定义:

  2、一元二次方程的常用解法有:

  配方法的'一般过程是怎样的?

  3、一元二次方程在生活中有哪些应用?请举例说明。

  4、利用方程解决实际问题的关键是。

  在解决实际问题的过程中,怎样判断求得的结果是否合理?请举例说明。

  四、例题解析:

  例1、填空

  1、当m时,关于x的方程(m-1)+5+mx=0是一元二次方程.

  2、方程(m2-1)x2+(m-1)x+1=0,当m时,是一元二次方程;当m时,是一元一次方程.

  3、将一元二次方程x2-2x-2=0化成(x+a)2=b的形式是;此方程的根是.

  4、用配方法解方程x2+8x+9=0时,应将方程变形为()

  A.(x+4)2=7B.(x+4)2=-9

  C.(x+4)2=25D.(x+4)2=-7

  学习内容学习随记

  例2、解下列一元二次方程

  (1)4x2-16x+15=0(用配方法解)(2)9-x2=2x2-6x(用分解因式法解)

  (3)(x+1)(2-x)=1(选择适当的方法解)

  例3、1、新竹文具店以16元/支的价格购进一批钢笔,根据市场调查,如果以20元/支的价格销售,每月可以售出200支;而这种钢笔的售价每上涨1元就少卖10支.现在商店店主希望销售该种钢笔月利润为1350元,则该种钢笔该如何涨价?此时店主该进货多少?

  2、如图,在Rt△ACB中,∠C=90°,AC=6m,BC=8m,点P、Q同时由A、B两点出发分别沿AC,BC方向向点C匀速运动,它们的速度都是1m/s,几秒后△PCQ的面积为Rt△ACB面积的一半?

一元二次方程复习教案4

  教学目标

  知识与技能目标

  1、构建本章的部分知识框图。

  2、复习一元二次方程的概念、解法。

  过程与方法

  1、通过对本章方程解法的复习,进一步提高学生的运算能力。

  2、在解一元二次方程的过程中体会转化等数学思想。

  情感、态度与价值观

  通过师生共同的活动,使学生在交流和反思的`过程中建立本章的知识体系,从而体验学习数学的成就感.

  教学重点

  1、一元二次方程的概念

  2、一元二次方程的四种解法:直接开平方法、配方法、公式法、因式分解法;

  教学难点

  解法的灵活选择;例4和例5的解法。

  教学过程

  一、创设情境

  导入新课

  问题:本章中,我们有哪些收获?(教师点拨引导学生构建本章部分知识框图)

  二、师生互动

  共同探究

  1、复习概念

  例1

  例2

  2、四种解法

  (1)

  解法及其关系

  (2)

  根的形式

  x1=3

  x2=4

  (3)熟悉解法

  例3用四种解法分别解此方程

  (4)方法优选

  3、方法补充

  例4

  4、解法纠错

  例5

  解关于x的方程

  错误解法

  正确解法

  三、小结反思

  提炼思想

  我们有哪些收获?解方程的思想方法是什么?

  四、布置作业

  巩固提高

一元二次方程复习教案5

  1、复习一元二次方程,一元二次方程的解的概念;

  2、复习4种方法解简单的一元二次方程;

  3、会建立一元二次方程的模型解决简单的实际问题。

  [学习过程]

  一、回顾知识点

  1、一元二次方程具有三个显著特点,它们是①_________________;②_________________;③_________________。

  2、一元二次方程的一般形式是_______________________________。

  3、一元二次方程的解法有____________、____________、____________、____________。

  4、一元二次方程ax2+bx+c=0(a≠0)的根的判别式为△=b2-4ac。

  ①当△0时,方程有__________;

  ②当△=0时,方程有__________;

  ③当△0时,方程有__________。

  5. 一元二次方程 的两根为 , 则两根与方程系数之间有如下关系:

  二巩固练习

  二、填空题:

  1、在下列方程①2x+1=0;②y2+x=1;③x2+1=0;④ +x2=1中,是一元一次方程的是_____。

  2、已知x=1是一元二次方程x2-2mx+1=0的`一个解,则m=______。

  3、若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常项为0,则m=________。

  4、关于x的一元二次方程x2-mx+m-2=0的根的情况是__________。

  5、写出两个一元二次方程,使每个方程都有一根为0,并且二次项系数都为1:________;______________。

  6、三角形的每条边的长都是方程x2-6x+8=0的根,则三角形的周长是___________。

  7、解方程5(x- )2=2(x- )最适当的方法是_____________。二、填空题:(每题3分,共24分)

  8.一元二次方程 的二次项系数为 ,一次项系数为 ,常数项为 ;

  9. 方程 的解为

  10.已知关于x一元二次方程 有一个根为1,则

  11.当代数式 的值等于7时,代数式 的值是 ;

  12.关于 实数根(注:填“有”或“没有”)。

  13.一个两位数,个位数字比十位数字大3,个位数字的平方刚好等于这个两位数,则这个两位数为 ;

  14.已知一元二次方程 的一个根为 ,则 .

  15. 阅读材料:设一元二次方程 的两根为 , ,则两根与方程系数之间有如下

  关系:根据该材料填空:已知 , 是方程 的两实数根,则 的值为______ .

  三、选择题:(每题3分,共30分)

  1、关于x的方程 是一元二次方程,则

  A、a0 B、a≠0 C、a=0 D、a≥0

  2.用配方法解下列方程,其中应在左右两边同时加上4的是

  A、 B、 C、 D、

  3.方程 的根是

  A、 B、 C、 D、

  4.下列方程中,关于x的一元二次方程的是

  A、 B、 C、 D、

  5.关于x的一元二次方程x2+kx-1=0的根的情况是

  A、有两个不相等实数根 B、没有实数根

  C、有两个相等的实数根D、不能确定

  6.已知x=1是一元二次方程x2-2mx+1=0的一个解,则m的值是

  A、1 B、0 C、0或1 D、0或-1

  7.为执行“两免一补”政策,某地区2008年投入教育经费2500万元,预计2010年投入3600万元.设这两年投入教育经费的年平均增长百分率为 ,则下列方程正确的是

  A、 B、

  C、 D、

  8. 已知 、 是方程 的两个根,则代数式 的值

  A、37 B、26 C、13 D、10

  9.等腰三角形的底和腰是方程 的两个根,则这个三角形的周长是

  A、8 B、10 C、8或10 D、不能确定

  10.一元二次方程 化为一般形式为

  A、 B、 C、 D、

  四、解答题:(共46分)

  19、解方程(每题4分,共16分)

  (1) (2)

  22、已知a、b、c均为实数,且 ,求方程

  的根。(8分)

  23.在北京2008年第29届奥运会前夕,某超市在销售中发现:奥运会吉祥物“福娃”平均每天可售出20套,

  每件盈利40元。为了迎接奥运会,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。

  经市场调查发现:如果每套降价1元,那么平均每天就可多售出2套。要想平均每天在销售吉祥物上盈利

  1200元,那么每套应降价多少?(10分)

  24.美化城市,改善人们的居住环境已成为城市建设的一项重要内容,某市城区近几来,通过拆迁旧房,植草。

  栽树,修公园等措施,使城区绿地面积不断增加(如图)(12分)

  (1)根据图中所提供的信息,回答下列的问题:2003年的绿地面积为______公顷,比2002年增加了________

  公顷。在2001年,2002年,2003年这三年中,绿地面积增加最多的是___________年。

  (2)为了满足城市发展的需要,计划到2005年使城区绿地总面积达到72.6公顷,试求这两年(2003~2005年)

  绿地面积的年平均增长率.

一元二次方程复习教案6

  教学

  目标

  知识与能力:1.理解一元二次方程根的判别式。

  2.掌握一元二次方程的根与系数的关系

  3.同学们掌握一元二次方程的实际应用.了解一元二次方程的分式方程。

  过程与方法:培养学生的逻辑思维能力以及推理论证能力。

  情感与价值观:渗透分类的数学思想和数学的简洁美;培养学生的协作精神。

  重、难点

  重点:根的判别式和根与系数的关系及一元二次方程的应用。

  难点:一元二次方程的实际应用。

  一、导入新课、揭示目标

  1.理解一元二次方程根的判别式。

  2.掌握一元二次方程的根与系数的关系

  3.掌握一元二次方程的实际应用.

  二、自学提纲:

  一.主要让学生能理解一元二次方程根的.判别式:

  1.判别式在什么情况下有两个不同的实数根?

  2.判别式在什么情况下有两个相同的实数根?

  3.判别式在什么情况下无实数根?

  二.ax2+bx+c=o(a≠0)的两个根为x1.x2那么

  X1+x2=-x1x2=

  三.一元二次方程的实际应用。根据不同的类型的问题.列出不同类型的方程.

  三.合作探究.解决疑难

  例1已知关于x的方程x2+2x=k-1没有实数根.试判别关于x的方程x2+kx=1-k的根的情况。

  巩固提高:

  已知在等腰中,BC=8.AB.AC的长是关于x的方程x2-10x+m=0的两个实数根.求的周长

  例题2:

  .已知:x1.x2是关于x的方程x2+(2a-1)x+a2=0的两个实数根.且(x1+2)(x2+2)=11.求a的值。

  .巩固提高:

  已知关于x的一元二次方程x2+(4m+1)x+2m-1=0.

  (1)求证:不论m为任何实数.方程总有两个不相等的实数根;

  (2)若方程两根为x1.x2.且满足

  求m的值。。

  例3某电脑销售商试销一品牌电脑(出厂为3000元/台),以4000元/台销售时,平均每月销售100台.现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的市场调查,3月份调整价格后,月销售额达到576000元.已知电脑价格每台下降100元,月销售量将上升10台,

  (1)求1月份到3月份销售额的平均增长率:

  (2)求3月份时该电脑的销售价格.

  练习:某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元。为了扩大销售,增加利润,商场决定采取适当降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

  1)若商场平均每天要赢利1200元,则每件衬衫应降价多少元?

  则降价多少元?

  四、小结这节课同学有什么收获?同学互相交流?

  五、布置作业:课前课后P10-12

【一元二次方程复习教案】相关文章:

一元二次方程的根的判别式一教案12-29

《总复习》教案03-08

《整理与复习》教案01-25

小学复习教案01-27

整理与复习教案03-18

短文复习教案04-10

数学单元复习教案12-19

语文期末复习教案09-10

《整理和复习》教案09-29