- 分数的意义教案 推荐度:
- 相关推荐
分数的意义教案合集14篇
作为一位杰出的老师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。那么优秀的教案是什么样的呢?以下是小编为大家收集的分数的意义教案,希望能够帮助到大家。
分数的意义教案 篇1
教学内容:
教材第75~76页内容及练习与应用第1—7题。
教学目标:
1、通过回顾与整理,使学生进一步加深对分数意义的理解
2、用分数的有关知识,熟练解决求一个数是另一个数几分之几的实际问题
3、进一步理解分数的基本性质,掌握约分和通分的方法。
4、通过小组交流的形式组织学生整理知识要点,体验自己学习的收获,建立合理的认知结构。
教学重点:
熟练解决求一个数是另一个数几分之几的实际问题
教学难点:
帮助学生建立合理的认知结构。
教学方法:
讲练结合法
教学过程:
一、回顾与整理
1、这一单元你学会了什么?
学生交流。
2、小组讨论书上的三个问题。
指名汇报。约分和通分的根据是什么?
约分要约到什么为止?什么是最简分数?通分一般用什么作公分母?
二、练习与应用
1、做第1题。
下面的涂色部分可用哪些分数表示?还能说出其他分数吗?说说你是怎样想的?
2、做第2、3题。
学生独立完成。校对,说说自己的'想法。
3、做第4题。
可以用直线上同一个点表示的数,有什么特点?
你准备怎样找呢?学生完成约分,说说哪些分数相等?学生独立画点。
5、做第5题。
学生独立完成。指名汇报方法。
6、第6题
学生先独立练习
引导比较A三道题目计算方法有什么相同?
B算式中选择的除数有什么不同?
C从中还能想到些什么?
沟通求一个数是另一个数的几分之几与求一个数是另一个数的几倍的联系。
7、第7题
练习后加强对比
引导学生区别清楚:一、第一个问题是求平均每条童裤用了这块布的几分之几,需要把5米看做单位“1”,并把它平均分成6份,用分数表示其中的一份,得到的分数不注明单位名称。二、第二个问题是求平均每条童裤用布几分之几米,要把5米等分成6份,并用分数表示其中的一份,得到的结果要注明单位名称“米”。
三、课堂总结
通过今天的复习你有什么收获?
分数的意义教案 篇2
教学内容:
教材第3页例2,做一做。
教学目标:
1、通过直观操作理解一个数乘分数的意义
2、通过迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
3、通过分数乘分数的应用的广泛事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
教学重点:
理解一个数乘分数的意义。
教学难点:
理解一个数乘分数的意义。
教学过程:
一、复习导入
1、计算
2、一个正方形的边长是 m,它的周长是多少米?
二、创设情境,探究整数乘分数
1、借助情境理解整数乘分数的意义。
1桶水有1/2L。3桶共多少L?12 桶是多少L?14 桶是多少L?
(1)理解题意,明确题中的数量关系:单位量数量=总量
(2)根据题意列出算式: 3桶水共多少L?1/23
12 桶是多少L?1/212 14 桶是多少L?1/214
(3)探究每道算式的意义
1/23表示求3个1/2L,也就是求1/2L的3倍是多少。
1/2是一半,1/212 表示12L的一半,也就是求12L的1/2是多少。
1/214 表示求1/2L的`14倍是多少。
发现:一个数乘分数表示的是求这个数的几分之几是多少。
(4)解决问题。123=36(L)
121/4=3(L) 答:3桶共36L。 桶是6L。 桶是3L。
2、完成做一做
一袋面粉重3㎏。已经吃了它的 ,吃了多少千克?
学生独立解答后汇报。
3、在学校举行的泥塑大塞中,一班共制作泥塑作品15件,其中男生做了总数的 。一班男生做了多少件?(分析:男生做了总数的 ,是把一班共制作泥塑作品15件看作单位1,把总数15件平均分成5份。男生做的占其中的3份。)
4、归纳总结
求一个数的几分之几是多少,用乘法计算。
5、练习:29 6= 1234 = 310 4=
观察巡视学生是否先约分再计算。在约分时,是否有学生将分子与分子约分,为什么只能将整数与分数的分母约分。
四、巩固练习,反馈提高
练习一第2、3题。
五、全课小结
分数的意义教案 篇3
重点:
(1)理解分数乘以整数的意义
(2)理解并掌握分数乘以整数的计算法则
难点:
在计算的过程中,能约分的要先约分,然后再乘。
设计思想:
发挥学生的主体作用,在独立尝试的基础上,进行同学间的广泛交流,在对比、择优、质疑的基础上,归纳分数乘以整数的意义和法则。
教学过程:
一、设疑激趣:
1.下面各题怎样列式?你是怎样想的.?
5个12是多少?10个23是多少?25个70是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
2.计算下面各题,说说怎样算?
++=++=
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。
同学之间交流想法:++==33=
3=这个算式表示什么?为什么可以这样计算?
教师板书++=3=
3.出示:(课件1)
这道题目又该怎样计算呢?
二、自主探索:
1.出示例1,读题,说说块是什么意思?
2.根据已有的知识经验,自己列式计算。
三、学生交流、质疑:
1.学生汇报,并说一说你是怎样想的?
方法a.++===(块)
方法b.3=++====(块)
2.比较这两种方法,有什么联系和区别?
(联系:两种方法的结果是一样的。区别:一种方法是加法,另一种方法是乘法。)
教师根据学生的回答,板书++=3
3.为什么可以用乘法计算?
(加法表示3个相加,因为加数相同,写成乘法更简便。)
4.3表示什么?怎样计算?
(表示3个的和是多少?++====,用分子2乘3的积做分子,分母不变。)
5.提示:为计算方便,能约分的要先约分,然后再乘。
(这些质疑活动应该由学生进行,教师引导学生围绕本节课的重点进行质疑、答疑)
四、归纳、概括:
1.结合=3=和++=3=,说一说一个分数乘以整数表示什么?(求几个相同加数的和的简便运算。)
2.分数乘以整数怎样计算?(用分子和分母相乘的积做分子,分母不变)
(根据学生的回答,教师进行板书)
五、巩固、发展
1.巩固意义:
(1)看图写算式,说出乘法算式的意义。(出示图片1、图片2、图片3)
(2)改写算式:
+++=()()
+++++++=()()
(3)只列式不计算:3个是多少?5个是多少?
2.巩固法则:
(1)计算(说一说怎样算)
462148
(说一说,为什么先约分再相乘比较简便?以8为例来说明)
(2)应用题:
a.一个正方体的礼品盒,底面积是平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?
b.美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画配上镜框,需要木条多少米?
(3)对比练习:
a.一条路,每天修千米,4天修多少千米?
b.一条路,每天修全路的,4天修全路的几分之几?
3.发展提高:
(1)出示(课件1):说说怎样想?
(2)出示(课件2):说说怎样想?
分数的意义教案 篇4
【教学内容】
人教版《义务教育课程标准实验教科书数学》五年级(下册)第60—62页的例1及“做一做,练习十一1—3小题
【教学目标】
(1)在初步认识分数的基础上,使学生经历分数意义的抽象、概括过程,初步理解单位“1”和分数单位的含义,在操作活动中建构分数的意义。
(2)培养初步的观察能力、抽象概括能力及与同伴合作学习的能力。
(3)使学生初步了解分数在日常生活中的应用,增强自主探索、合作交流的意识,展示领袖学生在课堂上的风采,树立学生学习信心。
【教学重点】
抽象出单位“1”的概念,概括分数的意义并认识分数单位
【教学难点】
能比较透彻的理解分数的意义
【教学准备】
课件、例1的图片
【教学流程】
一、激活旧知,创境引题
(1)、口算:
0.75÷15=0.4×0.8=4×0.25=0.36+1.54=1.24 -0.46
1.01×99=420÷35=25×12=135÷0.5=1 ÷ 2 =
(2)、引导回忆,
出示“真假让你辨”。(认为正确的打“√”,错误的打“×”,用手势表示。)
① (—)的分母是3,分子是2,中间一条横线叫分数线。( )
② 妈妈把一块饼分成4份,其中的3份可以用( — )表示。( )
交流讨论第②题并引出“平均分”。
小结:只有“平均分”了,才能用分数来表示。“平均分”是产生分数的前提条件。进而出示“平均分的饼图”并让学生试着用完整的语言来说一说平均分的过程。
(3)引题导入:同学们对分数已经有了一些认识。今天这节课,我们想在这个基础上进一步来认识分数。(板书:分数的意义)
(评析:《小学数学新课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在教学“分数的意义” 这一概念时,我注意从学生的学情出发,用领袖学生的记忆唤起大多数学生已有的知识经验,帮助全体学生找到新知与旧知的链接点,让全体学生主动地投入学习。)二、先学后教 感悟提炼 建构新知
1、初步感知与理解
(1)(出示例1)根据每副图的意思,试着用分数表示图中的涂色部分。(学生打开课本到第60页)先填一填,并想一想每个分数各表示什么?
交流汇报:你认为这些图中分别是把什么平均分的?平均分成了几份?用分数表示的是其中的几份?
师结合学生的回答指出:
①一个饼可以称为一个物体(板书:一个物体)
长方形是一种图形,也可以称为一个物体。像这样,我们可以把一个物体平均分一分得到了分数。
② 1米长的线段可以称为是一个计量单位。(板书:一个计量单位)我们也可以把一个计量单位平均分一分得到了分数。
③ 引导思考:最后一幅图还是一个物体吗?(不是)这里是把6个圆看作一个整体,也可以说是由许多物体组成的一个整体。(板书:由许多物体组成的一个整体)平均分一分也得到了分数。
(2)揭示单位“1”:
①通过刚才的分一分、说一说,我们发现在表示分数时,被平均分的对象是非常广泛的。它可以是一个物体、一个计量单位或由许多物体组成的一个整体。
为了简明地表示这个被平均分的对象,我们就用自然数1来表示。这儿的1可以表示一个物体、一个计量单位,也可以表示由许多物体组成的一个整体。通常又把它叫做单位“1”。(板书:单位“1”)
②让学生举例说一说。这个单位“1”还可以表示些什么?
③扩展对单位“1”的认识:
其实这个单位“1”的范围是非常广泛的,除了刚才大家讲到的很多例子以外,还有许许多多。大到地球、宇宙,小到纳米、微米都可以看作单位“1”。
④试着说一说刚才例1中的这些图分别是把什么看作单位“1” ?是把单位“1”平均分成了几份、表示这样的几份呢?
2.引导提炼与概括:
(1) 刚才得到的这些分数,我们都是把单位“1”平均分成3份、4份、5份等等,想一想:还能把单位“1”平均分成9份、10份、100份,甚至更多吗?
揭示:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
(2)关注重点:
你觉得这句话中最容易疏忽的是什么地方?(师圈出“平均分”)
(3)沟通联系:
想一想: “把单位1平均分成若干份”这个“平均分成”的份数相当于分数中的什么?
“表示这样的一份或几份”这个取了“其中的几份”又相当于分数中的哪一部分呢?
3、认识分数单位
揭示:其实分数也像整数、小数一样有自己的分数单位。我们把单位“1”平均分成若干份,表示其中一份的`数,叫做分数单位。想一想:分数单位就是指什么?(教师可以结合前面教学中的分数加以举例。)
(评析:建构主义教学论认为“学生的知识建构不是教师传授与输出的结果,而是通过亲历、通过与学习环境间的交互作用来实现的。”教学中,结合对分数意义的理解,我注意做好学生角色的有效转换,带着学生走进“分数”,特别是学生对于“单位1”的理解是一个难点,于是,我又大胆放手让领袖学生提出问题、分析问题、辨析问题,真正体现了学生是学习的主体,从而帮助全体学生实现思维的“加速”。)
三、展示反馈,丰富感知
1、尝试说一说(课本第61--62页“做一做”)
说说每个分数的分数单位,以及各有多少个这样的分数单位。
2、动手试一试
完成教材第63页的“练一练”:
用分数表示下面各图中的涂色部分,先填一填,然后再想一想:每个分数的分数单位是多少?各有几个这样的分数单位?
学生操作并交流(略)。
(评析:在学生初步理解了分数单位的基础上,我特别注意让学生运用多种感官参与丰富的学习活动,填一填、想一想、说一说,学生在这样的学习活动中不断地体验与感受,不仅帮助学生分散了难点,同时又发展了学生的数感,也在这一过程中更加展示了领袖学生的风采。)
四、巩固拓展,发散思维
1.先读出下面的分数,并说一说每个分数的分数单位。(a不等于0)
设疑提问:一个分数的分数单位是多少,是由什么决定的?
2、尝试完成练习十一的第4题:“在每个图里涂色表示 。”
学生独立完成后试着让学生讨论与交流:三幅图都表示( ),为什么每次涂色桃子的个数却不相同呢?
小结:由于每次单位“1”桃子的具体数量不同,所以每次需要涂色的桃子的个数也就不同。所以,我们在涂色时要看清楚把谁看作单位“1”,单位“1”的具体数量有多少。
3、联系生活解决
读一读信息中的分数,并想一想每个分数表示的意义。
(1)五年级甲班的三好学生占全班人数的( —)
(2)地球表面大约有(—)被海洋覆盖。
(3)一个婴儿每日至少有(—)的时间是在睡眠中度过的。
(4)中国是一个地少人多的国家,人均土地面积仅占世界人均土地面积的(—)却养活了世界人口的(—)。
4、拓展提高
有12支铅笔,平均分给2个同学。每支铅笔是铅笔总数的,每人分得的铅笔是铅笔总数的。
讨论:说一说为什么是“(—)”和“(—)”?
小结:这两个分数都是以“12支铅笔”为单位“1”,但由于平均分的份数不同,所以表示相应的 1份的数量也就不同。
五、总结全课
今天我们认识了“分数的意义”,还认识了分数单位。你有一些什么收获呢?(学生畅谈收获)
(评析:通过提供丰富的、有层次的一系列数学活动,使学生经历运用数学知识解决实际问题的过程,既加深了对分数意义的认识,又积累了丰富的数学活动经验,提高了学生的数学思考能力,同时又发展了学生合理的创造意识。)
【反思】
在本节课的教学中,主要尝试以下几点:
一、课堂教学结构能适应并引导学生的学习
课堂教学结构,很多时候都是老师进行精心地设计,帮助学生找准知识的生长点与链接点,促进学生顺利地实行知识的迁移。可是,当这些学生长大以后,在面对一个新的问题时,谁去帮他做这件事呢?还是需要他自己去主动调动已有的认知,找到新知与旧知的链接点。与其让他们长大以后再去做这件事,还不如现在就让他们去做?于是,在课堂上,教师尽量不帮学生作预先的设计,也没有创设多少的情境,而是改变以前的学习方式,充分发挥领袖学生的引导作用,让学生在具体的问题情境中唤起已有的知识经验,促进学生主动地回忆、交流、阅读与思考,并在这一过程中让他们一点一点地感悟学习方法。因为我一直认为在引导学生解决问题的过程中有意识地渗透一些有效的学习方法,对他们终身是有收益的。
二、数学学习活动培养并发展学生的创造力
怎样的学习才是有效的?边教学边思考边探索,我深深地相信:只有让孩子在体验中学习、在创造中学习,学生才会真正地理解知识,同时自身的创造力也才能得到真正的培养。在教学中,针对小学生以形象思维为主的特点,没有把书本上现成的分数的意义告诉学生,而是在学生产生了强烈的探索欲望之后,及时设计了一系列的操作活动,调动学生的多种感官来参与概念学习,想办法让学生在各种想像、交流、画图与操作中去体验并自觉得出分数的意义。这样,新知就在学生们不断地思考与动手中,慢慢地、不知不觉地内化到学生的认知结构中,同时,学生的学习具有了鲜明的个性与创造性。课堂上的每一个环节,都力求做到了多给学生一个机会,让学生自己去体验;多给学生一个环境,让学生自己去感受;多给学生一个困难,让学生自己去解决;多给学生一些自由,让学生自己去创造;多给学生一个舞台,让学生自己去演讲。
三、动手实践、自主探索、合作交流是学生学习数学的重要方式
学生在三年级的时候就对分数有了初步的认识,分数的意义对于小学生来说是一个比较抽象的概念,怎样让学生理解单位“1”的含义?引导学生一步一步地从具体的实例中逐步抽象归纳出分数的意义是本节课所要解决的2个重点问题。因此,在本节课的设计上我淡化形式,注重实质,注意数学与生活的联系,一切以学生的发展为根本,以提升学生的数学思维为核心,充分发挥领袖学生的引导作用,引导学生在动手实践、自主探究与合作交流中体会、领悟单位“1”的含义、进而逐步理解分数的意义。
人类生活与教学之间的联系应当在数学课程中得到充分体现。为此在课前复习的过程中,我设计了学生生活中常见的几种。抛出一些问题。让学生回答,以此来产生疑问进入课堂。所以就产生了分数。使学生体验到分数是因为生活的需要而产生的,数学来源于生活。
动手实践、自主探索、合作交流是学生学习数学的重要方式,数学活动应当是一个生动活泼的、主动和富有个性的过程。教学中,我让学生通过动手实践、自主探索、合作交流,在这个过程中去体会“在表示分数时,有什么相同的地方?有什么不同的地方?”从而抽象概括出分数的意义。在这个过程中培养学生动手能力,增强自主探索与合作交流的意识,使学生乐学、会学、创造性的学习,培养学生创新的能力。
学生是学习的主人,教师是数学学习的组织者、引导者和合作者。因此,在课堂上,我把一些问题引导出来,而后让学生以小组为单位进行组织学习。并且,在课上,充分发挥领袖学生的引导作用,自己走下去去帮助需要帮助的,及时为他们解决难题。
总体上讲,这堂课还算成功,但是,在教学后也出现了一些问题,少数学生可能对于这一抽象的现象不能很好接受,因此,个别学生可能还摸不着头脑。如何在以后接手班级时更好的教学好《分数的意义》,还希望同行们能给我一些更好的见意。
分数的意义教案 篇5
一、教学分析
(一)内容分析
《分数的意义》是人教版义务教育课程标准实验教科书五年级下册的教学内容。《分数的意义》是在学生初步认识分数的基础上系统学习分数的开始,也是把分数的概念由感性上升到理性的开始。分数的意义是今后学习分数四则运算和分数应用题的重要前提,对发展学生的思维能力有着重要作用。学生已经知道把一个物体、一个计量单位平均分成若干份,取这样的一份或几份,可以用分数来表示;本节课学习的重点是让学生理解不仅一个物体,一个计量单位可用自然数1来表示,许多物体看作的一个整体也可用自然数1来表示,通常把它叫做单位“1”,进而总结概括出分数的意义。
(二)学生分析
五年级的学生在注意力方面,有意注意逐步发展并占主导地位,注意的集中性、稳定性、注意的广度、注意的分配、转移等方面都比低年级学生有不同程度的发展。
在记忆方面,有意记忆逐步发展并占主导地位,抽象记忆有所发展,具体形象记忆的作用仍非常明显。
在思维方面,学生逐步学会分出概念中本质与非本质,主要与次要的内容,学会掌握初步的科学定义,学会独立进行逻辑论证,但他们的思维的思维特点是他们的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。
在想象方面,学生想象的有意性迅速增长并逐渐符合客观现实,同时创造性成分日益增多。
通过本单元的学习,将引导学生在已有的基础上,由感性认识上升到理性认识,概括出分数的意义,感受数学就是来源于生活,激发学生的学习兴趣。让学生在认识分数的过程中,应该让学生经历丰富多采的数学学习活动,就是使学生通过亲身实践和自我体验,获得、理解和应用知识、技能,并在数学思考、问题解决、情感与态度方面都得到发展。
(三)环境分析
多媒体教室(包括电脑、实物投影)
二、教学目标
本节课的教学,单位“1”和分数单位这两个概念非常重要,从直观到抽象,由个别到一般,利用操作、讨论、交流等形式展开小组学习,适当展开概念的形成过程,帮助学生在过程中获得感悟,自己构建这些概念的意义。
(一)知识与技能:在学生原有分数知识基础上,使学生初步理解单位“1”和分数单位的含义,经历分数意义的概括过程,进一步理解分数的意义。
(二)过程与方法:让学生在轻松和谐的氛围中主动参与、积极合作、充分体验、经历认识分数意义的过程,培养学生的抽象、概括能力。
(三)情感与态度:使学生在学习分数的意义的过程中进一步培养分析、综合与抽象、概括的能力,感受分数与生活的联系,增强数学学习的信心。
三、教学重难点
(一)教学重点:理解分数的意义,认识分数单位。
(二)教学难点:理解、抽象出单位“1”。
四、教学方法
启发谈话法、尝试法、引导发现法、合作交流法、讲练结合法
五、教学过程
(一)创设情景,温故引新
1.出示
引导学生回忆分数的基础知识
板书:分数
【学生在三年级上学期的学习中,已借助操作、直观,初步认识了分数,知道分数的各部分的名称,会读、写简单的分数。通过引导学生回忆,为新知做好铺垫。】
2.设疑:分数用在什么时候?
(指名1-2名学生读,如果发现有问题及时纠正)
师小结:在进行测量、分物或计算时,往往不能正好得到整数的结果,这时用分数来表示。
【引入分数,使学生感悟分数是适应客观需要而产生的】
3.课件出示分数的起源
(通过多媒体的直观展示,激发学生对学习数学的探究欲望。)
【介绍3000多年前的古埃及、20xx多年前的中国,以及后来的印度、阿拉伯人所用过的各种分数表示方法。这些多种多样的表示方法或记号,可以让学生体会分数表示方法的多样性及其历史面目,开拓学生的知识面。】
(二)唤醒已知,探究新知
1.唤醒已知
提示:用为例,用自己喜欢的方法表示,并给这几幅图进行分类。
学生根据以前所学习的知识进行解答
小组合作,解决分类问题。
板书小结:一个物体、一些物体等都可以看作一个整体,一个整体可以用自然数1来表示,通常把它叫做单位“1”。
2.寻找生活中的分数
(1)找出图中的单位“1”
师:你是怎么知道的,或者说你是怎么想的
(2)寻找教室里的单位“1”
(3)寻找生活中的单位“1”
(学生畅所欲言,老师加以肯定)
师:单位“1”可以很大,也可以很小,那么单位“1”不同,所对应的量也就不同
3.概括分数的意义
师小结:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
4.课堂练习:
(1)判断
(2)填空
(3)用直线上的点表示分数
(三)认知分数单位
出示课件
1.以12块糖为例,引导学生动手分分数
一堆糖,平均分成2份,每份是这堆糖的()
平均分成3份,2份是这堆糖的()
平均分成4份,3份是这堆糖的()
平均分成6份,5份是这堆糖的()
师:你来试一试吧!完成课堂练习。
用12个小正方体代替糖果,学生动手操作,并汇报。
【这一填空练习,既是对分数意义描述的具体化和巩固,又能为紧接着学习分数单位提供具体的实例。】
2.认识分数单位
引导发现里有几个
里有几个
师小结:把单位“1”平均分成若干份,表示其中的一份的数叫分数单位。
整数、小数都有计数单位,例如:整数9的计数单位是1,9里面有9个1,0.9的计数单位是0.1,0.9里面有9个0.1。分数也有分数单位。例如:里有3个,的分数单位是。
【从分数的现实来源和数学内部来源两方面帮助学生深化对分数的认识】
(四)迁移类推,巩固认识
1.填空练习:
2.巩固:用分数表示下面各图中的涂色部分的
3.提升练习:完成书上的练习题
(五)作业:
任选一个分数,在图中涂色表示出来。
(六)全课总结,疏理认知
通过这节课的学习,你有什么收获?
(七)板书设计
分数的意义
把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
4份1份
4份3份
分数单位
(八)教学反思
分数的意义对于小学生来说是一个比较抽象的概念,怎样让学生理解单位“1”的含义。引导学生一步一步地从具体的实例中逐步抽象归纳出分数的意义是本节课所要解决的重点问题。因此,在本节课的设计上我淡化形式,注重实质,注意数学与生活的联系,一切以学生的发展为根本,以提升学生的数学思维为核心,引导学生在动手实践、自主探究与合作交流中体会、领悟单位“1”的含义、进而逐步理解分数的意义。为了能缓解降低难度,努力遵循因材施教的教学原则,以学生的认知水平、学习心理为基础,营造和谐课堂,活化教学内容,合理设计教学过程,较好的完成了这一节的教学活动。课后又做如下反思:
首先,我个人认为在以下几方面把握的.比较好。
1.调动学生的生活经验和认知基础,促进知识经验的迁移。
分数在生活中有着广泛的应用,学生已有的生活经验和认知基础就是一种重要的课程资源。发挥多媒体在教学中的作用,创设较为丰富的,贴近学生生活实际的情景,让学生在熟悉的情景中,感悟分数在生活中的体现,体会数学回归生活,让每一个知识点都充满生活的气息。教学时举出大量实例或图形,引导学生运用对分数的初步认识进行分析。分析时紧紧抓住单位“1”的概念展开教学,使学生理解单位“1”不仅可以表示一个东西,一个计量单位,也可以表示一个整体的含义。
2.注重学生的实践操作,认知、感知分数的意义
在本课教学中,有意识帮助学生积累生活经验,使学生在实践体验中获得直接的感观,注重所学知识与日常生活的密切联系。每一个数学知识都是在学生亲身经历了知识产生过程、体验了愉快的学习过程之后才能在学生的脑海中生根发芽。
3.教学面向全体学生,营造和谐课堂氛围
整节课我创设轻松、愉快的课堂氛围,调动学生的积极性,激发学生的兴趣,让学生在玩中学知识。
其次,整个教学中我感到在以下几方面的不足:
1.深入教材,促进有效教学
在教学过程中,分析时紧紧抓住单位“1”的概念展开教学,使学生理解单位“1”不仅可以表示一个东西,一个计量单位,也可以表示一个整体的含义。通过讨论引导学生初步概括出分数的意义。加强学生说的能力和说的过程的训练,学生才能对知识由整体认识转化为自己的知识。
2.巧用生成资源,促进有效教学
在教学过程中,理解单位“1”的含义上多让学生说出自己的见解,会较好的提高本节课的教学效果,这就是说如果巧妙的运用课堂中有效的生成资源,教师的指导主体作用发挥恰当,再通过师生的互动方式加以有效利用,就会再次强化学生对单位“1”的正确认知,这样就能实现知识经验的迁移。
在今后的课堂教学中,我仍会努力建构和谐氛围,给学生充分的思考空间,创设合理情景,巧妙设计问题进行引导,把重点、难点运用合理的方法有效处理。引导学生主动探究,自主学习获得新知。真正让学生体验到学习的乐趣。
分数的意义教案 篇6
课题一:(一)
教学要求 ①使学生了解分数的产生,理解,认识分数的分母、分子,认识分数单位的特点,能正确读、写分数。②培养学生抽象概括能力。③感受知识来源于实践,又服务于实践的观点。
教学重点 理解。
教学用具 教材第84~85页有关的投影片、线段图等。
教学过程
一、创设情境
1.提问:①把6个苹果平均分给2个小朋友,每人分得几个?(3个)②把一个苹果平均分给2个小朋友,每人分得多少?(每人分得这个苹果的 )。
2.指定一名学生用1米长的直尺量一量黑板的长度是多少米。(比3米长,比4米短)。
3.揭示课题
在实际生产和生活中,人们在测量和计算时,往往得不到整数的结果,在这种情况下就产生了分数。究竟什么叫分数呢?这节课我们就来学习。
二、探索研究
1.学生回忆:我们已经学过,把一个物体或一个计算量单位平均分成若干份,表示这样的一份或几份的数叫做分数。例如:
(1)出示月饼图。提问学生:把一块饼平均分成2份,每份是它的几分之几?
(2)出示正方形图。提问:把这张正方形纸怎样分?分成了几份?1份是它的几分之几?这样的3份呢?( 、 )
(3)出示线段图提问:把一条线段平均分成5份,这样的1份是这条线段的几分之几?这样的4份呢?
如果把1分米的长度平均分成10份,这样的1份是它的几分之几?7份呢? 表示什么?
2、进一步认识单位1。
以上都是一个物体、一个计量单位看作一个整体,我们也可以把许多物体看作一个整体,如4个苹果、一批玩具、一个班的学生等。例如:
(1)出示课本第86页的苹果图。提问:把4个苹果平均分成4份,一个苹果是这个整体的几分之几?
(2)出示熊猫图。提问:把6只熊猫玩具看作一个整体,平均分成3份,一份是这个整体的几分之几? 表示什么?
(3)练习:说出下图中涂色的部分各占整体的几分之几。
● ●
●○○○○○ ● ●
●○○○○○ ● ●
● ○
● ○
● ○
3.揭示。
(1)观察以上教学过程 所形成的板书。
一个物体
计量单位 单位1
一些物体
告诉学生:像这样表示一个物体、一个计量单位或是许多物体组成的一个整体,都可以用自然数来表示,通常我们把它叫做单位1。(板书:单位1)
(2)反馈。①在以上各图中,分别是把什么看作单位1?② 、 、 各表示什么意义?③议一议:什么叫做分数?
(3)概括并板书。把单位1平均分成若干份,表示这样的一份或者几份的数叫做分数。
4.练习。练习十八第1、2、3题。
5.教学分数各部分名称、分数单位。分数的读、写法。
(1)教师任意写出几个分数,让学生说出分数各部分的名称。
(2)阅读课本第85页最后一段并思考:一个分数中的分母、分子各表示什么?
(3)认识分数单位,初步了解分数单位的特点。
练习:① 的分数单位是,它有个 。
② 的分数单位是,它有个 。
③个 是。
④ 是个 。
(4)想一想:读、写分数的方法是怎样的?
读作 ,表示 个 。
读作 ,表示有 个 。
三、课堂实践
1. 表示把平均分成份,表示这样的份的数。
2. 读作,分数单位是,再添上个这样的单位是整数1。
四、课堂小结
1、什么叫做分数?如何理解单位1?
2、什么是分数单位?分数单位有什么特点?
五、课堂作业
练习十八第5、6题。
课题二:(二)
教学要求 ①使学生进一步理解及分数单位,并能正确地应用。学会用直线上的点表示分数。能联系,正确解答求一个数是另一个数的几分之几。②进一步培养学生的抽象概括能力。③渗透数形结合思想。
教学重点 理解。
教学过程
一、 创设情境
1.用分数表示图中阴影部分。
▲▲ ▲▲
△△ ▲▲
2.口答:什么是分数?如何理解单位1?
3.填空。
是个 。 的分数单位是
7个 是。 的分数单位是
二、揭示课题
出示学习内容及学习目标。板书课题:。
三、探索研究
1.认识用直线上的点表示分数。
分数也是一个数,也可以用直线(数轴)上的点来表示。
(1)认识用直线上的点表示分数的方法。
①画一条水平直线,在直线上画出等长的距离表示0、1、2。
②根据分母来分线段,如果分母是4,就把单位1平均分成4份。如: 、 :
0 1 2
(2)提问:如果要在直线上表示 ,该怎样画?启发点拨。
①先画什么?再画什么?
②应把0~1这一段平均分成几份?如果分母是8呢?分母是10呢?
③ 应用直线上的哪一个点来表示?
(3)如果要在这条直线上表示分母是10的分数,该怎么办?
这条直线上0~1之间的`第七个点表示的分数是多少?
2.练习。
(1)教材第87页下面做一做的第2题。
(2)用直线上的点表示 、 、 、 。
3.教学例1。
(1)指名读题,帮助学生理解题意。
(2)出示讨论题,同桌讨论。
①这题中把什么看作单位1?
②1人占这个整体的几分之几?
③5人占这个整体的几分之几?
(3)汇报讨论结果,板书答语。
(4)小结分析思路。口答这类求一个数是另一个数的几分之几的题目时,一般要根据先找单位1是几,就是分母平均分成几份,其中1份是分数单位,再看有几个这样的分数单位,就是几分之几。
4、练习。教材第88页的做一做。
四、课堂实践
1.教材第87页的做一做。
2.用直线上的点表示 下面的分数: 、 、 、 、 。
3.食堂有一批面粉,吃了45袋,还剩28袋,吃了的和剩下的各占这批面粉的几分之几?
五、课堂小结
1.用直线上的点表示分数的方法是怎样的?
2.口答:求一个数是另一个数的几分之几的依据是什么?解题时应该怎样思考?
六、课堂作业
练习十八第4、7、8题。
课题三:分数与除法的关系
教学要求 ①使学生正确理解和掌握分数与除法的关系,会用分数表示两个数相除的商。②培养学生的逻辑推理能力。③渗透辩证思想,激发学生学习兴趣。
教学重点 理解和掌握分数与除法的关系。
教学用具 投影片(教材第89页的饼图)
教学过程
一、创设情境
1.填空。
(1) 表示。
(2) 的分数单位是,它有个这样的分数单位。
2.计算。(1)58 (2)49
二、揭示课题
我们知道,在计算整数除法时经常遇到除不尽或得不到整数商,有了分数,就可以解决这个问题。这节课我们就来学习怎样用分数表示除法的商,认识分数与除法的关系。(板书课题)
三、探索研究
1.教学例2
(1)读题后,指导学生根据整数除法的意义列出算式。板书:
13=
(2)讨论:1 除以3结果是多少?你是怎样想的?
(3)教师画出线段示意图,帮助学生理解。
1米
?
通过讨论使学生明白:把1米平均分成3份,其中一份应是1米的 ,就是 米。
(3)写出答语。
2.教学例3。
(1)读题后,引导学生列出算式:34。
(2)指导学生动手操作:拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。
(3)请几名学生口述分法及每份分得的结果,教师总结几种不同的分法。
(4)归纳。从上面的操作可以知道,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的 ,即3个 块,把3个 块拼合起来就是1个饼的 ,即 块。因此,
34=(块)。
由此可见, 不仅可以理解为把1块饼(单位1)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位1)平均分成4份,表示这样一份的数。
3、认识分数与除法的关系。
(1)引导学生观察13=、34=这两道算式,想一想:
①两个自然数相除,在不能得到整数商的情况下,还可以用什么数表示?
②用分数表示商时,除式里的被除数、除数分别是分数里的什么?
③分数与除法的关系是怎样的?
(2)教师总结,学生发言,归纳出以下三点:
①分数可以表示整数除法的商;
②在表示整数除法的商时,要用除数作分母、被除数作分子;
③除法里的被除数相当于分数里的分子,除数相当于分数里的分母。(强调相当于一词)
分数与除法的关系可以表示成下面的形式:
板书:被除数除数=
(3)如果用a表示被除数,b表示除数,那么分数与除法的关系可发怎样表示?
板书:ab=(b0)
(4)想一想:这里的b能为0吗?为什么?
启发学生说出在整数除法里,除数不能是零,在分数中分母也不能是零,所以这里b0。
(5)再想一想:分数与除法有区别吗?区别在哪里?
着重强调:分数是一种数,但也可以看作两个数相除。除法是一种运算。
4、学生阅读教材,质疑问难。
四、课堂实践
教材第91页中间的做一做。
五、课堂小结。
引导学生回顾全课,说说学到了什么,自我总结,教师作补充。
六、课堂作业 。练习十九第1~3题。
课题四:分数与除法关系的应用
教学要求 ①进一步理解分数与除法的关系,并能运用这一关系解决有关的实际问题。②培养学生迁移类推能力。③知道事物间在一定的条件下是可以相互转化的观点。
教学重点 求一个数是另一个数的几分之几的应用题。。
教学过程
一、创设情境
1.口答:30分米=米 180分=时
练习后引导学生回顾把低级单位的名数改写成高级单位名数的方法。
2.说一说:分数与除法的关系?
3.用分数表示下面各算式的商。
(1)79(2)47(3)815(4)5吨8吨
二、揭示课题
这节课学习分数与除法关系的应用。(板书课题)
三、探索研究
1.出示例4。
(1)出示例4并审题。
(2)提问:根据把低级单位的名数改写成高级单位名数的方法,这两题该怎样计算?当两数相除得不到整数商时,商应该如何表示?
让全体学生尝试练习。
(3)集体订正。订正时让学生说说是怎样想的?
(4)比较例4与复习题第1题有什么不同的地方,有什么相同的地方?
重点说明当两数相除得不到整数商时,其结果可以用分数表示。
2.练习教材第91页下面的做一做。
3.教学例5 。
(1)出示教材第92页复习题,让学生独立列式解答。
集体订正时启发学生分析:这道题把谁与谁比,求鸡的只数是鸭的几倍,把什么看作标准,用什么方法计算?算式怎样列?
板书:3010=3
答:鸡的只数是鸭的3倍。
(2)出示例5并读题,鼓励学生从不同角度思考,并组织学生讨论解题方法。
讨论后师生共同评价,主要有两种方法:
①从分数意义入手。求养鹅的只数是鸭的几分之几,也就是求7只是10只的几分之几。把10只看作一个整体,平均分成10份,每份1只,7只就是这个整体的 。
②从倍数关系入手。求养鹅的只数是鸭的几分之几,是以鸭的只数作标准,可以用除法计算,列式为:710=。
(3)比较复习题与例5异同点。
通过比较使学生看到:求一个数是另一个数的几分之几,和求一个数是另一个数的几倍,都用除法计算,都拿作标准的数作除数,得出的商都表示两个数的关系,都不能注单位名称。所不同的是,前面的题是求一个数是另一个数的几倍,得到的商是大于1的数,后面的题是求一个数是另一个数的几分之几,得到的商是小于1的数。
4、练习。教材第92页做一做第1、2题。
四、课堂实践
1.在括号里填上适当的分数。
8厘米=米 146千克=吨 23时=日
41平方分米=平方米 67平方米=公顷 37立方厘米=立方分米
2.五(1)班有女生25人,比男生多4人。
(1)男生占全班人数的几分之几?
(2)女生占全班人数的几分之几?
(3)男生人数是女生人数的几分之几?
五、课堂小结
1、把低级单位名数改写成高级单位名数当得不到整数商时,该如何表示?
2、求一个数是另一个数的几分之几应用题的解答方法是什么?
六、课堂作业
练习十九第4~7题。
七、思考题。
练习十九第8题及思考题。
课题五:分数大小的比较
教学要求 ①使学生掌握分母或分子相同的几个分数大小比较的方法,并能正确比较分数的大小。②应用观察图示边比较边归纳的方法,渗透化归、分类等思想。③培养学生口述算理及归纳概括能力。
教学重点 掌握比较分数大小的方法。
教学用具 投影片(教材例6、例7直观图)
教学过程
一、创设情境
1.教材第93页复习题,请一名学生口答。
2.看图写分数,并比较分数的大小。
0 1
二、揭示课题
以前我们通过对图形的观察,初步学会了最简单的两个分数大小的比较,这节课就来进一步探究分数大小的比较方法。(板书课题)
三、探索研究
1.同分母分数的大小比较。
(1)比较 和 的大小。
出示例6左图,引导学生观察后提问: 和 相比,哪个分数大,哪个分数小?(板书: > )
如果没有直观图,该怎样比较 与 的大小呢?
因为 和 的分母是相同的,它们的分数单位都是 , 是2个 , 是1个 ,2个 比1个 多,所以 > 。
(2)用类似的方法引导学生比较 和 的大小。
(3)观察例6这两组分数,找出它们有什么共同特点?分母相同的两个分数,该怎样比较它们的大小?(请一名学生口答)
板书:分母相同的两个分数,分子大的分数比较大。
2.练习:教材第93页做一做。
3.同分子分数的大小比较。
(1)比较 和 的大小。
①出示直观图,使学生从图上看到:平均分的份数越多,每一份反而越小,所以 大于 。
② 和 的分子相同,表示所取的份数一样多,它们的大小是由分数单位决定的。分母小的分数表示分的份数少,每一份就大,也就是分数单位大;分母大的分数表示分的份数多,每一份就小,也就是分数单位小。所以 大于 。
(2)比较 和 的大小。
用类似的方法进行比较并得出结论: < 。
(3)想一想:上面每组中的两个分数有什么不同的地方?分子相同的两个分数怎样比较大小?
板书:分子相同的两个分数,分母小的分数比较大。
4、练习:教材第95页的做一做。
四、课堂小结
比较两个分数的大小,首先要看清是分母相同还是分子相同。如果分母相同,关键看分子,分子大的分数比较大;如果分子相同,关键看分母,分母小的分数比较大。
五、课堂实践
1.练习二十第1题。
2.练习二十第3题。
六、课堂作业
练习二十第2、4题。
七、思考练习
在括号里填上合适的数
< < < > >
分数的意义教案 篇7
教学目标:
使学生了解"分数"产生的原因,理解分数的意义,弄清分子,分母,分数单位的含义.
教学重点:
使学生理解"分数"的意义,弄清分母,分子及分数单位的含义.
教学难点:
使学生理解"分数"的意义,弄清分数单位的含义.
教学课型:
新授课
教具准备:
课件
教学过程:
创设情景,温故引新
1,提问:
A,大家知道分数吗 谁能说一个分数
B,你能举个实例说说这个分数的意义吗
2,述:说得好,对不能用整数准确表示结果的问题,我们可用分数来解决.即:把一个物体或一个计量单位(或者单位"1")平均分成若干份,用它的一份或几份来表示.
3,揭示课题:分数的意义
二,联系实际,探究新知
自主学习,整体感知分数的知识.
(1)相互交流:① 关于分数我已经知道了什么 请把已知道的讲给同学们听.
(2)自学理解:① 关于分数,自学后我又知道了些什么
② 我还有什么不明白的地方呢
③ 关于分数我还想知道什么
2,探究深化,进一步理解分数的意义.
(1)用分数表示下面各图中的阴影部分.[课件1]
(2)填空.[课件2]
① 把一条线段平均分成5份,1份是它的( )/( );4份是它的( )/( ).
② 把一块饼平均分成2份,每份是它的( )/( ).
③ 把一个正方形平均分成4份.1份是它的( )/( );3份是它的( )/( )
(3)用一张长方形的纸,折出它的1/4,并涂上阴影.
用一张正方形的纸,折出它的3/8,并涂上阴影.
(4)抢答. [课件3]
① 把8枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )
② 把10枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )
③ 把这个文具盒你所有的.铅笔平均分给2位同学,每位同学得到的铅笔数是( ).为什么是1/2 若平均分给5位;10位;50位同学呢
④ 如果这个文具盒里只有6枝铅笔.现在把它平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗谁来说说这里的1/2所表示的意义
⑤ 如果把8枝笔平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗 谁来说说这里的1/2所表示的意义如果是100;1000枝呢
(5)说说下列分数所表示的意义.[课件4]
5/7 3/8 3/( ) ( )/9 ( )/( )
3,小结.
我们可以把许多物体看作一个整体,比如:一堆苹果,一批玩具,一班学生,一个计量单位或是许多物体组成的一个整体,都可以用自然数1来表示,通常我把它叫做单位 "1".
板书: 一个物体
单位"1" 一个计量单位
许多物体组成的一个整体
把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数.
三,加强练习,深化概念
比赛:请两位同学站起来.
提问:A,这两位同学是这组人数的几分之几
B,这两位同学是两组人数的------- 这两位同学是全班人数的-------
四,家作
1,P88 .1,2
2,P89 .3
板书设计:
分数的意义
一个物体
单位"1" 一个计量单位
许多物体组成的一个整体
把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数
分数的意义教案 篇8
教学目标
1、使学生理解两个整数相除的商可以用分数来表示。
2、使学生掌握分数与除法的关系。
3、培养学生的应用意识。
教学重难点
1、理解归纳分数与除法的关系。
2、用除法的意义理解分数的意义。
教学工具
ppt
教学过程
一、激趣引入
师:同学们,老师今天给你们带来了几位好朋友,相信你们一定认识他们,让我们看看他们是谁?
课件出示唐僧、孙悟空、沙僧的图片
师:那猪八戒呢?原来他去化缘了,他在路上边走边想:如果能化得8张饼就好了!那猪八戒问什么想要8张饼呢?
引出平均分,让学生列式:8÷4=2(张)
总量÷份数=每份数
二、探究新知
1、老猪化得一张饼,如何分给4人呢?
师:这两道题都是我们学过的用除法来解决的问题,计算的都是把一个整体平均分成4份,求每份是多少。下面我们再来看一下这道题。
把1个饼平均分给4个人,每个人分得多少个?
师:这道题该怎样列式呢?(学生列式,师板书:1÷4)
师:1÷4表示什么意思?
生:1÷3表示把一张饼平均分给4个人,求一个人分得多少。
师:好,这道题也是把一个整体平均分成4份,求一份是多少,也是平均分的问题,所以也要用除法来计算。那么,你知道每人分得多少个吗?
生:1/4个。(师板书)
师:大家都认为是这样吗?(是)谁来说说你是怎么想的?
教师出示课件,学生边说边演示:我们把这个圆看作这张饼,把它平均分成4份,每人得到其中的一份,也就是这张饼的1/4 。
师:请大家看,每份都是1/4,每个人得到的是多少个蛋糕呢?
生:1/4个。
师:在分物时,不能正好得到整数的结果,我们就可以用分数来表示。所以每个人分得的饼就是1/4张。
教师说明:1÷4表示把一张饼平均分给3个人,求每人得到多少个,而我们通过演示知道了每人得到1/3张。所以1÷3的结果就是1/3。(板书“=”)(齐读算式)
(课件出示例2)
指名读题
师:谁能列出算式?
生:3÷4(师板书)
师:这道题是把一个整体平均分成4份,求每份是多少,也是用除法来计算的。究竟每人分得多少块月饼呢?老师为每个小组都准备了学具(3个圆片),现在请大家利用手中的学具一起动手分一分,看看到底每人分得多少块月饼。
小组操作,教师巡视指导。
师:大家都有了结论了,哪个小组的同学愿意来给大家说一说你们小组的结论是什么?
(小组边汇报,边演示)
小组1汇报:我们小组是一个一个分的。我们先把一个圆平均分成4份,每人得到其中的1份,也就是1/4块。
师:你能用一个式子表示一下吗?
小组1:1÷4=1/4块。
师:好。请接着汇报吧。
小组1:接下来,我们按照同样的方法分其他两个圆。最后每个人分到的是3个1/4块,也就是3/4块。
师:大家认为他们的`方法可以吗?(可以)我们再来一起回忆一下他们的方法。(教师边叙述方法,边进行课件演示)
师:还有没有和这组方法不同的?
小组2汇报:我们小组是把3个圆叠放在一起,把它们一起平均分成4份,每人得到其中的1份,拼在一起就得到了3/4块。
师:(课件演示方法二)这种方法是把3块月饼放在一起,把它们看成一个整体,平均分成4份,每人得到了其中的一份,也就是3块月饼的1/4,拼在一起就是3/4块。
师:通过大家操作我们知道了每人得到了3/4块月饼(板书3/4块)。有些同学是一块一块分的,有些同学是3块一起分的,但这两种不同的方法都得到了3/4块,也就是说3÷4的结果就是3/4。
师:请大家看一看,今天这两道除法算式的结果都是什么数?(分数)请大家想一想,分数与除法有什么关系呢?
学生小组讨论
生:我们发现,被除数就是分子,除数就是分母。
师:你能试着表示出来吗?
生:被除数÷除数=被除数/除数(师板书)
师:如果用a来表示被除数,b表示除数,你能用字母来表示分数与除法之间的关系吗?
生1:a÷b=a/b(师板书)
生2:老师,我认为还要写上b≠0。
师:为什么b≠0?
生:因为b表示除数,除数不能为0。
生:分数的分母也不能等于0。
师:好。通过观察思考,我们知道了分数与除法存在着这样的关系(齐读分数与除法的关系)
师:我们知道,两个整数相除,商可以用分数来表示,反过来看看,分数能不能表示两个整数相除呢?
学生观察算式,思考
生:可以。比如3/4=3÷4。
课件出示,齐读:两个整数相除,商可以用分数来表示,要用除数作分母,被除数作分子.反之,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,
分数线相当于除号。
师:我们通过学习了解了分数与除法的联系,那么分数与除法有什么区别呢?
请学生观察黑板算式,和同学讨论。
学生汇报,教师总结:除法和我们学过的加法、减法、乘法一样,是一种运算;而分数是一种数,同时分数也可以表示两个数相除。
三、巩固练习
1、用分数表示下列算式的商
(1)3÷2 = ( )
(2)2÷9 = ( )
(3)7÷8 = ( )
(4)5÷12 = ( )
(5)31÷5 = ( )
(6)m÷n = ( )n≠0
2、试一试
( )÷7=4/7 1÷( )=1/3 7/9=( )÷9 5/8=( )÷( )
3、把1千克葡萄干平均装在2个袋子里,每袋重多少千克?平均装在3个袋子中呢?
4、填空
9厘米=( )米59秒=( )分
13分=( )时5时=( )日
5、把5米长的绳子平均截成8段,每段长(5/8)米,每段绳子的长度是全长的(1/8)。
四、全课总结
分数的意义教案 篇9
一、分便笺情境引出分数梳理已知揭示课题
老师这里有4张便笺想平均分给两名同学怎么分?(一人两张)
还有2张便笺还想平均分给两名同学怎么分?(一人一张)
最后1张便笺还想平均分给两名同学怎么分?(一人一半)也就是每人分得这张卡片的1/2
这是什么数?关于分数,你都知道些什么?
看来大家对分数已经有了初步的认识,这节课,就让我们一同来研究分数的意义
二、动手操作建构分数意义
1、独立操作用一样物品做1/4全班交流引出分一群物体
2、小组合作分一分一群物体实物展台学生边操作边汇报分得的分数
3、针对板书揭示单位“1”
4、层递说分数意义深化分母分子含义揭示分数的意义联系班级实际说分数
想不想自己做一个分数?
好,看清要求
独立操作用桌上的材料表示出1/4涂上颜色或作上标记
做得快的同学可以把自己的作品贴到黑板上注意重复的就不要贴了
大家做得都非常好来,先看这个圆纸片想一想你是怎么表示出这个圆纸片的1/4?这个圆纸片上还有分数么?
再看这条线段,它的1/4又是怎么表示出来的?
哦,一个物体一个计量单位分一分都能分得一些分数
那,许多物体组成的一个整体,分一分,你能分出一些分数来么?
别急,老师为每个小组都准备了这样的材料请你们小组合作共同分一分并且把分得的分数记录在纸上
等会儿我们会请操作最棒的小组上台来汇报
好赶紧开始
贴板书
现在让我们总体的看一下这些分数都是用什么办法得到的?
哪些东西被平均分的?对一个物体一个计量单位许多个物体组成的一个整体都可以被平均分获得分数,它们可以用自然数1来表示,在数学里通常叫做单位“1”
现在老师给你一个分数,你能试着说说它的意义么?
再来一个
来点难的?难在哪儿?也就是不知道......?
再来一个难的?
最后一个,还难么?
你们真行,你们不经意间自己就把分数的意义给出来了
请看大屏幕轻声读读是不是和你说得一样好给你一点时间能记住它么?
开始停你来说好极了慢着同学们看好这名同学占这桌人数的......?怎么想的?
这名同学还占这排人数的......?
你自己能说一句么
好第一组把分数的意义再说一遍大家瞧好他们组占全班人数的......?还有答案么?
精彩全体起立说一遍分数的`意义预备齐
请问所有站起来的同学占全班人数的......?也就是?
学的真行啊
那,敢不敢接受练习的挑战?
三、分层练习巩固提高
1、练一练
2、想一想
3、试一试
4、说一说
5、画一画
6、玩一玩
好,打开课本独立完成“练一练”
谁来说对么第二个有点小难度谁说?好让我们看看动画演示平均分成三份两只熊猫是一份就是这个整体的?四只熊猫是两份就是这个整体的?
下面请你想一想......
评论别人头头是道那自己做如何呢?请你试一试
看清题目在作业本上写出你的答案
这么会说就请你们来说一说
轻声读题用心考虑
喜欢画画么?那想不想在这节课上画一幅数学画?
哪位同学读题?
想好了再动笔,画出你的理解和个性
大家的表现真的是精彩极了
做了这么多想不想玩儿?
好这是?数数,几个?
谁能上台来拿出这9个球的1/3?对么?
谁能继续来拿出剩下球的1/3?对不对?
怎么都拿1/3却一次拿3个一次拿2个?
猜猜这里装的是什么?哦,2个球。听好,这2个球是袋子里原有球的1/3,你知道袋子里原来有球多少个么?真的么?倒出来看看
再来还是2个球这2个球是袋子里原有球的1/5,你知道这个袋子里原来有球多少个?再次验证一下
四、布置作业留下思考
你看关于分数,有趣的知识真的是太多了
由于时间关系我们这节课的研究只能到这儿
请同学们在余下来的时间把课本76页练习十三的1-4题做在本子上。
分数的意义教案 篇10
一、教学内容:
教材第60-62 页的内容。
二、教学目标:
1 .使学生进一步理解并掌握分数的意义。
2 .知道一个物体、一个计量单位、一个整体都可以用单位“1 ”表示。
3 .引导学生学会抽象概括,培养初步的逻辑思维能力。
三、重点难点:
1 .理解和掌握分数的意义。
2 .理解单位“1 ”。
3 .突破一个整体的教学。
四、学具准备
正方形纸片
五、教学过程
一、创设情境。
1 .测量。
师生合作测量黑板的长是多少米?观察用米尺量了几次后还剩下一段,不够一米,还能否用整数表示?(不能)
2.计算。
教师让学生把一个苹果平均分给两个同学,每人分得饼的个数怎样来表示? 它结果不能用整数来表示,这样就产生了分数。
3 .讲述。
在人们实际生产和生活中,人类在进行测量、分物和计算时,往往不能得到整数的结果,这就需要用一种新的数——分数来表示,这样就产生了新的数—分数。今天,我们就来学习“分数的意义”。
二、教学实施
1、出示课件
说说每个图下面的分数是:
(1)把什么看做一个整体?
(2)平均分成了几份?
(3)表示这样的几份?
2、小组共同合作交流
1.出示4个苹果,6只熊猫能否平均分成若干份,要平均分,把什么看作一个整体?
2.结合小组汇报出示课件,展示结果
3、概括总结。
老师:刚才同学们在表示 的过程中,有什么发现吗?
学生甲:都是把物体平均分成几 份,表示这样的一份。
学生乙:我发现有的是把1 个图形平均分,有的是把4 个苹果、6 只熊猫平均分,还有的.是把1 米平均分。
老师:一个图形比较好理解,我们把它称为一个物体,那么4根香蕉8个面包是由许多单个物体组成的,我们称作一些物体。一个物体,一些物体都可以看作一个整体,一个整体可以用自然数1 来表示,通常把它叫做单位“1”。
(3)举例。
老师:对于这个整体,你还能想出其他的例子吗?
学生:这个整体还可以是一个苹果、一盒粉笔、一个班级的学生人数、全校学生数、全中国人口、全世界人口等。
3、(1) 概括意义。
老师:通过上面的学习,同学们对于单位“1”有了一个全新的认识,可以表示一个物体、也可以表示一些物体。整体“1 ”可以很小,也可以很大??刚才同学们举了很多分数的例子,那么到底什么是分数,你能尝试用文字描述一下吗? 先引导学生交流:把“谁”平均分?它表示的是一个什么样的数呢?
学生试说,教师板书。
板书:把单位“ 1 ”平均分成若干份,表示这样一份或几份的数,叫分数。 强调必须是平均分。
揭示课题:分数的意义。
4、巩固练习
课本62页做一做,填在书上,学生汇报
5.学习分数单位。
(1)提出问题:“我们学过的整数和小数,它们都有计数单位,分数有没有计数单位呢?”让学生自学课本,找出分数单位的定义,并能举出例子。
(2)说一说课本62页做一做各分数的分数单位,它们分别有几个这样的分数单位。
(3)分数单位与哪个数有关?
让学生观察分数单位,从中发现“分母是几,分数单位就是几分之一”。
三、巩固练习
出示课件
四、、总结
1、想一想,这堂课上你学到了什么?
2、如果把这堂课上学习的知识看做单位“1”,请你估一估,你学到了这些知识的几分之几?
板书设计
分数的意义
一个物体
一个整体单位“1” 平均分 若干份(一份)
一些物体分数单位
分数的意义教案 篇11
【单元学情分析】
本单元是在学生认识了整体“1”,初步理解了分数的意义,能认、读、写简单的分数,会简单的同分母分数加减法,能初步运用分数表示一些事物以及解决一些简单的实际问题的基础上,进一步认识和理解分数。
【单元教学目标】
1、结合具体情景与直观操作,体验分数生产的实际背景,进一步理解分数,能正确用分数描述图形或简单的生活现象
2、认识真分数、假分数,理解分数与除法的关系,能正确进行假分数与带分数、整数的互化。
3、探索分数的基本性质,会进行分数的大小比较。
4、能找出10以内两个自然数的公倍数和最小公倍数,能找出两个自然数的公因数和最大公因数,会正确进行约分和通分。
5、体会分数与现实生活的联系,初步了解分数在实际生活中的应用,提高综合运用数学知识和方法解决具体问题的能力,能运用分数知识解决一些简单的实际问题。
6、能积极参与操作活动,主动地观察、操作、分析和推理,体验数学问题的探索性和挑战性。
【单元重难点】
1、分数与除法的关系、分数的基本性质、公因数与公倍数、约分与通分、比较分数大小等知识;难点:体会在不同整体下,同一分数表示的具体数量不一样的道理及分数的基本性质。关键:联系实际情境、借助直观,弄清分数与除法的关系。
2、学习分数的再认识、分数与除法的关系、真分数与假分数、分数的基本性质、公因数与公倍数、约分与通分、分数的大小比较等知识。
3、学生善于形象思维,不善于抽象思维,对分数有一些现成的经验,对于分数的认识系统的认知。
【课时安排】
共22课时
分数的再认识(一)
【教学目标】
1.在具体的情境中,进一步认识分数,发展学生数感,体会数学与生活的密切联系。
2.结合具体的情境,进一步体会“整体”与“部分”的关系。
【重点难点】
体会一个分数对应的“整体”不同,所表示的具体数量也不同。
【教具准备】
课件两盒铅笔
【教学过程】
一、谈话引入,教学新课。
现场组织活动:请两位同学到台前,每人分别从一盒铅笔中拿出1/2,结果两位学生的结果不一样多,一位学生拿出的是4枝,另一位学生拿出的是3枝。
师:这里有两盒铅笔,你能从每盒铅笔中分别拿出全部的1/2吗?其他同学注意观察,你发现了什么?
师:你准备怎么拿呢?
生1:我准备把全部的铅笔平均分成2份,拿出其中的一份就是1/2。
生2:我准备把全部的铅笔除以2,也就是平均分成2份,其中一份就是1/2。
学生活动,一位学生拿出3枝笔,另一个学生拿出4枝笔。
师:你发现了什么现象,你有什么疑问,或者说你能提出问题吗?
生:他们拿出的枝数不一样多,一个是3枝,一个是4枝,这是为什么呢?
师:他们两人都是拿全部铅笔的1/2,拿出的铅笔枝数却不一样多,这是为什么呢?请想一想,然后小组交流一下。
学生小组交流,再全班反馈。
生:我们认识两盒铅笔的总枝数不一样多。
生:有可能数错了。
师:现在大家的意见都认为是总枝数不一样,也就是整体“1”不一样了吗?
师:告诉大家总枝数是多少,1/2是多少枝。
生1:全部是8枝,1/2是4枝。
生2:全部的铅笔是6枝,1/2是3枝。
师:真的是不一样多,一盒铅笔的1/2表示的都是把一盒铅笔平均分成2份,其中的一份就是1/2。但由于分数所对应的整体不同(也就是总枝数不一样多),所以1/2表示的具体的数量也就不一样。
师:原来分数还有这样一个特点,你对它是不是又有了新的'认识?
二、练一练
1.看数学书说一说,小林和小明一样多吗?笑笑和小红一样多吗?说说理由。
2.画一画,说说画法对吗?为什么?还有别的画法吗?
三、巩固练习:
1.独立完成1、2、3,然后选几题说说思考过程。
2.第4题让学生充分说说自己的想法,必要时可以举例说明。第5、6题独立完成,然后选几题说说思考过程。
四、思考题。放学后独立完成,课后讲评。
五、课堂作业
板书设计:
分数的认识
8支铅笔装1盒1/2盒=4支
6支铅笔装1盒1/2盒=3支
教学反思:
本节课注重结合实际展开教学。从这节课中可以看出,学生的生活经验,知识基础已成为教师教学的重要资源。本节课注重动手操作,自主探索,合作交流,让学生经历探究过程。在本课的教学中,注重为学生创设自主探索的空间,学生通过拿水性笔,画一画,分数小游戏,辩一辩等活动,体会到解决问题策略的多样性。
由于分数所对应的整体不同(也就是总枝数不一样多)两人都是拿全部铅笔的1/2,拿出的铅笔枝数不一样多。平时教学中还要多举些例子,可以培养学生对整体“1”的认识,为较难的分数应用题做好铺垫。
分数的意义教案 篇12
教学内容:五年级下册《分数的意义》
教学目标:
1、使学生知道分数的产生过程。
2、使学生感受到数学知识同样是在人类的生产和生活实践中产生的。
教学重点难点:
理解分数的意义。
教具准备:
米尺,长方形、正方形的纸。
教学过程:
一、引入
1、复习分数的知识。
(1)师:同学们,我们在三年级时已经初步认识了分数,还记得我们都学了分数的哪些知识吗?
( )
( )
( )
(学生通过回忆说出已学过的分数知识。可能会回答分数各部分的组成,也可能讲到分数的意义。)
(2)点击出示:
师:这个分数如何读?
师:你能说出这个分数各部分的名称吗?(根据学生回答分子、分母、分数线点击出现结果。)
2、复习分数的表示方法。
(1)师:回忆一下,我们还可以用什么来表示分数?
(学生可能回答:用图、线段或正方形来表示分数。)
(2)点击出示:用分数表示图中的涂色部分。
师:通过刚才的复习,我发现大家对于分数已经有了很多的了解,但分数究竟是如何产生的呢?分数与我们的生活又有些怎样的联系呢?今天我们就继续来了解分数。
[设计意图说明:学生在三年级时曾经学习过分数的知识,通过复习,回忆所学知识,为下面的学习做好铺垫。]
二、新授
探究一:通过故事和动手实践,认识分数的产生过程以及与生活实际的联系。
1、点击出示书60页第一幅图片。
师:大家听说过埃及金字塔吗?我们知道埃及金字塔是人类文明发展史上一个伟大的工程,在当时没有精密的测量工具的时候,人们只能用绳子等固定长度的物体作为测量的参照,可是当石头比绳子短的时候,又该如何测量如何记录呢?
(学生可能回答:用分数表示。)
师:对,古埃及人将一根绳子平均分成了若干份,再去测量。这样就能具体记录石头的长度,古埃及人就是用自己的聪明才智,把不足一段绳子长度的石头或超过一段绳子长度的`石头用分数的表示方法记录,才能在没有精密仪器的情况下将金字塔建造得非常坚固,石块的接缝也是非常紧密,这也是人类发展史上的一大奇迹。
[设计意图说明:通过故事,激发学生的学习兴趣,同时又对分数的产生和运用有了一定的认识。]
2、实践感知。师生合作测量黑板的长度。
师:虽然我们现在已经用到了米尺、三角尺、直尺等常用的学习工具,但在具体测量物体的长度时,也不一定正好是整数的结果。下面就请一名同学上台 和老师一块来测量一下黑板的长度,看看能否用整米数表示。
(师生合作测量黑板的长度。)
师:大家看到,刚才我们用米尺量了几次后还剩下一段,不够一米,这时还能否用整米数表示?
(学生可能回答:不能)
师:在进行测量时,有时不能得到整数结果,这时常用分数来表示。(点击出示)
[设计意图说明:通过故事抽象感知以后在让学生通过实践认知,进一步了解了分数产生的过程,也感知了分数与生活的紧密联系。]
探究二:用分数计算。
1、点击出示书60页第二幅图片。
师:大家看图,小明和小丽在分东西,桌上有什么?
(学生可能回答:一个西红柿、一块蛋糕、一包饼干)
师:如果把西红柿平均分给两个人,可以怎样分?你可以用算式表示吗?
(学生可能回答:1÷2,在三年级学习的基础上,有的学生能回答出 个。)
师:1÷2的结果能用整数表示吗?(不能)
师:我们知道1÷2就是将1平均分成两份,每一份是多少?( )
师:那么将一个西红柿平均分成两份,每一份是多少呢?( 个)
师:看看小明和小丽是如何分的?
(点击出示: )
[设计意图说明:这一环节需要引导学生将生活实际中的分东西用数学算式表示,同时以最简单和直观的方法将除法算式与分数联系起来,同时又引导学生进一步理解分数的意义。]
2、小练习
师:那么同样的,小明和小丽每个人平均分到几块蛋糕?几包饼干呢?你是怎样想的?
(学生可能回答,并简单表述将一块蛋糕平均分成两份,每一份是 块。)
[设计意图说明:在前面学习了分数的意义后,马上根据书本内容进行练习,使学生对于分数的意义更了解。]
3、小结:
在人们实际生产和生活中,人类在测量和计算的时候,往往不能得到整数的结果,这就需要用一种新的数来表示,这样就产生了新的数—分数。
(点击媒体出示:在进行测量、分物或计算时,往往不能正好得到整数的结果,这是常用分数来表示。)
4、资料介绍。
师:最初,人们只认识一些简单的分数,如二分之一、三分之一等。而且也不是一开始就出现现在的表示方式。
点击出现:
师:从图中你了解到了哪些信息?
(学生根据自己的观察回答,教师提醒,补充说明。)
[设计意图说明:这一环节通过分数发展的几个阶段,让学生了解分数发展过程中不同的表示方法,让学生对分数的产生和发展有更深入的认识,进一步激发学习分数的兴趣。]
三、练习
1、说出下面图形所表示的分数。
88
8
( ) ( ) ( )
[设计意图说明:这个练习环节是为了激发学生的学习兴趣,同时进一步巩固学生对于分数产生过程的认识。]
2、填空。
(1)将1个苹果平均分给2个小朋友,每人可以分到 个苹果。
(2)将1个苹果平均分给3个小朋友,每人可以分到 个苹果。
(3)4个小朋友分一块蛋糕,如果每人分到的蛋糕相同,每人分到 块蛋糕。
(4)将1堆糖平均分给5个小朋友,每人分到这堆糖的 。
师:这里可不可以说每人分到 粒糖?(引导学生辨析将1粒糖平均分成5份与将1堆糖平均分成5份的区别。)
[设计意图说明:这个练习环节的设计旨在让学生进一步理解分数的意义,题目用三种不同的方法表述平均分的意义,让学生能更好的理解分数的意义及不同的表述方式,同时也为后面学习分数的单位打下基础。]
四、小结
通过今天的学习,我们知道了在很早以前我们人类为了解决实际生产和生活中不能用整数表示结果的问题,就已经开始用分数来表示了,经过几千年的发展,我们对于分数的应用也变得更熟练更广泛。希望通过学习,我们每一位同学也能更多的了解分数,更好的学习分数知识。
五、作业
将一张长方形或正方形纸平均折成若干份,然后将其中的几份涂上颜色,用分数表示。
分数的意义教案 篇13
教学内容:人教版五年级下册第四单元第一课时《分数的产生和意义》。
学情分析:在学习这部分内容之前学生在三年级上学期的学习中,已经借助操作、直观,初步认识了分数,知道了分数的各部分的名称,会读、写简单的分数,会比较分数大小还会简单的同分母分数加、减法。
教学设想:本节课的教学,单位“1”和分数单位这两个概念非常重要,应从直观到抽象,由个别到一般,用利操作、讨论、交流等形式展开小组学习,适当展开概念的形成过程,帮助学生在过程中获得者得感悟,自己构建这些概念的意义。
教学目标:
1、在学生原有分数知识基础上,使学生知道分数的产生,理解分数的意义,知道分子、分母和分数单位的含义。
2、经历认识分数意义的过程,培养学生的抽象、概括能力。
3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。
教学重点:明确分数和分数单位的意义,理解单位“1”的含义。
教学难点:对单位“1”的理解。
教具和学具:卷尺、四张长方形白纸、四条一米长的绳子、若干个小立方体和一捆绘画笔。
教学过程:
一、创设情景,温故引新。
1、师:我们已经初步认识了分数。(板书:分数)谁来说几个分数?(板书:如1/4)你知道分数各部分的名称吗?(板书):师:那你们知道分数是怎样产生的吗?
二、教学分数的产生。
2、能根据成语说出下面的分数吗?
一分为二( ) 七上八下( ) 百里挑一( ) 十拿九稳( )
1、请一个学生用米尺测量黑板的长,说一说,用“米”做单位,看看测量的结果能不能用整数表示。那剩下的不足一米怎么记?
2、在古代,人们就已经遇到了这样的问题。(师用一根打了结的绳子演示古人测量的情况)。课件呈现情境图,介绍分数的'起源和发展历史。
3、总结:在测量、分物的时候,可能得不到整数的结果,需要用一种新的数表示——分数表示。所以分数是人类为了适用实际需要而产生的。
4、在我们的日常生活中,为了平均分配一些东西,也常常会遇到不能用整数表示的情况。比如两个小朋友平分一个橘子、一块月饼、一块饼干等,每人分到的能用整数表示吗?用什么分数表示?
三、教学分数的意义。
师:下面老师要先考考大家,你能举例说明1/4的含义吗?(投影出示题目,学生口答)
出示一个1/4的正方形的阴影部分。
师:阴影部分可以用什么分数表示?它表示什么意思?
2、师:下列图中的阴影部分能用1/4表示吗?为什么?
如生说可以,则问:你为什么觉得可以用1/4表示呢?生说理由。
(强调一定要平均分)(板书:平均分)
3、动手操作,探索新知。
(1)操作。
师:现在我给每一个小组都提供了四种材料,一张长方形纸、一条一米长的绳子、6个小立方体,4根绘画笔。下面请每组根据这四种一样的材料,通过折一折、画一画、分一分等方法,创造出几个不同的分数。
学生动手操作,教师巡视。
(2)交流
师:谁愿意上来说一说,你得到了哪些分数?这个分数是怎样得到的?
小组交流。
(3)认识单位“1”。
师:利用这四种材料,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?
生:一张长方形纸、一米长的绳子、6个小立方体、4根绘画笔平均分。
师:象把一张长方形纸平均分,我们可以称之为把一个物体平均分
(课件显示:一个物体)
把一米长的绳子平均分,我们可以称之为把一个计量单位平均分。(课件显示:一个计量单位)
把6个小方块、4根绘画笔平均分,我们又可以称之为把一些物体平均分。(课件显示:一些物体)
师小结:一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。(课件显示)
师:(投影出示):我们可以把这3只象看作一个整体吗?
我们可以把这6颗草莓看作一个整体吗?这4只老虎呢?
我们还可以把哪些物体也看成一个整体呢?(学生举例。)
师:象这样的一个物体、一个计量单位、一个整体,我们可以用自然数“1”来表示,通常把它叫做单位“1”,( 课件显示)强调说明:①单位“1”不仅可以指一个物体、一个计量单位,也可以是很多物体组成的一个整体。如:一个苹果、一枝铅笔、一个计量单位、一堆煤、一仓库粮食等等,把什么平均分,就应把什么看做单位“1”。②单位“1”和自然数“1”的区别:自然数1是一个数,只表示一个具体事物。如:一个人、一本书、一间房子……它是自然数的计数单位。而单位“1”不仅可以表示某一个具体事物,还可以表示一堆、一群……它表示被平均分的整体。
概括分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
(4)理解分子分母的意义。
师:通过刚才的学习,大家知道了分数的意义,请同学们想一下,这个“若干份”是分数中的什么?(分母,表示平均分的份数)“这样的一份或几份”是分数中的什么?(分子,表示取的份数)
(5)师:接下来我想出几道题来考考大家,你们愿不愿意接受挑战?
①把这个文具盒里的所有铅笔平均分给2个同学,每个同学得到这盒铅笔的几分之几?
生:1/2
②师:为什么可以用1/2来表示?
③师:如果把这盒铅笔平均分给5个同学,每个同学得到这盒铅笔的几分之几呢?
如果把这盒铅笔平均分给10个同学,每个同学得到这盒铅笔的几分之几呢?
如果把这盒铅笔平均分给50个同学,每个同学得到这盒铅笔的几分之几呢?2个同学得到这盒铅笔的几分之几?
如果把这盒铅笔平均分给100个同学,每个同学得到这盒铅笔的几分之几呢?10个同学得到这盒铅笔的几分之几呢?
④师:现在这个文具盒里有6支铅笔,把它平均分给2个同学,每个同学得到的铅笔能用1/2表示吗?是几支铅笔?
⑤如果我再增加2支铅笔,把8支铅笔平均分给2个同学,每个同学得到的铅笔还能用1/2表示吗?是几支铅笔?为什么同样是1/2,铅笔的支数不一样?
师:因为一个整体表示的具体数量不同,所以同样是1/2,铅笔的支数不一样。
四、教学分数单位。
师:整灵敏有计数单位个、十、百、千、万……分数是否也有计数单位呢?它的计数单位又是怎样规定的?
显示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。(师举例说明后,并说出几个分数让学生回答,后再让学生自己举例说明)
加强练习,深化概念。
练习:
1、35 表示把( )平均分成( )份,表示这样的( )份,它的分母是( ),表示( );分子是( ),表示( )。
2、67 的分数单位是( ),有( )个这样的分数单位。
3、说出每个分数的意义。
(1)五(1)班的三好生人数占全班的29 。
(2)一节课的时间是23 小时。
4、课本练习十一第9题。
5、判断(对的打“√”,错的要“×”)。
(1)一堆苹果分成4份,每份占这堆苹果的14 ( )
(2)把5米长的绳子平均分成7段,每段占全长的57 ( )
(3)14个19 是914 ( )
(4)自然数1和单位“1”相同。( )
五、小结。
今天这节课我们学习了?你有哪些收获?
分数的意义教案 篇14
教学目标
(1)进一步理解分数、分子、分母、分数单位的意义,理解分数与除法的关系,理解和掌握分数的基本性质。
(2)能正确地约分和通分,能正确地比较分数的大小,能正确地进行分数和小数的互化。
(3)能正确地解答“求一个数是另一个数的几分之几”的应用题。
教学重点、难点
重点、难点:分数的意义和性质。
教具、学具准备
教 学过程
备 注
一、知识整理
1、分数的意义整理
(1)提问:什么是分数?分数与除法有什么关系?
(2)练习:说出下列分数的意义、分数单位及有几个这样的分数单位:
1/45/61/8千克4/7米
A、学生回答并提问:在“1/8千克”和“4/7米”中,把什么看作单位“1”?
B、把“5/6”和“4/7米”改写成除法算式,怎么写?从除法的角度,如何来理解这两个分数的意义?
2、分数的.基本性质整理。
(1)出示:1/2=()/85/7=20/()1又30/45=1又()/()()/20=6。8=9/()
A、学生回答。
B、这道题用到什么知识?什么是分数的基本性质?
(2)将“商不变性质”与“分数的基本性质”的内容添入下面的表格中:(全体练P159第12题中(4))
商不变性质分数的基本性质
[][]
反馈后提问:它们之间有什么联系?学生回答后接着问:那么。“商不变性质”就是“分数的基本性质”吗?为什么?
(3)练习:
①()/18=5/6=20/()=()÷12约等于()(保留两位小数)
②填上大于、小于或等与:
4/7()5/147/11()29/4421/35()3/532/60()2/3
问:你是怎么比较的?
教学过程
备 注
二、基本练习
1、A、把单位“1”平均分成5份,表示这样的3份数是()。
把4吨平均分成11份,表示这样的2份的数是(),表示这样的3份是()吨。
B、2又5/6的分数单位是(),它有()个这样的分数单位,9个这样的单位组成的数是();
C、把7/8的分数单位扩大2倍是(),把它的分数单位缩小2倍是()。
2、比较分数的大小,课本P160第14题。
(1)学生练习
(2)反馈练习结果后讨论:
11/22()7/825/40()20/321又3/20()1.151.75()1又5/6分别用什么方法比较大小来得方便?为什么?
(3)方法小结:
A、异分母分数比较大小,一般用通分或约分的方法进行;
B、分数与小数比较大小,一般化成小数比较方便些/
4、列式解答:
甲数是40,乙数是32,丙数是48,求:
(1)甲数是乙数的几倍?
(2)乙数是丙数的几分之几?
(3)甲数是乙、丙两数之和的几分之几?
(4)丙数是甲、丙两数之和的几分之几?
A、学生全体练习
B、反馈:师生讨论列式与结果。
C、小结:求一个数是另一个数的几倍或几分之几,关键是什么?方法怎样?这两类题目有什么共同点和不同点?
三、综合练习
1、课本P158第12题。
2、课本P159第13题。
学生练习后反馈说理。
3、独立作业:P160第15、16、17题。
四、课堂作业
《作业本》
理解分数、分子、分母、分数单位的意义,理解分数与除法的关系,理解和掌握分数的基本性质中,如“1千米的3/4和3千米的1/4是相等的”有些学生理解不通;还有如看图用分数表示阴影中什么时候用带分数,什么时候用假分数,也有些学生分不清。
【分数的意义教案】相关文章:
分数的意义教案12-22
《分数的意义》教案06-20
人教版分数的意义教案12-16
【荐】分数的意义教案02-27
【精】分数的意义教案02-27
分数的意义教案【热门】02-27
分数的意义教案【推荐】02-27
【热】分数的意义教案02-24
【热门】分数的意义教案02-21
分数的意义教案【精】02-24