- 相关推荐
《求一个数的约数和倍数》教案
作为一名为他人授业解惑的教育工作者,往往需要进行教案编写工作,教案是备课向课堂教学转化的关节点。那么问题来了,教案应该怎么写?下面是小编收集整理的《求一个数的约数和倍数》教案,欢迎阅读与收藏。
《求一个数的约数和倍数》教案1
教学目标
(一)理解并掌握求一个数的约数和倍数的方法。
(二)渗透集合思想,使学生会用集合图表示一个数的约数和倍数。
教学重点和难点
(一)求一个数的约数和倍数的方法。
(二)一个数的约数的个数是有限的,一个数的倍数的个数是无限的。
教学用具
投影片。
教学过程设计
(一)复习准备
口答下面各题。(投影片)
1.填空。
如果整数a能被整数b整除(b≠0),整数a就是整数b的x,整数b就是整数a的x。
2.说出下面各组数中谁是谁的约数,谁是谁的倍数:
125和25 72和9 57和19
3.判断下面的说法对不对,并说明理由。
(1)15是倍数,5是约数;( )
(2)6是3的倍数,是24的约数;( )
(3)4是12的约数,也是3、6的约数;( )
(4) 48是12和6的倍数。 ( )
教师:我们已经学习了约数和倍数,了解了它们相互依存的关系,今天来继续学习如何求一个数的约数和倍数。(板书课题:求一个数的约数和倍数。)
(二)学习新课
1.求一个数的约数的方法。
(1)(板书)例2 12的约数有哪几个?
教师:想一想,符合什么条件的数一定是12的约数?(能整除12的数。)学生口答老师板书:
12÷1=12 12÷12=1
12÷2=6 12÷6=2
12÷3=4 12÷4=3
12的约数有:1,2,3,4,6,12。教师:如果用集合图表示:
教师:观察板书列式,看一看12的这些约数有什么特点?
学生口答后教师概括:从整除算式中可以看出,一个数的约数是成对的。(整除算式中的除数与商就是一对。)
(2)练习。找出下面各数的约数。学生在本上写,老师巡视,请四位同学板书。
集体订正后,请学生说一说是怎样找出这些约数的?(从较小的自然数开始,一对一对地找。)
教师:观察上面几个数的约数,讨论下面几个问题:
①一个数的约数的个数有没有限?
②一个数的约数的个数有没有规律?
学生讨论后教师概括:
一个数的约数是有限个。一个数的约数个数,一般为偶数个,如果是平方数,约数的个数为奇数个。一个数的最小约数都是1,最大约数是这个数本身。
(口答)说出下面各数的全部约数:
8,14,25,39,45。
老师:找一个数的约数,可以用能整除这个数的数去除,除数和商就是它的一对约数。
2.找一个数倍数的方法。
(1)(板书)例3 2的倍数有哪些?
学生口答,老师板书:
2×1=2 2×2=4 2×3=6
问:能写出多少个2的倍数?有没有2的最大倍数?
学生回答出能写出无数个2的倍数后,板书在算式后面补出省略号,说明表示无限个。
板书:2的倍数有2,4,6,8,…
用集合图表示:
问:集合圈里为什么要写上省略号?
(2)练习:填空。(请四位同学板书,其余同学填本,集体订正。)
教师:第(2)个集合圈里为什么不能写省略号?
教师:观察集合圈里的倍数有什么特点?发现了什么规律?
学生口答后老师概括:一个数的最小倍数是它本身,而没有最大的倍数;一个数的倍数个数无限。
老师:能说一说找一个数倍数的方法吗?(用自然数,1,2,3,…分别去乘一个数,就可以求出这个数的倍数。)
(三)巩固反馈
1.在下面的整数中圈出3的倍数。(投影)
2.在下面的集合圈里填上适合的数。
3.填空。
13的最小倍数是( ),它的最大约数是( )。( )既是28的倍数,又是28的约数。
4.(口答)下面集合圈中,阴影部分应该填多少?为什么?
(四)课堂总结与课后练习
1.求一个数约数的方法。求一个数倍数的`方法。
2.一个数的约数个数有限而倍数无限,它的最大约数和最小倍数是它本身。
3.课后作业:课本P52:4,5,6。
思考课本P52:7。
课堂教学设计说明
本节内容是在学生已掌握了整除、约数、倍数等概念的基础上进行的。因为约数、倍数是建立在整除基础上的,所以利用整除式帮助学生理解除数和商是被除数的一对约数,进而发现约数可以一对一对地找。在学生会找约数的基础上,通过一组练习和观察,给学生创设一个研讨,发现约数特点的情景。学生掌握了约数的特点,更能提高找约数的能力。找倍数的方法学生很易理解和掌握,在练习中设计了集合圈中加省略号和不加省略是两种题,让学生通过对比讨论,加深一个数的倍数是无限的这个特点的认识。
新课教学分两大部分。
第一部分教学求一个数约数的方法。分两层。找一个数约数的方法,会用集合图表示一个数的约数;在练习基础上让学生学会归纳求约数的方法,并发现一个数的约数的特点。
第二部分教学求一个数的倍数的方法。也分两层。让学生掌握找一个数倍数的方法;归纳找倍数的方法以及倍数的特点。
《求一个数的约数和倍数》教案2
游戏目的:
本游戏以有趣的形式巩固所学知识,使学生能熟练寻找已知数的约数、倍数,并引导学生“玩中学”、“趣中练”、“乐中长才干”、“赛中增勇气”,达到快乐学习的目的。
游戏场景:
此游戏是针对五年级学生的,需要维护好课堂纪律。
游戏时间:
6~8分钟左右。
游戏难度:中级适合年级:五年级
本游戏适用于小学五年级“求一个数的约数和倍数”一课,在学生掌握了约数、倍数的概念的基础上进行。可以安排在练习课的课尾。
游戏人数:全班
游戏准备:
含有太空画面的动画课件(也可以图画代替),小红旗若干面;学生每人一套0~9的数字卡片,空白卡片若干张,红色、绿色水彩笔。
游戏过程:
1、播放课件,激发兴趣。
(画外音)这个以光能作为动力来推动前进的宇宙飞行器,并不是以我们常见的地面火箭升空的方式带入太空,而是以它独特的形式开始它的航程。我们现在就随着它开始太空之旅。
2、宣布游戏规则。
师:我们的“太空之旅”游戏分为准备出发和腾空飞行两个阶段。只有完成了“启动阶段”,才能进入“飞行阶段”。比一比,哪一组能出色完成任务,哪一位队长能正确指挥。
第一步:准备出发(找一个数的约数)。
先选一名同学当队长(手举小红旗)。队长根据自己所想的数,确定乘坐飞行器的人数,人数应该为比所想数的约数个数少1的数。所选队员每人准备好0~9的数字卡片一套及空白卡片若干,面对队长围成半圆。队长把刚才所想的数用红色水彩笔写在空白卡片上,当队长出示红色数字的卡片后,队员必须在规定时间(10秒)内找出这个数的约数,并用手中的数字卡片举牌示意(但不能出声)。规定每人只能找一个约数,且根据其他队员选择的'约数来确定自己该找的约数,不能与其他队员重复。因为队员人数比约数个数少1,所以肯定有一个约数被遗漏,这时就要求队员们共同合作,在5秒钟内把这个遗漏的约数找出来,报告队长。所有队员找到的约数全部正确,即表示飞行器已正常启动,可以进入下一任务—“腾空飞行”。否则,就是启动失败,队长再重新选择一个数,重新启动。期间,没有选上队员的同学可以作为裁判,判断队员们所找约数是否正确。
如:队长要举的红色数字卡片的数是8,因为8的约数有(1、2、4、8)共4个,所以队长就选3名同学作为队员参加游戏。
当队长举起红色数字8的卡片后,队员们立刻举牌。如甲队员举起了数字卡片1,乙队员就不能再举数字1,但可以举数字2假如甲队员举的约数是1,乙队员举的约数是2,丙队员举的约数是8,则约数4没人举,这时就要求3名队员在5秒钟内把约数4找出来,报与队长,表示队员已做好充分准备,队长将同意此小队准备出发,游戏第一步结束,开始游戏第二步。
如果队员不能完成任务,则原地待命,游戏重新开始。可以让没有参加游戏的裁判员共同说说8的约数有哪几个,他们小队遗漏(或找错)了哪一个。
第二步:腾空飞行(找一个数的倍数)。
“飞行器”正确启动后,参加游戏的队员站成一路纵队。队长出示绿色数字的卡片,队员必须在规定时间内根据自己所站的位置,举出绿色数字的倍数,如在规定时间内所有队员全部正确完成,队长将允许此小队立即腾空飞行。队长将激光手电依次照到每个队员身上,光能将作为动力推动队员飞向太空,队员则两手侧平举展开飞翔姿势飞回座位,课件演示太空的画面,同时播放含有飞船遨游太空的声音,游戏结束。如果在找绿色数字的倍数的过程中,某队员出了错误,队长将允许其他队员在5秒钟内帮助他纠正错误,再次举卡片;否则游戏失败,由裁判员说出正确的答案,腾空飞行这一环节将重新开始。
3、游戏开始。
根据班级人数分小组开始游戏。老师巡回观察。
4、游戏小结。
(1)评选优秀小队。(条件:能出色完成任务,体现团队精神的)
(2)评选优秀队长。(条件:能在游戏过程中正确无误地指挥的)
游戏提示:
本游戏活动,不但可以巩固学生有关约数、倍数的知识,还可以培养学生间团结协作精神,增强克服困难争取胜利的勇气和信心。但游戏中应注意:
1、由于日常生活中我们有“看见红灯停一停,看见绿灯向前行”的习惯,因此本游戏过程中设计的队长第一次举出的是红色数字。队员能否飞向太空,要看队员的答题情况,如第一次找约数正确则把红色数字改成绿色数字。
2、在本次游戏过程中,所选队长要求较高,因为他在游戏前,将根据自己所选择的数来确定参加游戏的人数。
3、队长所选择的数最好在100以内。
4、当队员手中的0~9这套数字卡片不够用时,也可在空白卡片上填写所需数字。
5、为使本组成员顺利进行游戏,可以指导学生思考游戏策略:在活动中发扬团队精神,活动前先商量好,让基础差的同学选择简单的约数,如1和它本身;找倍数时让他们先找一倍数、两倍数等。
【《求一个数的约数和倍数》教案】相关文章:
约数和倍数的意义的教案02-21
约数和倍数的意义教案03-05
求比一个数少几的数教案02-15
《倍数和因数》教案03-18
求比一个数少几的数教案13篇03-03
求比一个数少几的数教案(13篇)03-03
《2和5的倍数的特征》教案03-09
《倍数与因数》教案03-14