物理知识点总结
总结是事后对某一阶段的学习、工作或其完成情况加以回顾和分析的一种书面材料,它在我们的学习、工作中起到呈上启下的作用,为此我们要做好回顾,写好总结。你所见过的总结应该是什么样的?以下是小编为大家收集的物理知识点总结,仅供参考,欢迎大家阅读。
物理知识点总结1
第一章运动的描述
一、基本概念
1、质点
2、 参考系
3、坐标系
4、时刻和时间间隔
5、路程:物体运动轨迹的长度
6、位移:表示物体位置的变动。可用从起点到末点的有向线段来表示,是矢量。位移的大小小于或等于路程。
7、速度:
物理意义:表示物体位置变化的快慢程度。
分类平均速度:方向与位移方向相同
瞬时速度:
与速率的区别和联系速度是矢量,而速率是标量
平均速度=位移/时间,平均速率=路程/时间
瞬时速度的大小等于瞬时速率
8、加速度
物理意义:表示物体速度变化的快慢程度
定义:(即等于速度的变化率)
方向:与速度变化量的方向相同,与速度的方向不确定。(或与合力的方向相同)
二、运动图象(只研究直线运动)
1、x—t图象(即位移图象)
(1)、纵截距表示物体的初始位置。
(2)、倾斜直线表示物体作匀变速直线运动,水平直线表示物体静止,曲线表示物体作变速直线运动。
(3)、斜率表示速度。斜率的绝对值表示速度的大小,斜率的正负表示速度的方向。
2、v—t图象(速度图象)
(1)、纵截距表示物体的初速度。
(2)、倾斜直线表示物体作匀变速直线运动,水平直线表示物体作匀速直线运动,曲线表示物体作变加速直线运动(加速度大小发生变化)。
(3)、纵坐标表示速度。纵坐标的绝对值表示速度的大小,纵坐标的正负表示速度的方向。
(4)、斜率表示加速度。斜率的绝对值表示加速度的大小,斜率的正负表示加速度的方向。
(5)、面积表示位移。横轴上方的面积表示正位移,横轴下方的面积表示负位移。
三、实验:用打点计时器测速度
1、两种打点即使器的异同点
2、纸带分析;
(1)、从纸带上可直接判断时间间隔,用刻度尺可以测量位移。
(2)、可计算出经过某点的瞬时速度
(3)、可计算出加速度
第二章匀变速直线运动的研究
一、基本关系式v=v0+at
x=v0t+1/2at2
v2—vo2=2ax
v=x/t=(v0+v)/2
二、推论
1、 vt/2=v=(v0+v)/2
2、vx/2=
3、△x=at2 { xm—xn=(m—n)at2}
4、初速度为零的匀变速直线运动的比例式
应用基本关系式和推论时注意:
(1)、确定研究对象在哪个运动过程,并根据题意画出示意图。
(2)、求解运动学问题时一般都有多种解法,并探求最佳解法。
三、两种运动特例
(1)、自由落体运动:v0=0 a=g v=gt h=1/2gt2 v2=2gh
(2)、竖直上抛运动;v0=0 a=—g
四、关于追及与相遇问题
1、寻找三个关系:时间关系,速度关系,位移关系。两物体速度相等是两物体有最大或最小距离的临界条件。
2、处理方法:物理法,数学法,图象法。
五、理解伽俐略科学研究过程的基本要素。
第三章相互作用
一、三种常见的力
1、重力:由于地球对物体的吸引而产生的。大小:G=mg,方向:竖直向下,
作用点:重心(重力的等效作用点)
2、弹力
(1)、形变、弹性形变、定义等。
(2)、产生条件:
(3)、拉力、支持力、压力。(按照力的作用效果来命名的)
(4)、弹簧的弹力的大小和方向,胡克定律F=kx
(5)、可用假设法来判断是否存在弹力。
3、摩擦力
(1)、静摩擦力:①、产生条件②、方向判断
③、大小要用“力的平衡”或“牛顿运动定律”来解。
(2)滑动摩擦力:①、产生条件②、方向判断
③、大小:f=uN。也可用“力的平衡”或“牛顿运动定律”来解。
(3)、可用假设法来判断是否存在摩擦力。
二、力的合成
1、定义;由分力求合力的过程。
2、合成法则:平行四边形定则或三角形定则。
3、求合力的方法
①、作图法(用刻度尺和量角器)②、计算法(通常是利用直角三角形)
2、合力与分力的大小关系
三、力的分解
1、分解法则:平行四边形定则或三角形定则、
2、分解原则:按照实际作用效果分解(即已知两分力的方向)
3、把一个已知力分解为两个分力
①、已知两个分力的方向,求两个分力的大小。(解是唯一的)
②、已知一个分力的大小和方向,求另一个分力的大小和方向,(解是唯一的)
(注意:通过作平行四边形或三角形判断)
4、合力和分力是“等效替代”的关系。
三、实验:探究求合力的方法(或“验证平行四边形定则”)
第四章牛顿运动定律
一、牛顿第一定律
1、内容:(揭示物体不受力或合力为零的情形)
2、两个概念:
①、力
②、惯性:(一切物体都具有惯性,质量是惯性大小的唯一量)
二、牛顿第二定律
1、内容:(不能从纯数学的角度表述)
2、公式:F合=ma
3、理解牛顿第二定律的要点:
①、式中F是物体所受的`一切外力的合力。②、矢量性③、瞬时性④、独立性⑤、相对性
三、牛顿第三定律
作用力和反作用力的概念
1、内容
2、作用力和反作用力的特点:①等值、反向、共线、异点②瞬时对应③性质相同
④各自产生其作用效果
3、一对相互作用力与一对平衡力的异同点
四、力学单位制
1、力学基本物理量:长度(l)质量(m)时间(t)
力学基本单位:米(m)千克(kg)秒(s)
2、应用:用单位判断结果表达式,能肯定错误(但不能肯定正确)
五、动力学的两类问题。
1、已知物体的受力情况,求物体的运动情况(v0 v t x)
2、已知物体的运动情况,求物体的受力情况(F合或某个分力)
3、应用牛顿第二定律解决问题的一般思路
(1)明确研究对象。
(2)对研究对象进行受力情况分析,画出受力示意图。
(3)建立直角坐标系,以初速度的方向或运动方向为正方向,与正方向相同的力为正,与正方向相反的力为负。在Y轴和X轴分别列牛顿第二定律的方程。
(4)解方程时,所有物理量都应统一单位,一般统一为国际单位。
4、分析两类问题的基本方法
(1)抓住受力情况和运动情况之间联系的桥梁——加速度。
(2)分析流程图
六、平衡状态、平衡条件、推论
1、处理方法:解三角形法(合成法、分解法、相似三角形法、封闭三角形法)和正交分解法
2、若物体受三力平衡,封闭三角形法最简捷。若物体受四力或四力以上平衡,用正交分解法
七、超重和失重
1、超重现象和失重现象
2、超重指加速度向上(加速上升和减速下降),超了ma;失重指加速度向下(加速下降和减速上升),失ma。
物理知识点总结2
1、麦克斯韦的电磁场理论
(1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场。
(2)随时间均匀变化的磁场产生稳定电场。随时间不均匀变化的磁场产生变化的电场。随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场。
(3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场。
2、电磁波
(1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波。
(2)电磁波是横波
(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长λ和频率f的乘积,即v=λf,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3.00×108m/s。
高三物理知识点3摩擦力
(1)产生的条件:
1、相互接触的物体间存在压力;2、接触面不光滑;
3、接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可。
(2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反。
(3)判断静摩擦力方向的方法:
1、假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同。然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向。
2、平衡法:根据二力平衡条件可以判断静摩擦力的方向。
(4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解。
1、滑动摩擦力大小:利用公式f=μFN进行计算,其中FN是物体的正压力,不一定等于物体的重力,甚至可能和重力无关。或者根据物体的运动状态,利用平衡条件或牛顿定律来求解。
2、静摩擦力大小:静摩擦力大小可在0与fmax之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解。
高三物理知识点4力学知识点
1、力:
力是物体之间的相互作用,有力必有施力物体和受力物体。力的大小、方向、作用点叫力的三要素。用一条有向线段把力的三要素表示出来的方法叫力的图示。
按照力命名的依据不同,可以把力分为按性质命名的力(例如:重力、弹力、摩擦力、分子力、电磁力等。)按效果命名的力(例如:拉力、压力、支持力、动力、阻力等)。
力的作用效果:形变;改变运动状态。
2、重力:
由于地球的吸引而使物体受到的力。重力的大小G=mg,方向竖直向下。作用点叫物体的重心;重心的位置与物体的质量分布和形状有关。质量均匀分布,形状规则的物体的重心在其几何中心处。薄板类物体的重心可用悬挂法确定
3、弹力:
(1)内容:发生形变的物体,由于要恢复原状,会对跟它接触的且使其发生形变的物体产生力的作用,这种力叫弹力。
(2)条件:接触;形变。但物体的形变不能超过弹性限度。
(3)弹力的方向和产生弹力的那个形变方向相反。(平面接触面间产生的弹力,其方向垂直于接触面;曲面接触面间产生的弹力,其方向垂直于过研究点的曲面的切面;点面接触处产生的弹力,其方向垂直于面、绳子产生的弹力的方向沿绳子所在的直线。)
(4)大小:弹簧的弹力大小由F=kx计算,一般情况弹力的大小与物体同时所受的其他力及物体的运动状态有关,应结合平衡条件或牛顿定律确定。
4、摩擦力:
(1)摩擦力产生的条件:接触面粗糙、有弹力作用、有相对运动(或相对运动趋势),三者缺一不可。
(2)摩擦力的方向:跟接触面相切,与相对运动或相对运动趋势方向相反。但注意摩擦力的方向和物体运动方向可能相同,也可能相反,还可能成任意角度。
高中物理知识点总结:力学部分力学的基本规律之:匀变速直线运动的基本规律(12个方程);三力共点平衡的特点;牛顿运动定律(牛顿第一、第二、第三定律);力学的基本规律之:万有引力定律;天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题);力学的基本规律之:动量定理与动能定理(力与物体速度变化的'关系—冲量与动量变化的关系—功与能量变化的关系);动量守恒定律(四类守恒条件、方程、应用过程);功能基本关系(功是能量转化的量度)力学的基本规律之:重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点);
功能原理(非重力做功与物体机械能变化之间的关系);力学的基本规律之:机械能守恒定律(守恒条件、方程、应用步骤);简谐运动的基本规律(两个理想化模型一次全振动四个过程五个物理量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用;简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用。
1、电路的组成:电源、开关、用电器、导线。
2、电路的三种状态:通路、断路、短路。
3、电流有分支的是并联,电流只有一条通路的是串联。
4、在家庭电路中,用电器都是并联的。
5、电荷的定向移动形成电流(金属导体里自由电子定向移动的方向与电流方向相反)。
6、电流表不能直接与电源相连,电压表在不超出其测量范围的情况下可以。
7、电压是形成电流的原因。
8、安全电压应低于24V。
9、金属导体的电阻随温度的升高而增大。
10、影响电阻大小的因素有:材料、长度、横截面积、温度(温度有时不考虑)。
11、滑动变阻器和电阻箱都是靠改变接入电路中电阻丝的长度来改变电阻的。
12、利用欧姆定律公式要注意I、U、R三个量是对同一段导体而言的。
13、伏安法测电阻原理:R=伏安法测电功率原理:P=UI
14、串联电路中:电压、电功和电功率与电阻成正比
15、并联电路中:电流、电功和电功率与电阻成反比16。"220V、100W"的灯泡比"220V、40W"的灯泡电阻小,灯丝粗。
物理知识点总结3
一、静力学:
1、几个力平衡,则一个力是与其它力合力平衡的力。
2、两个力的合力:F(max)—F(min)≤F合≤F(max)+F(min)。 三个大小相等的共面共点力平衡,力之间的夹角为120°。
3、力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、
手段。
4、三力共点且平衡,则:F1/sinα1=F2/sinα2=F3/sinα3(拉密定理,对比一下正弦定理)
文字表述:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比 5、物体沿斜面匀速下滑,则u=tanα6、两个一起运动的物体“刚好脱离”时: 貌合神离,弹力为零。此时速度、加速度相等,此后不等。
7、轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。因其形变被忽略,其拉力可以发生突变,“没有记忆力”。
8、轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。
9、轻杆能承受纵向拉力、压力,还能承受横向力。力可以发生突变,“没有记忆力”。
10、轻杆一端连绞链,另一端受合力方向:沿杆方向。
11、“二力杆”(轻质硬杆)平衡时二力必沿杆方向。
12、绳上的`张力一定沿着绳子指向绳子收缩的方向。13、支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N不一定等于重力G。
14、两个分力F1和F2的合力为F,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。
15、已知合力不变,其中一分力F1大小不变,分析其大小,以及另一分力F2。
用“三角形”或“平行四边形”法则
二、运动学
1、在描述运动时,在纯运动学问题中,可以任意选取参照物;
在处理动力学问题时,只能以地为参照物。
2、初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动) 时间等分:
① 1T内、2T内、3T内、位移比:S1:S2:S3、、、、:Sn=1:4:9:、、、、n^2
② 1T末、2T末、3T末、、、、、、速度比:V1:V2:V3=1:2:3
③ 第一个T内、第二个T内、第三个T内···的位移之比:
SⅠ:SⅡ:SⅢ:、、、、:SN=1:3:5: 、、:(2n—1)
④ΔS=aT2Sn—S[n—k]= k aT2 a=ΔS/T2 a =( Sn—S[n—k])/k T^2
位移等分:
①1S0处、2S0处、3 S0处速度比:V1:V2:V3:、、、Vn=1:√2:√3:、、、:√n ② 经过1S0时、2S0时、3S0时、、、时间比:t1:t2:t3:、、、tn=1:√2:√3:、、、:√n ③ 经过第一个1S0、第二个2 S0、第三个3 S0···时间比
t1:t2:t3:、、、tn=1:√2—1:√3—√2:、、、:√n—√(n—1)
3、匀变速直线运动中的平均速度
v(t/2)=(v1+v2)/2=(S1+S2)/2T
4、匀变速直线运动中的
中间时刻的速度v(t/2)=(v1+v2)/2
中间位置的速度
5变速直线运动中的平均速度
前一半时间v1,后一半时间v2。则全程的平均速度:v=(v1+v2)/2 [算术平均数]
前一半路程v1,后一半路程v2。则全程的平均速度: v=(2v1v2)/(v1+v2) [调和平均数]
6、自由落体
n秒末速度(m/s):10,20,30,40,50
n秒末下落高度(m):5、20、45、80、125
第n秒内下落高度(m):5、15、25、35、45
7、竖直上抛运动
同一位置(根据对称性) v上=v下
H(max)=[(V0)^2]/2g
8、相对运动
①、 S甲乙= S甲地+ S地乙 = S甲地— S乙地
②共同的分运动不产生相对位移。
8、绳端物体速度分解
对地速度是合速度,分解为沿绳的分速度和垂直绳的分速度。
10、匀加速直线运动位移公式:S = At+ Bt^2
式中加速度 a=2B(m/s^2) 初速度 V0=A(m/s)
即S=v0t+at^2/2 则S'=v0+at
很明显 S'(t)=v(t) 说明位移关于时间的一阶导数是速度
11、小船过河:
⑴ 当船速大于水速时①船头的方向垂直于水流的方向时,所用时间最短,t=d/v(船)
②合速度垂直于河岸时,航程s最短 s=d d为河宽
⑵当船速小于水速时 ①船头的方向垂直于水流的方向时,所用时间最短,t=d/v(船)
②合速度不可能垂直于河岸,最短航程s=dv(水)/v(船)
12、两个物体刚好不相撞的临界条件是:接触时速度相等或者匀速运动的速度相等。
13、物体滑到小车(木板)一端的临界条件是:物体滑到小车(木板)一端时与小车速度相等
14、在同一直线上运动的两个物体距离最大(小)的临界条件是:速度相等。
三、运动和力
1、沿粗糙水平面滑行的物体: a=μg
2、沿光滑斜面下滑的物体: a=gsinα
3、沿粗糙斜面下滑的物体 a=g(sinα—μcosα)
4、 系统法:动力-阻力=m总a
5、 第一个是等时圆
物理知识点总结4
一、测量
⒈长度L:主单位:米;测量工具:刻度尺;测量时要估读到最小刻度的下一位;光年的单位是长度单位。
⒉时间t:主单位:秒;测量工具:钟表;实验室中用停表。1时=3600秒,1秒=1000毫秒。
⒊质量m:物体中所含物质的多少叫质量。主单位:千克;测量工具:秤;实验室用托盘天平。
二、机械运动
⒈机械运动:物体位置发生变化的运动。
参照物:判断一个物体运动必须选取另一个物体作标准,这个被选作标准的物体叫参照物。
⒉匀速直线运动:
①比较运动快慢的两种方法:a比较在相等时间里通过的路程。b比较
通过相等路程所需的时间。
②公式:1米/秒=3.6千米/时。
三、力
⒈力F:力是物体对物体的作用。物体间力的作用总是相互的。
力的单位:牛顿(N)。测量力的仪器:测力器;实验室使用弹簧秤。
力的作用效果:使物体发生形变或使物体的运动状态发生改变。
物体运动状态改变是指物体的速度大小或运动方向改变。
⒉力的三要素:力的大小、方向、作用点叫做力的三要素。
力的图示,要作标度;力的示意图,不作标度。
⒊重力G:由于地球吸引而使物体受到的力。方向:竖直向下。
重力和质量关系:G=mg m=G/g
g=9.8牛/千克。读法:9.8牛每千克,表示质量为1千克物体所受重力为9.8牛。
重心:重力的作用点叫做物体的重心。规则物体的重心在物体的几何中心。
⒋二力平衡条件:作用在同一物体;两力大小相等,方向相反;作用在一直线上。
物体在二力平衡下,可以静止,也可以作匀速直线运动。
物体的平衡状态是指物体处于静止或匀速直线运动状态。处于平衡状态的物体所受外力的合力为零。
⒌同一直线二力合成:方向相同:合力F=F1+F2 ;合力方向与F1、F2方向相同;
方向相反:合力F=F1-F2,合力方向与大的力方向相同。
⒍相同条件下,滚动摩擦力比滑动摩擦力小得多。
滑动摩擦力与正压力,接触面材料性质和粗糙程度有关。【滑动摩擦、滚动摩擦、静摩擦】
7.牛顿第一定律也称为惯性定律其内容是:一切物体在不受外力作用时,总保持静止或匀速直线运动状态。惯性:物体具有保持原来的静止或匀速直线运动状态的性质叫做惯性。
四、密度
⒈密度ρ:某种物质单位体积的质量,密度是物质的一种特性。
公式:m=ρV国际单位:千克/米3,常用单位:克/厘米3,
关系:1克/厘米3=1×103千克/米3;ρ水=1×103千克/米3;
读法:103千克每立方米,表示1立方米水的质量为103千克。
⒉密度测定:用托盘天平测质量,量筒测固体或液体的体积。
面积单位换算:
1厘米2=1×10-4米2,
1毫米2=1×10-6米2。
五、压强
⒈压强P:物体单位面积上受到的压力叫做压强。
压力F:垂直作用在物体表面上的力,单位:牛(N)。
压力产生的效果用压强大小表示,跟压力大小、受力面积大小有关。
压强单位:牛/米2;专门名称:帕斯卡(Pa)
公式:F=PS 【S:受力面积,两物体接触的公共部分;单位:米2。】
改变压强大小方法:①减小压力或增大受力面积,可以减小压强;②增大压力或减小受力面积,可以增大压强。
⒉液体内部压强:【测量液体内部压强:使用液体压强计(U型管压强计)。】
产生原因:由于液体有重力,对容器底产生压强;由于液体流动性,对器壁产生压强。
规律:①同一深度处,各个方向上压强大小相等②深度越大,压强也越大③不同液体同一深度处,液体密度大的,压强也大。 [深度h,液面到液体某点的竖直高度。]
公式:P=ρgh h:单位:米; ρ:千克/米3; g=9.8牛/千克。
⒊大气压强:大气受到重力作用产生压强,证明大气压存在且很大的是马德堡半球实验,测定大气压强数值的是托里拆利(意大利科学家)。托里拆利管倾斜后,水银柱高度不变,长度变长。
1个标准大气压=76厘米水银柱高=1.01×105帕=10.336米水柱高
测定大气压的仪器:气压计(水银气压计、盒式气压计)。
大气压强随高度变化规律:海拔越高,气压越小,即随高度增加而减小,沸点也降低。
六、浮力
1.浮力及产生原因:浸在液体(或气体)中的物体受到液体(或气体)对它向上托的力叫浮力。方向:竖直向上;原因:液体对物体的'上、下压力差。
2.阿基米德原理:浸在液体里的物体受到向上的浮力,浮力大小等于物体排开液体所受重力。
即F浮=G液排=ρ液gV排。 (V排表示物体排开液体的体积)
3.浮力计算公式:F浮=G-T=ρ液gV排=F上、下压力差
4.当物体漂浮时:F浮=G物且ρ物<ρ液当物体悬浮时:F浮=G物且ρ物=ρ液
当物体上浮时:F浮>G物且ρ物<ρ液>ρ液
七、简单机械
⒈杠杆平衡条件:F1l1=F2l2。力臂:从支点到力的作用线的垂直距离
通过调节杠杆两端螺母使杠杆处于水位置的目的:便于直接测定动力臂和阻力臂的长度。
定滑轮:相当于等臂杠杆,不能省力,但能改变用力的方向。
动滑轮:相当于动力臂是阻力臂2倍的杠杆,能省一半力,但不能改变用力方向。
⒉功:两个必要因素:①作用在物体上的力;②物体在力方向上通过距离。W=FS功的单位:焦耳
3.功率:物体在单位时间里所做的功。表示物体做功的快慢的物理量,即功率大的物体做功快。
W=Pt P的单位:瓦特; W的单位:焦耳; t的单位:秒。
八、光
⒈光的直线传播:光在同一种均匀介质中是沿直线传播的。小孔成像、影子、光斑是光的直线传播现象。
光在真空中的速度最大为3×108米/秒=3×105千米/秒
⒉光的反射定律:一面二侧三等大。【入射光线和法线间的夹角是入射角。反射光线和法线间夹角是反射角。】
平面镜成像特点:虚像,等大,等距离,与镜面对称。物体在水中倒影是虚像属光的反射现象。
⒊光的折射现象和规律:看到水中筷子、鱼的虚像是光的折射现象。
凸透镜对光有会聚光线作用,凹透镜对光有发散光线作用。光的折射定律:一面二侧三随大四空大。
⒋凸透镜成像规律:[U=f时不成像U=2f时V=2f成倒立等大的实像]
物距u像距v像的性质光路图应用
u>2f f倒缩小实照相机
f2f倒放大实幻灯机
u放大正虚放大镜
⒌凸透镜成像实验:将蜡烛、凸透镜、光屏依次放在光具座上,使烛焰中心、凸透镜中心、光屏中心在同一个高度上。
九、热学:
⒈温度t:表示物体的冷热程度。【是一个状态量。】
常用温度计原理:根据液体热胀冷缩性质。
温度计与体温计的不同点:①量程,②最小刻度,③玻璃泡、弯曲细管,④使用方法。
⒉热传递条件:有温度差。热量:在热传递过程中,物体吸收或放出热的多少。【是过程量】
热传递的方式:传导(热沿着物体传递)、对流(靠液体或气体的流动实现热传递)和辐射(高温物体直接向外发射出热)三种。
⒊汽化:物质从液态变成气态的现象。方式:蒸发和沸腾,汽化要吸热。
影响蒸发快慢因素:①液体温度,②液体表面积,③液体表面空气流动。蒸发有致冷作用。
⒋比热容C:单位质量的某种物质,温度升高1℃时吸收的热量,叫做这种物质的比热容。
比热容是物质的特性之一,单位:焦/(千克℃)常见物质中水的比热容最大。
C水=4.2×103焦/(千克℃)读法:4.2×103焦耳每千克摄氏度。
物理含义:表示质量为1千克水温度升高1℃吸收热量为4.2×103焦。
⒌热量计算:Q放=cm⊿t降Q吸=cm⊿t升
Q与c、m、⊿t成正比,c、m、⊿t之间成反比。⊿t=Q/cm
6.内能:物体内所有分子的'动能和分子势能的总和。一切物体都有内能。内能单位:焦耳
物体的内能与物体的温度有关。物体温度升高,内能增大;温度降低内能减小。
改变物体内能的方法:做功和热传递(对改变物体内能是等效的)
7.能的转化和守恒定律:能量即不会凭空产生,也不会凭空消失,它只会从一种形式转化为其它形式,或者从一个物体转移到另一个物体,而能的总量保持不变。
十、电路
⒈电路由电源、电键、用电器、导线等元件组成。要使电路中有持续电流,电路中必须有电源,且电路应闭合的。电路有通路、断路(开路)、电源和用电器短路等现象。
⒉容易导电的物质叫导体。如金属、酸、碱、盐的水溶液。不容易导电的物质叫绝缘体。如木头、玻璃等。
绝缘体在一定条件下可以转化为导体。
⒊串、并联电路的识别:串联:电流不分叉,并联:电流有分叉。
【把非标准电路图转化为标准的电路图的方法:采用电流流径法。】
十一、电流定律
⒈电量Q:电荷的多少叫电量,单位:库仑。
电流I:1秒钟内通过导体横截面的电量叫做电流强度。 Q=It
电流单位:安培(A) 1安培=1000毫安正电荷定向移动的方向规定为电流方向。
测量电流用电流表,串联在电路中,并考虑量程适合。不允许把电流表直接接在电源两端。
⒉电压U:使电路中的自由电荷作定向移动形成电流的原因。电压单位:伏特(V)。
测量电压用电压表(伏特表),并联在电路(用电器、电源)两端,并考虑量程适合。
⒊电阻R:导电物体对电流的阻碍作用。符号:R,单位:欧姆、千欧、兆欧。
电阻大小跟导线长度成正比,横截面积成反比,还与材料有关。【 】
导体电阻不同,串联在电路中时,电流相同(1∶1)。导体电阻不同,并联在电路中时,电压相同(1:1)
⒋欧姆定律:公式:I=U/R U=IR R=U/I
导体中的电流强度跟导体两端电压成正比,跟导体的电阻成反比。
导体电阻R=U/I。对一确定的导体若电压变化、电流也发生变化,但电阻值不变。
⒌串联电路特点:
① I=I1=I2 ② U=U1+U2 ③ R=R1+R2 ④ U1/R1=U2/R2
电阻不同的两导体串联后,电阻较大的两端电压较大,两端电压较小的导体电阻较小。
例题:一只标有“6V、3W”电灯,接到标有8伏电路中,如何联接一个多大电阻,才能使小灯泡正常发光?
解:由于P=3瓦,U=6伏
∴I=P/U=3瓦/6伏=0.5安
由于总电压8伏大于电灯额定电压6伏,应串联一只电阻R2如右图,
因此U2=U-U1=8伏-6伏=2伏
∴R2=U2/I=2伏/0.5安=4欧。答:(略)
⒍并联电路特点:
①U=U1=U2 ②I=I1+I2 ③1/R=1/R1+1/R2或④I1R1=I2R2
电阻不同的两导体并联:电阻较大的通过的电流较小,通过电流较大的导体电阻小。
例:如图R2=6欧,K断开时安培表的示数为0.4安,K闭合时,A表示数为1.2安。求:①R1阻值②电源电压③总电阻
已知:I=1.2安I1=0.4安R2=6欧
求:R1;U;R
解:∵R1、R2并联
∴I2=I-I1=1.2安-0.4安=0.8安
根据欧姆定律U2=I2R2=0.8安×6欧=4.8伏
又∵R1、R2并联∴U=U1=U2=4.8伏
∴R1=U1/I1=4.8伏/0.4安=12欧
∴R=U/I=4.8伏/1.2安=4欧(或利用公式计算总电阻)答:(略)
十二、电能
⒈电功W:电流所做的功叫电功。电流作功过程就是电能转化为其它形式的能。
公式:W=UQ W=UIt=U2t/R=I2Rt W=Pt单位:W焦U伏特I安培t秒Q库P瓦特
⒉电功率P:电流在单位时间内所作的电功,表示电流作功的快慢。【电功率大的用电器电流作功快。】
公式:P=W/t P=UI (P=U2/R P=I2R)单位:W焦U伏特I安培t秒Q库P瓦特
⒊电能表(瓦时计):测量用电器消耗电能的仪表。1度电=1千瓦时=1000瓦×3600秒=3.6×106焦耳
例:1度电可使二只“220V、40W”电灯工作几小时?
解t=W/P=1千瓦时/(2×40瓦)=1000瓦时/80瓦=12.5小时
十三、磁
1.磁体、磁极【同名磁极互相排斥,异名磁极互相吸引】
物体能够吸引铁、钴、镍等物质的性质叫磁性。具有磁性的物质叫磁体。磁体的磁极总是成对出现的。
2.磁场:磁体周围空间存在着一个对其它磁体发生作用的区域。
磁场的基本性质是对放入其中的磁体产生磁力的作用。
磁场方向:小磁针静止时N极所指的方向就是该点的磁场方向。磁体周围磁场用磁感线来表示。
地磁北极在地理南极附近,地磁南极在地理北极附近。
3.电流的磁场:奥斯特实验表明电流周围存在磁场。
通电螺线管对外相当于一个条形磁铁。
通电螺线管中电流的方向与螺线管两端极性的关系可以用右手螺旋定则来判定。
物理知识点总结5
水中或玻璃中的气泡看起来很亮.
理解:同种材料对不同色光折射率不同;同一色光在不同介质中折射率不同。
8.全反射棱镜-------横截面是等腰直角三角形的棱镜叫全反射棱镜。选择适当的入射点,可以使入射光线经过全反射棱镜的作用在射出后偏转90o(右图1)或180o(右图2)。要特别注意两种用法中光线在哪个表面发生全反射。.玻璃砖-----所谓玻璃砖一般指横截面为矩形的棱柱。当光线从上表面入射,从下表面射出时,其特点是:⑴射出光线和入射光线平行;⑵各种色光在第一次入射后就发生色散;⑶射出光线的侧移和折射率、入射角、玻璃砖的厚度有关;⑷可利用玻璃砖测定玻璃的折射率。光的波动性和微粒性1.光本性学说的发展简史
(1)牛顿的微粒说:认为光是高速粒子流.它能解释光的直进现象,光的反射现象.
(2)惠更斯的波动说:认为光是某种振动,以波的形式向周围传播.它能解释光的干涉和衍射现象.2、光的干涉
光的干涉的条件是:有两个振动情况总是相同的波源,即相干波源。(相干波源的频率必须相同)。形成相干波源的方法有两种:⑴利用激光(因为激光发出的是单色性极好的光)。⑵设法将同一束光分为两束(这样两束光都来源于同一个光源,因此频率必然相等)。下面4个图分别是利用双缝、利用楔形薄膜、利用空气膜、利用平面镜形成相干光源的'示意图。2.干涉区域内产生的亮、暗纹
⑴亮纹:屏上某点到双缝的光程差等于波长的整数倍,即δ=nλ(n=0,1,2,……)⑵暗纹:屏上某点到双缝的光程差等于半波长的奇数倍,即δ=(n=0,1,2,……)相邻亮纹(暗纹)间的距离。用此公式可以测定单色光的波长。用白光作双缝干涉实验时,由于白光内各种色光的波长不同,干涉条纹间距不同,所以屏的中央是白色亮纹,两边出现彩色条纹。
3.衍射----光通过很小的孔、缝或障碍物时,会在屏上出现明暗相间的条纹,且中央条纹很亮,越向边缘越暗。
⑴各种不同形状的障碍物都能使光发生衍射。
⑵发生明显衍射的条件是:障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小。(当障碍物或孔的尺寸小于0.5mm时,有明显衍射现象。)
爱心专心恒心用心
戴氏教育集团高三物理
⑶在发生明显衍射的条件下当窄缝变窄时亮斑的范围变大条纹间距离变大,而亮度变暗。
4、光的偏振现象:通过偏振片的光波,在垂直于传播方向的平面上,只沿着一个特定的方向振动,称为偏振光。光的偏振说明光是横波。5.光的电磁说
⑴光是电磁波(麦克斯韦预言、赫兹用实验证明了正确性。)
⑵电磁波谱。波长从大到小排列顺序为:无线电波、红外线、可见光、紫外线、X射线、γ射线。各种电磁波中,除可见光以外,相邻两个波段间都有重叠。各种电磁波的产生机理分别是:无线电波是振荡电路中自由电子的周期性运动产生的;红外线、可见光、紫外线是原子的外层电子受到激发后产生的;伦琴射线是原子的内层电子受到激发后产生的;γ射线是原子核受到激发后产生的。⑶红外线、紫外线、X射线的主要性质及其应用举例。种类产生主要性质应用举例
红外线一切物体都能发出热效应遥感、遥控、加热
紫外线一切高温物体能发出化学效应荧光、杀菌、合成VD2X射线阴极射线射到固体表面穿透能力强人体透视、金属探伤
光电效应
光电效应规律:实验装置、现象、总结出四个规律①任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率,才能产生光电效应;低于这个极限频率的光不能产生光电效应。②光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大。
③入射光照到金属上时,光子的发射几乎是瞬时的,一般不超过10-9s④当入射光的频率大于极限频率时,光电流强度与入射光强度成正比。
(4)康普顿效应(石墨中的电子对x射线的散射现象)这两个实验都证明光具粒子性光波粒二象性:
情况体现波动性(大量光子,转播时,λ大),粒子性光波是概率波(物质波)任何运动物体都有λ与之对应(这种波称为德布罗意波)
物理知识点总结6
一、传感器的及其工作原理
1、有一些元件它能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换为电压、电流等电学量,或转换为电路的通断.我们把这种元件叫做传感器.它的优点是:把非电学量转换为电学量以后,就可以很方便地进行测量、传输、处理和控制了.
2、光敏电阻在光照射下电阻变化的原因:有些物质,例如硫化镉,是一种半导体材料,无光照时,载流子极少,导电性能不好;随着光照的增强,载流子增多,导电性变好.光照越强,光敏电阻阻值越小.
3、金属导体的`电阻随温度的升高而增大,热敏电阻的阻值随温度的升高而减小,且阻值随温度变化非常明显.
金属热电阻与热敏电阻都能够把温度这个热学量转换为电阻这个电学量,金属热电阻的化学稳定性好,测温范围大,但灵敏度较差.
物理知识点总结7
1、平面镜
1)平面镜成像特点:
①物体在平面镜里所成的像是虚像。②像、物到镜面的距离相等。③像、物大小相等
④像、物的连线与镜面垂直 “正立”“等大”“虚象”“像、物关于镜面对 称
2)成像原理:光的反射定理
3)作 用:成像、 改变光路
4)实像和虚像:实像:实际光线会聚点所成的像
虚像:反射光线反向延长线的会聚点所成的像
2、球面镜
1)凹镜:定义:用球面的` 内 表面作反射面。
性质:凹镜能把射向它的平行光线 会聚在一点;从焦点射向凹镜的反射光是平行光
应用:太阳灶、手电筒、汽车头灯
2)凸镜 :定义:用球面的外表面做反射面。
性质:凸镜对光线起发散作用。凸镜所成的象是缩小的虚像
应用:汽车后视镜
物理知识点总结8
1第一章 机械运动
1.测量长度的常用工具:刻度尺。测量结果要估读到分度值的下一位。
2.刻度尺的使用方法:
(1)使用前先观察刻度尺的零刻度线、量程和分度值;
(2)测量时刻度尺的刻度线要紧贴被测物体;
(3)读数时视线要与尺面垂直。
3.测量值和真实值之间的差异叫做误差,我们不能消灭误差,但应尽量减小误差。
4.减小误差方法:多次测量求平均值、选用精密测量工具、改进测量方法。
5.误差与错误的区别:误差不是错误,错误不该发生,能够避免,而误差永远存在,不能避免。
6.物理学里把物体位置的变化叫做机械运动。
7.在研究物体的运动时,选作标准的物体叫做参照物。同一个物体是运动还是静止取决于所选的参照物,这就是运动和静止的相对性。
8.速度的计算公式:
1m/s=3.6km/h
2第二章 声现象
9. 声是由物体的振动产生的。
10.声的传播需要介质,真空不能传声。
11.声速与介质的种类和介质的温度有关。15℃空气中的声速为340m/s。
12.声音的三个特性是:音调、响度、音色。(音调与物体的振动频率有关;响度与物体的振幅有关;音色与发声体的材料和结构有关。)
13.控制噪声的途径:防止噪声的产生、阻断噪声的传播、防止噪声进入人耳。
14.为了保证休息和睡眠,声音不能超过50dB;为了保证工作和学习,声音不能超过70 dB;为了保护听力,声音不能超过90 dB。
15.声的利用:
(1)传递信息:例如声呐、听诊器、B超、回声定位。
(2)传递能量:例如超声波清洗钟表、超声波碎石。
3第三章 物态变化
16.液体温度计是根据液体热胀冷缩的规律制成的。
17.使用温度计前应先观察它的量程和分度值。
18.温度计的使用方法:
(1)温度计的玻璃泡要全部浸入被测液体中,不要碰到容器底或容器壁。
(2)要等温度计的示数稳定后再读数;
(3)读数时温度计的玻璃泡要继续留在液体中,视线要与液柱的上表面相平。
19.物态变化:
(1)熔化:固→液,吸热(冰雪融化)
(2)凝固:液→固,放热(水结冰)
(3)汽化:液→气,吸热(湿衣服变干)
(4)液化:气→液,放热(液化气)
(5)升华:固→气,吸热(樟脑丸变小)
(6)凝华:气→固,放热(霜的形成)
20.晶体、非晶体的熔化图像:
21.液体沸腾的条件:(1)达到沸点 (2)继续吸热
22.自然界水循环现象中的物态变化:
(1)雾、露――――液化
(2)雪、霜――――凝华
23.使气体液化的途径:(1)降低温度 (2)压缩体积
4第四章 光现象
24.光在同种均匀介质中是沿直线传播的;
光的传播不需要介质,真空中的光速C=3×108m/s。
25.光的直线传播的现象:影子、日食、月食。
光的直线传播的应用:激光引导掘进方向、射击瞄准、小孔成像。
26.光的反射定律:
(1)反射光线、入射光线、法线在同一平面内;
(2)反射光线、入射光线分居法线两侧;
(3)反射角等于入射角;
(4)在反射现象中,光路是可逆的。
27.光的反射分镜面反射和漫反射两类
28.平面镜成像特点:像与物体大小相同;像与物体到平面镜的距离相等;平面镜所成像的是虚像。
29.光的折射规律:光从空气斜射入水或其它介质中时,折射光线向法线方向偏折;在光的折射现象中,光路是可逆的。(另:光从一种介质垂直射入另一种介质中时,传播方向不变。)
30.光的色散:白光是由红、橙、黄、绿、蓝、靛、紫七种色光组成的。
31.色光的三原色:红、绿、蓝
32.透明物体的颜色是由它透过的色光决定的;
不透明物体的颜色是由它反射的色光决定的。
33.看不见的光:
(1)红外线:主要作用是热作用――红外线烤箱、电视遥控
(2)紫外线:主要作用是化学作用――验钞、杀菌
5第五章 透镜及其应用
34.凸透镜对光线有会聚作用,凹透镜对光线有发散作用。
35.平行光通过透镜的光路图: 通过透镜的三种特殊光线:
36.凸透镜成像规律及应用:
(1)当u>2f时,成倒立、缩小的实像(照相机原理);
(2)当f
(3)当u
另:当u=2f 时成倒立、等大的实像;(可用来测焦距)
当u=f时无法成像。
37.一倍焦距分虚实,两倍焦距分大小;物近像远像变大,物远像近像变小。
38.老年人戴的老花镜是凸透镜,近视眼患者戴的近视眼镜是凹透镜。
6第六章 质量与密度
39.物体所含物质的多少叫质量,用m表示。物体的质量不随物体的形状、状态、位置、温度而改变,所以质量是物体本身的一种属性。质量的单位:千克(kg);常用单位:吨(t)、克(g)、毫克(mg)。1t=1000kg 1kg=1000g 1g=1000mg
40.同种物质的质量与体积成正比。
41.密度的计算公式:
42.用天平测出物体的质量,用量筒测出体积,用公式
计算出该物体的密度。
43.密度与温度:温度能改变物体的密度,一般物体都是在温度升高时体积膨胀,密度变小,即热胀冷缩。(水在4℃时密度最大,水在4℃以下是热缩冷胀。)
44.密度与物质鉴别:不同物质的'密度一般不同,通过测量物质的密度可以鉴别物质。
7第七章 力
45.力的作用效果:
(1)力可以改变物体的运动状态;
(2)力可以使物体发生形变。
46.力的三要素:力的大小、方向、作用点。
47.力是物体对物体的作用,物体间力的作用是相互的。
48.弹簧测力计的制作原理:在弹性限度内,弹簧的伸长量与所受的拉力成正比。
49.重力:G=mg(重力的方向:竖直向下)物体所受的重力跟它的质量成正比。
8第八章 运动和力
50.牛顿第一定律:
一切物体在没有受到力的作用时,总保持静止状态或匀速直线运动状态。
51.二力平衡的条件:
(1)作用在同一个物体上;
(2)大小相等;
(3)方向相反;
(4)在同一条直线上。
52.平衡状态:
(1)静止
(2)匀速直线运动处于平衡状态的物体,一定受到平衡力的作用,且物体所受的合力一定为0 N。
53.影响摩擦力大小的因素:
(1)压力大小
(2)接触面的粗糙程度
9第九章 压强
54.影响压力作用效果的因素:(1)压力大小 (2)受力面积大小
55.压强的计算公式:
56.液体压强的特点:
(1)液体内部朝各个方向都有压强;
(2)在同一深度液体向各个方向的压强相等;
(3)在同种液体中,深度越深,液体压强越大;
(4)在深度相同时,液体的密度越大,液体压强越大。
57.液体压强的计算:P=ρgh
液体的压强只与液体的密度和浸入液体的深度有关。
58.证实大气压存在的实验:马德堡半球实验。
测定大气压值的实验是:托里拆利实验。
1标准大气压为760mmHg,即1.013×105Pa 。
59.大气压与海拔高度的关系:大气压随高度的增加而减小。
60.流体压强与流速的关系:在气体和液体中,流速越大的位置压强越小。
第十章 浮力
61.浮力产生的原因:浮力是由液体(或气体)对物体向上和向下的压力差产生的。
浮力的方向:竖直向上。
62.阿基米德原理:浸在液体中的物体所受的浮力,大小等于它排开液体所受的重力。即F浮=G排=ρ液gV排。 注意:浸在液体中的物体所受的浮力只与液体的密度和排开液体的体积有关;浸没在液体中的物体所受的浮力与浸没的深度无关。
63.轮船是利用漂浮的条件F浮=G物来工作的。
潜水艇是靠改变自身重力来实现上浮和下沉的。
64.求浮力的几种方法:
(1) 称重法: F浮=G-F拉
(2) 压力差法:F浮=F向上-F向下
(3) 阿基米德原理法:F浮=ρ液gV排
(4) 漂浮或悬浮法:F浮=G物
11第十一章 功和机械能
65.功的两个要素:
(1)作用在物体上的力;
(2)物体在这个力的方向上移动的距离。
66.功的计算:W=FS
67.功的原理:使用任何机械都不省功。
68.功率的计算:
( W=Pt )功率的推导公式:P=Fv
69.物体由于运动而具有的能量叫动能,动能的大小与物体的质量和物体运动的速度有关,且运动速度对动能的影响较大。
70.物体由于高度所具有的能量叫重力势能,重力势能的大小与物体的质量和物体被举起的高度有关。
71.物体由于发生弹性形变而具有的能量叫弹性势能,弹性势能的大小与物体发生弹性形变的程度和物体的材料、性质有关。
物理知识点总结9
一、牛顿第一定律
1、伽利略斜面实验:
⑴三次实验小车都从斜面顶端滑下的目的是:保证小车开始沿着平面运动的速度相同。
⑵实验得出得结论:在同样条件下,平面越光滑,小车前进地越远。
⑶伽利略的推论是:在理想情况下,如果表面绝对光滑,物体将以恒定不变的速度永远运动下去。
⑷伽科略斜面实验的卓越之处不是实验本身,而是实验所使用的独特方法——在实验的基础上,进行理想化推理。(也称作理想化实验)它标志着物理学的真正开端。
2、牛顿第一定律:
⑴牛顿总结了伽利略、笛卡儿等人的研究成果,得出了牛顿第一定律,其内容是:一切物体在没有受到力的作用的时候,总保持静止状态或匀速直线运动状态。
⑵说明:
A、牛顿第一定律是在大量经验事实的基础上,通过进一步推理而概括出来的,且经受住了实践的检验所以已成为大家公认的力学基本定律之一。但是我们周围不受力是不可能的,因此不可能用实验来直接证明牛顿第一定律。
B、牛顿第一定律的内涵:物体不受力,原来静止的物体将保持静止状态,原来运动的物体,不管原来做什么运动,物体都将做匀速直线运动.
C、牛顿第一定律告诉我们:物体做匀速直线运动可以不需要力,即力与运动状态无关,所以力不是产生或维持运动的原因。
3、惯性:
⑴定义:物体保持运动状态不变的性质叫惯性。
⑵说明:惯性是物体的'一种属性。一切物体在任何情况下都有惯性,惯性大小只与物体的质量有关,与物体是否受力、受力大小、是否运动、运动速度等皆无关。
4、惯性与惯性定律的区别:
A、惯性是物体本身的一种属性,而惯性定律是物体不受力时遵循的运动规律。
B、任何物体在任何情况下都有惯性,(即不管物体受不受力、受平衡力还是非平衡力),物体受非平衡力时,惯性表现为“阻碍”运动状态的变化;惯性定律成立是有条件的。
☆人们有时要利用惯性,有时要防止惯性带来的危害,请就以上两点各举两例(不要求解释)。答:利用:跳远运动员的助跑;用力可以将石头甩出很远;骑自行车蹬几下后可以让它滑行。防止:小型客车前排乘客要系安全带;车辆行使要保持距离;包装玻璃制品要垫上很厚的泡沫塑料。
二、二力平衡:
1、定义:物体在受到两个力的作用时,如果能保持静止状态或匀速直线运动状态称二力平衡。
2、二力平衡条件:二力作用在同一物体上、大小相等、方向相反、两个力在一条直线上
概括:二力平衡条件用四字概括“一、等、反、一”。
3、平衡力与相互作用力比较:
相同点:①大小相等②方向相反③作用在一条直线上不同点:平衡力作用在一个物体上可以是不同性质的力;相互力作用在不同物体上是相同性质的力。
4、力和运动状态的关系:
物体受力条件物体运动状态说明
力不是产生(维持)运动的原因
受非平衡力
合力不为0
力是改变物体运动状态的原因
5、应用:应用二力平衡条件解题要画出物体受力示意图。
画图时注意:①先画重力然后看物体与那些物体接触,就可能受到这些物体的作用力②画图时还要考虑物体运动状态。
三、摩擦力:
1、定义:两个互相接触的物体,当它们要发生或已发生相对运动时,就会在接触面上产生一种阻碍相对运动的力就叫摩擦力。
2、分类:
3、摩擦力的方向:摩擦力的方向与物体相对运动的方向相反,有时起阻力作用,有时起动力作用。
4、静摩擦力大小应通过受力分析,结合二力平衡求得
5、在相同条件(压力、接触面粗糙程度相同)下,滚动摩擦比滑动摩擦小得多。
6、滑动摩擦力:
⑴测量原理:二力平衡条件
⑵测量方法:把木块放在水平长木板上,用弹簧测力计水平拉木块,使木块匀速运动,读出这时的拉力就等于滑动摩擦力的大小。
⑶结论:接触面粗糙程度相同时,压力越大滑动摩擦力越大;压力相同时,接触面越粗糙滑动摩擦力越大。该研究采用了控制变量法。由前两结论可概括为:滑动摩擦力的大小与压力大小和接触面的粗糙程度有关。实验还可研究滑动摩擦力的大小与接触面大小、运动速度大小等无关。
7、应用:
⑴理论上增大摩擦力的方法有:增大压力、接触面变粗糙、变滚动为滑动。
⑵理论上减小摩擦的方法有:减小压力、使接触面变光滑、变滑动为滚动(滚动轴承)、使接触面彼此分开(加润滑油、气垫、磁悬浮)。
练习:火箭将飞船送入太空,从能量转化的角度来看,是化学能转化为机械能太空飞船在太空中遨游,它受力(“受力”或“不受力”的作用,判断依据是:飞船的运动不是做匀速直线运动。飞船实验室中能使用的仪器是B (A密度计、B温度计、C水银气压计、D天平)。
物理知识点总结10
第一章 声现象知识归纳
1.声音的发生:由物体的振动而产生。振动停止,发声也停止。
2.声音的传播:声音靠介质传播。真空不能传声。通常我们听到的声音是靠空气传来的。
3.声速:在空气中传播速度是:340米/秒。声音在固体传播比液体快,而在液体传播又比空气体快。
4.利用回声可测距离:
5.乐音的三个特征:音调、响度、音色。(1)音调:是指声音的高低,它与发声体的频率有关系。(2)响度:是指声音的大小,跟发声体的振幅、声源与听者的距离有关系。
6.减弱噪声的途径:(1)在声源处减弱;(2)在传播过程中减弱;(3)在人耳处减弱。
7.可听声:频率在20Hz~20000Hz之间的声波:超声波:频率高于20000Hz的声波;次声波:频率低于20Hz的声波。
8. 超声波特点:方向性好、穿透能力强、声能较集中。具体应用有:声呐、B超、超声波速度测定器、超声波清洗器、超声波焊接器等。
9.次声波的特点:可以传播很远,很容易绕过障碍物,而且无孔不入。一定强度的次声波对人体会造成危害,甚至毁坏机械建筑等。它主要产生于自然界中的火山爆发、海啸地震等,另外人类制造的火箭发射、飞机飞行、火车汽车的奔驰、核爆炸等也能产生次声波。
第二章 光现象知识归纳
1.光源:自身能够发光的物体叫光源。
2.太阳光是由红、橙、黄、绿、蓝、靛、紫组成的。
3.光的三原色是:红、绿、蓝;颜料的三原色是:红、黄、蓝。
4.不可见光包括有:红外线和紫外线。特点:红外线能使被照射的物体发热,具有热效应(如太阳的热就是以红外线传送到地球上的);紫外线最显著的性质是能使荧光物质发光,另外还可以灭菌 。
5.光的直线传播:光在均匀介质中是沿直线传播。
6.光在真空中传播速度最大,是3×108米/秒,而在空气中传播速度也认为是3×108米/秒。
7.我们能看到不发光的物体是因为这些物体反射的光射入了我们的眼睛。
8.光的反射定律:反射光线与入射光线、法线在同一平面上,反射光线与入射光线分居法线两侧,反射角等于入射角。(注:光路是可逆的)
9.漫反射和镜面反射一样遵循光的反射定律。
10.平面镜成像特点:(1) 平面镜成的是虚像;(2) 像与物体大小相等;(3)像与物体到镜面的距离相等;(4)像与物体的连线与镜面垂直。另外,平面镜里成的像与物体左右倒置。
11.平面镜应用:(1)成像;(2)改变光路。
12.平面镜在生活中使用不当会造成光污染。
球面镜包括凸面镜(凸镜)和凹面镜(凹镜),它们都能成像。具体应用有:车辆的后视镜、商场中的反光镜是凸面镜;手电筒的反光罩、太阳灶、医术戴在眼睛上的反光镜是凹面镜。
光的折射:光从一种介质斜射入另一种介质时,传播方向一般发生变化的现象。
光的折射规律:光从空气斜射入水或其他介质,折射光线与入射光线、法线在同一平面上;折射光线和入射光线分居法线两侧,折射角小于入射角;入射角增大时,折射角也随着增大;当光线垂直射向介质表面时,传播方向不改变。(折射光路也是可逆的)
第三章 透镜知识归纳
1.凸透镜:中间厚边缘薄的透镜,它对光线有会聚作用,所以也叫会聚透镜。
2.凸透镜成像的应用:
照相机:原理;成倒立、缩小的实像,u>2f
幻灯机:原理、成倒立、放大的实像,f
放大镜:原理、成放大、正立的虚像,u 3.关于实像与虚像的区别: 物点发出的光线经反射或折射后能够会聚到一点,这一点就是物点的实像。实像是实际光线会聚而成,不仅可以用眼睛直接观察,也可以在屏幕上显映出来。 如果物点发出的光线经反射或折射后发散,发散光线的反向延长相交于一点,看起来光线好像从这一点发出,而实际上不存在这样一个发光点,这点就是物点的虚像。虚像只能用眼睛观察,不能用屏幕显映。 跟物体相比较,实像是倒立的.,虚像是正立的。 4.凸透镜成像的规律及应用: u——物距、v——像距、f——焦距。 5.凸透镜成像的作图: (1)物体在二倍焦距以外(u>2f),成倒立、缩小的实像(像距:f (2)物体在焦距和二倍焦距之间(f2f)。如幻灯机。 (3)物体在焦距之内(u 6.凸透镜成像的动态情景: ①当物体从二倍焦距以外的地方逐渐向凸透镜移近过程中,像逐渐变大,像距v也逐渐变大。但是,只要物体未到达二倍焦距点时,像的大小比物体要小;像的位置总在镜的另一侧一倍焦距至二倍焦距之间。 ②当物体到达二倍焦距之内逐渐向一倍焦距点移动过程中,像变大,像距v也变大。像的大小总比物体要大,像的位置总在镜的另一侧二倍焦距以外。 ③可见,二倍焦距点是凸透镜成缩小实像与放大实像的分界点。即物体在二倍焦距以外时所成实像小于物体;物体在二倍焦距以内时所成实像要大于物体。 ④当物体在一倍焦距以内时,只能在与物体同侧的地方得到正立放大的虚像。因此,焦点F是凸透镜成实像与虚像的分界点。 7.作光路图注意事项: (1)要借助工具作图;(2)是实际光线画实线,不是实际光线画虚线;(3)光线要带箭头,光线与光线之间要连接好,不要断开;(4)作光的反射或折射光路图时,应先在入射点作出法线(虚线),然后根据反射角与入射角或折射角与入射角的关系作出光线;(5)光发生折射时,处于空气中的那个角较大;(6)平行主光轴的光线经凹透镜发散后的光线的反向延长线一定相交在虚焦点上;(7)平面镜成像时,反射光线的反向延长线一定经过镜后的像;(8)画透镜时,一定要在透镜内画上斜线作阴影表示实心。 8.与光的反射、折射现象相联系的光学器件及应用: 9.人的眼睛像一架神奇的照相机,晶状体相当于照相机的镜头透镜),视网膜相当于照相机内的胶片。 10.近视眼看不清远处的景物,需要配戴凹透镜;远视眼看不清近处的景物,需要配戴凸透镜。 11.望远镜能使远处的物体在近处成像,其中伽利略望远镜目镜是凹透镜,物镜是凸透镜;开普勒望远镜目镜物镜都是凸透镜(物镜焦距长,目镜焦距短)。 12.显微镜的目镜物镜也都是凸透镜(物镜焦距短,目镜焦距长)。 第四章 物态变化知识归纳 1.温度:是指物体的冷热程度。测量的工具是温度计, 温度计是根据液体的热胀冷缩的原理制成的。 2.摄氏温度(℃):单位是摄氏度。1摄氏度的规定:把冰水混合物温度规定为0度,把一标准大气压下沸水的温度规定为100度,在0度和100度之间分成100等分,每一等分为1℃。 3.常见的温度计有(1)实验室用温度计;(2)体温计;(3)寒暑表。 体温计:测量范围是35℃至42℃,每一小格是0.1℃。 4.温度计使用:(1)使用前应观察它的量程和最小刻度值;(2)使用时温度计玻璃泡要全部浸入被测液体中,不要碰到容器底或容器壁;(3)待温度计示数稳定后再读数;(4)读数时玻璃泡要继续留在被测液体中,视线与温度计中液柱的上表面相平。 5.固体、液体、气体是物质存在的三种状态。 6.熔化:物质从固态变成液态的过程叫熔化。要吸热。 7.凝固:物质从液态变成固态的过程叫凝固。要放热. 8.熔点和凝固点:晶体熔化时保持不变的温度叫熔点;。晶体凝固时保持不变的温度叫凝固点。晶体的熔点和凝固点相同。 9.晶体和非晶体的重要区别:晶体都有一定的熔化温度(即熔点),而非晶体没有熔点。 10.熔化和凝固曲线图: 11.(晶体熔化和凝固曲线图) (非晶体熔化曲线图) 12.上图中AD是晶体熔化曲线图,晶体在AB段处于固态,在BC段是熔化过程,吸热,但温度不变,处于固液共存状态,CD段处于液态;而DG是晶体凝固曲线图,DE段于液态,EF段落是凝固过程,放热,温度不变,处于固液共存状态,FG处于固态。 13.汽化:物质从液态变为气态的过程叫汽化,汽化的方式有蒸发和沸腾。都要吸热。 14.蒸发:是在任何温度下,且只在液体表面发生的,缓慢的汽化现象。 15.沸腾:是在一定温度(沸点)下,在液体内部和表面同时发生的剧烈的汽化现象。液体沸腾时要吸热,但温度保持不变,这个温度叫沸点。 16.影响液体蒸发快慢的因素:(1)液体温度;(2)液体表面积;(3)液面上方空气流动快慢。 17.液化:物质从气态变成液态的过程叫液化,液化要放热。使气体液化的方法有:降低温度和压缩体积。(液化现象如:“白气”、雾、等) 18.升华和凝华:物质从固态直接变成气态叫升华,要吸热;而物质从气态直接变成固态叫凝华,要放热。 19.水循环:自然界中的水不停地运动、变化着,构成了一个巨大的水循环系统。水的循环伴随着能量的转移。 第五章 电流和电路知识归纳 1.电源:能提供持续电流(或电压)的装置。 2.电源是把其他形式的能转化为电能。如干电池是把化学能转化为电能。发电机则由机械能转化为电能。 3.有持续电流的条件:必须有电源和电路闭合。 4.导体:容易导电的物体叫导体。如:金属,人体,大地,酸、碱、盐的水溶液等。 5.绝缘体:不容易导电的物体叫绝缘体。如:橡胶,玻璃,陶瓷,塑料,油,纯水等。 6.电路组成:由电源、导线、开关和用电器组成。 7.电路有三种状态:(1)通路:接通的电路叫通路;(2)断路:断开的电路叫开路;(3)短路:直接把导线接在电源两极上的电路叫短路。 8.电路图:用符号表示电路连接的图叫电路图。 9.串联:把电路元件逐个顺次连接起来的电路,叫串联。(电路中任意一处断开,电路中都没有电流通过) 10.并联:把电路元件并列地连接起来的电路,叫并联。(并联电路中各个支路是互不影响的) 11.电流的大小用电流强度(简称电流)表示。 12.电流I的单位是:国际单位是:安培(A);常用单位是:毫安(mA)、微安(A)。1安培=103毫安=106微安。 13.测量电流的仪表是:电流表,它的使用规则是:①电流表要串联在电路中;②接线柱的接法要正确,使电流从“+”接线柱入,从“-”接线柱出;③被测电流不要超过电流表的量程;④绝对不允许不经过用电器而把电流表连到电源的两极上。 14.实验室中常用的电流表有两个量程:①0~0.6安,每小格表示的电流值是0.02安;②0~3安,每小格表示的电流值是0.1安。 一、能量量子化 1、量子理论的建立:1900年德国物理学家普朗克提出振动着的带电微粒的能量只能是某个最小能量值ε的整数倍,这个不可再分的能量值ε叫做能量子 ε=hν h为普朗克常数(6.63×10-34J.S) 2、黑体:如果某种物体能够完全吸收入射的各种波长电磁波而不发生反射,这种物体就是绝对黑体,简称黑体。 3、黑体辐射:黑体辐射的规律为:温度越高各种波长的辐射强度都增加,同时,辐射强度的极大值向波长较短的方向移动。(普朗克的能量子理论很好的解释了这一现象) 二、科学的转折光的粒子性 1、光电效应(表明光子具有能量) (1)光的电磁说使光的波动理论发展到相当完美的地步,但是它并不能解释光电效应的现象。在光(包括不可见光)的照射下从物体发射出电子的现象叫做光电效应,发射出来的电子叫光电子。(实验图在课本) (2)光电效应的研究结果: 新教材: ①存在饱和电流,这表明入射光越强,单位时间内发射的光电子数越多; ②存在遏止电压; ③截止频率:光电子的能量与入射光的频率有关,而与入射光的强弱无关,当入射光的频率低于截止频率时不能发生光电效应; ④效应具有瞬时性:光电子的发射几乎是瞬时的,一般不超过10-9s。 老教材: ①任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频率,才能产生光电效应;低于这个频率的.光不能产生光电效应; ②光电子的初动能与入射光的强度无关,只随着入射光频率的增大而增大; ③入射光照到金属上时,光电子的发射几乎是瞬时的,一般不超过10-9s; ④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。 (3)光电管的玻璃泡的内半壁涂有碱金属作为阴极K(与电源负极相连),是因为碱金属有较小的逸出功。 2、光子说: 光本身就是由一个个不可分割的能量子组成的,频率为ν的光的能量子为hν。这些能量子被成为光子。 3、光电效应方程: EK=h-WO (掌握Ek/Uc—ν图象的物理意义)同时,h截止=WO(Ek是光电子的初动能;W是逸出功,即从金属表面直接飞出的光电子克服正电荷引力所做的功。) 1.物理学习中已经学习过机械效率、炉子效率等效率问题,所谓效率是指有效利用部分占总体中的比值。热机是利用燃料燃烧产生的内能做功的装置,用来做有用功的部分能量与燃料完全燃烧放出的能量之比叫热机的效率。 2.由于燃气的内能一部分被排出的废气带走,一部分由于机器散热而损失,还有一部分用来克服摩擦等机械损失,用于做有用功的部分在总体中的比例不可能达到IO0%,一般情况下:蒸汽机效率6%~15%,汽油机的效率20~30%,柴油机的效率30%~45%。 3.热机效率是热机性能的重要指标,人们在技术上不断改进,减小各种损耗,提高效率。在热机的各种损失中,废气带走的能量在总体中所占比例,对这部分余热的利用是提高热机效率的主要途径。热电站就是利用发电厂废气余热来供热,既供电,又供热,使燃料的各种利用率大大提高。 核心知识 热机效率比较低,说明热机中燃料完全燃烧放出的能量中用来做有用功的部分比较少,即热机工作过程中损失的能量比较多,归纳起来有如下原因: 第一,燃料并未完全燃烧,使一部分能量白白损失掉,例如从汽车排出的气体中我们可以嗅到汽油的味道,这说明汽油机中的汽油未完全燃烧; 第二,热机工作的排气冲程要将废气排出,而排出的气体中还具有内能,另外气缸壁等也会传走一部分内能; 第三,由于热机的各部分零件之间有摩擦,需要克服摩擦做功而消耗部分能量; 第四,曲轴获得的机械能也未完全用来对外做功,而有一部分传给飞轮以维持其继续转动,这部分虽然是机械能,但不能称之为有用功。 据上所述,热机中能量损失的原因这么多,所以热机效率一般都比较低。 提高热机效率的途径 根据前面所归纳的损失能量的几个原因,我们只要有针对性地将各种损失的部分尽可能减小,便可使效率提高。 (1)改善燃烧环境,调节油、气比例等使燃料尽可能完全燃烧; (2)减小各部分之间的摩擦以减小磨擦生热的损耗; (3)充分利用废气的能量,提高燃料的利用率,如利用热电站废气来供热。这种既供电又供热的热电站,比起一般火电站,燃料的利用率大大提高。 物理学习方法 基本概念要清楚,基本规律要熟悉,基本方法要熟练。 关于基本概念,举例子:速率。它有两个意思:一是表示速度的大小;二是表示路程与时间的比值(如在匀速圆周运动中),而速度是位移与时间的比值(指在匀速直线运动中)。关于基本规律,比如说平均速度的计算公式有两个经常用到V=s/t、V=(vo+vt)/2。前者是定义式,适用于任何情况,后者是导出式,只适用于做匀变速直线运动的情况。 要清楚基本概念,首先,反复看课本。这一步是至关重要的,几乎所有的尖子生都有如此的体会。课本是最好的老师。 很多同学会说:“课本那么简单,而考试又那么难,看它有用吗?”这种想法很不对。其实据我了解,但凡物理成绩不好或平庸者,都是基础知识不牢。他们自以为学好了,但实际上却没有理解好那些最基本的概念、定理。不信的话,你可以翻开课本目录,一节一节地仔细回想相关的内容,这个时候你就会明白你的不懂之处在哪里。对于一个物理概念,你要从深层次地去理解它。 比方说,两个小球相撞,你从中能想到什么?动量方面有什么问题?能量方面有什么问题?――并不是非得做题目时才想这些问题。这些问题看似简单,但仔细一想却可以想出很多问题来;并且,这类简单小问题就是亿万考题之根源。 其次,做一些简单的题目。这第二步和第一步一样,被许多人瞧不起。 他们可能认为做那些简单的题目是降低了他们的身份,抑或他们忙着做难题,没“功夫”去做简单题。何谓“简单的题目”?就是那些直接考察基本定义、定理的题目,比如课本上的习题和稍微复杂点的题目。 做这些题目,目的并不是正确的答案,而是吃透这道题,从简单题目中联想出一些东西。一些所谓的难题,其实就是由几个简单题目组合而成。 然后,多看参考书上的例题,做一些中等难度的常规题目。我个人最喜欢看参考书上的例题,因为题量少,并且很典型,解答也很规范。课后,做几道中等题目实践实践,效果往往很好――不求多,几道足矣。还是老话,做完后好好回想回想,记笔记。 物理学习技巧 一、不要“题海”,要有题量 谈到解题必然会联系到题量。因为,同一个问题可从不同方面给予辨析理解,或者同一个问题设置不同的陷阱,这样就得有较多的题目。从不同角度、不同层次来体现教与学的测试要求,因而有一定的题目必是习以为常,我们也只有解答多方面的题,才得以消化和巩固基础知识。那做多了题就一定会陷入“题海”吗?我们的回答是否定的。 对于缺乏基本要求,思维跳跃性大,质量低劣,几乎类同题目重复出现,造成学生机械模仿,思维僵化,用定势思维解题,这才是误入“题海”。至于富有启发性、思考性、灵活性的题,百解不厌,真是一种学习享受。这样的题解得越多,收获越大。解题多了,并不就一定加重学生负担,只有那些脱离学习对象实际,超过学生的承受能力的,才会加重他们的负担。虽然题目不多,但积重难返,犹如陷入题海。所以,为了提高学习成绩和质量,离不开解题,而且要有一定的题量给予保证,并以真正理解熟练掌握为题量的下限。 二、不求模型,要求思考 教学有法,教无定法。同样的道理,解题有法,但无定法。所以,我们不能用通用模型的方法解多种不同的题。首先,文理科的思维特点有差异,文科侧重理性思维,而理科侧重逻辑思维。数学偏重图文与函数关系的分析推导,而物理突出具体问题高度概括,抽象出物理模型。 其次,解题方法也是随题而变,不同题目的`解题方法一般是不同的,不太可能用一成不变的方法统揽,或者用几种既定模型搞定。再者,题目是千变万化的。尽管解题要经历审题(理解题意),解题(具体过程),答题(说明结果)几个环节,但解题的方法是灵活的,因题而变。可能是简单的,也可能是复杂的;可能是基本的方法,也可能是巧妙方法或综合方法的适用。 因此,我们不能盲目地迷信某种模型解题,它会束缚你发散探索的思路,只能让你走进机械模仿,死记硬背的死胡同。提倡独立思考,重在方法的迁移和变通,具体问题具体分析。是什么就什么,该用什么就用什么的理念解每道题,以不变应万变。提高解题的应变能力,使自己的脑子真正活起来,通过解题获得成就感。 三、不贪难题,要抓“双基” 题目有难易度之分。我们解怎样的题更有助于理解知识,掌握方法,提高能力?应该以解中档题为主,这种题含有基础性要求,同时又有能力提升的空间。也就是说解这类题能驾驭自如,那么,面对有难度的题也不会一筹莫展,或胆怯退缩。现在,相当一部分学生好高骛远,热衷于做难题。贪大求难,但往往受挫,久而久之消磨了意志,望题生威。究其原因,底气不足,还未到火候。要知道,所谓的难题就是综合的知识点多,需要统筹的方法多,设置的情景新颖,问题的过程复杂,实际应用强。 但是,我们只要认真解剖,分立而治,分析背景,提取信息,善于转化,复杂问题得到简化。再则,再难的综合试题往往设置了由易到难的思维能力梯度,使你逐级往上,不是压根儿全然无知。因此,我们解题不必总觅难题。要抓基础题和中档题,逐步修炼,增强正确解题的自信心。 功、功率、机械能和能源 1.做功两要素:力和物体在力的方向上发生位移 2.功:功是标量,只有大小,没有方向,但有正功和负功之分,单位为焦耳(J) 3.物体做正功负功问题(将α理解为F与V所成的角,更为简单) (1)当α=90度时,W=0.这表示力F的方向跟位移的方向垂直时,力F不做功, 如小球在水平桌面上滚动,桌面对球的支持力不做功。 (2)当α<90度时,cosα>0,W>0.这表示力F对物体做正功。 如人用力推车前进时,人的推力F对车做正功。 (3)当α大于90度小于等于180度时,cosα<0,W<0.这表示力F对物体做负功。 如人用力阻碍车前进时,人的推力F对车做负功。 一个力对物体做负功,经常说成物体克服这个力做功(取绝对值)。 例如,竖直向上抛出的球,在向上运动的过程中,重力对球做了-6J的功,可以说成球克服重力做了6J的功。说了“克服”,就不能再说做了负功 4.动能是标量,只有大小,没有方向。表达式 5.重力势能是标量,表达式 (1)重力势能具有相对性,是相对于选取的参考面而言的。因此在计算重力势能时,应该明确选取零势面。 (2)重力势能可正可负,在零势面上方重力势能为正值,在零势面下方重力势能为负值。 6.动能定理: W为外力对物体所做的总功,m为物体质量,v为末速度,为初速度 解答思路: ①选取研究对象,明确它的运动过程。 ②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和。 ③明确物体在过程始末状态的动能和。 ④列出动能定理的方程。 7.机械能守恒定律:(只有重力或弹力做功,没有任何外力做功。) 解题思路: ①选取研究对象----物体系或物体 ②根据研究对象所经历的'物理过程,进行受力,做功分析,判断机械能是否守恒。 ③恰当地选取参考平面,确定研究对象在过程的初、末态时的机械能。 ④根据机械能守恒定律列方程,进行求解。 8.功率的表达式:,或者P=FV功率:描述力对物体做功快慢;是标量,有正负 9.额定功率指机器正常工作时的最大输出功率,也就是机器铭牌上的标称值。 实际功率是指机器工作中实际输出的功率。机器不一定都在额定功率下工作。实际功率总是小于或等于额定功率。 10、能量守恒定律及能量耗散 一、力学 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。 同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 4、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。 5、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。 6、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。 7、17世纪,德国天文学家开普勒提出开普勒三大定律; 8、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量; 9、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。10、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同; 俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。 11、1957年10月,苏联发射第一颗人造地球卫星; 1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。 二、电磁学 12、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律库仑定律,并测出了静电力常量k的值。 13、16世纪末,英国人吉伯第一个研究了摩擦是物体带电的现象。18世纪中叶,美国人富兰克林提出了正、负电荷的概念。 1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。 14、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。 15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。16、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。 17、1911年,荷兰科学家昂纳斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象超导现象。 18、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳定律。19、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。 20、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的.方向。 21、荷兰物理学家洛伦兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛伦兹力)的观点。 22、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。23、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。(最大动能仅取决于磁场和D形盒直径,带电粒子圆周运动周期与高频电源的周期相同)24、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律电磁感应定律。 25、1834年,俄国物理学家楞次发表确定感应电流方向的定律楞次定律。 26、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一。 三、热学 27、1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象布朗运动。 28、1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。29、1848年开尔文提出热力学温标,指出绝对零度是温度的下限。 30、19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律。 21、1642年,科学家托里拆利提出大气会产生压强,并测定了大气压强的值。四年后,帕斯卡的研究表明,大气压随高度增加而减小。 1654年,为了证实大气压的存在,德国的马德堡市做了一个轰动一时的实验马德堡半球实验。 四、波动学 22、17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。23、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律惠更斯原理。24、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象多普勒效应。 五、光学 25、1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律折射定律。26、1801年,英国物理学家托马斯?杨成功地观察到了光的干涉现象。 27、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射泊松亮斑。28、1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。 29、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。30、1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。 31、1800年,英国物理学家赫歇耳发现红外线;1801年,德国物理学家里特发现紫外线; 1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。 32、激光被誉为20世纪的“世纪之光”。 六、波粒二象性 33、1900年,德国物理学家普朗克为解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的(电磁波的发射和吸收不是连续的),而是一份一份的,每一份就是一个最小的能量单位,即能量子E=hν,把物理学带进了量子世界; 受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。 34、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时康普顿效应,证实了光的粒子性。 35、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,最先得出氢原子能级表达式,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。 36、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律巴耳末系。37、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。 七、相对论 38、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验相对论(高速运动世界),②热辐射实验量子论(微观世界); 39、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。 40、1905年,爱因斯坦提出了狭义相对论,有两条基本原理: ①相对性原理不同的惯性参考系中,一切物理规律都是相同的; ②光速不变原理不同的惯性参考系中,光在真空中的速度一定是c不变。狭义相对论的其他结论: ①时间和空间的相对性长度收缩和动钟变慢(或时间膨胀) ②相对论速度叠加:光速不变,与光源速度无关;一切运动物体的速度不能超过光速,即光速是物质运动速度的极限。 ③相对论质量:物体运动时的质量大于静止时的质量。 41、爱因斯坦还提出了相对论中的一个重要结论质能方程式:E=mc2。 八、原子物理学 42、1858年,德国科学家普吕克尔发现了一种奇妙的射线阴极射线(高速运动的电子流)。43、1897年,汤姆生利用阴极射线管发现了电子,指出阴极射线是高速运动的电子流。说明原子可分,有复杂内部结构,并提出原子的枣糕模型。1906年,获得诺贝尔物理学奖。44、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10-15m。 45、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。46、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,并预言原子核内还有另一种粒子中子。47、1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。48、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。 49、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素钋(Po)镭(Ra)。 50、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。 51、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。 52、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。 53、粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;轻子-不参与强相互作用的粒子,如:电子、中微子; 强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子。 《电压电阻》 一、电压 电压:一段电路中产生电流,它的两端就要有电压(电压是使电路中的自由电荷发生定向移动形成电流的原因)。电源提供电压,电压形成电流。电压物理量的符号:U。 单位:伏(V)、千伏(kV)、毫伏(mV)、微伏(μV)。1kV=10V;1V=10mV;1mV=10μV.常见电压值:干电池:1.5V;家庭电路:220V;手机:3.6V;铅蓄电池:2V;安全电压:不高于36V。电压表:测量电压(分析电路时,电压表所在的位置相当于断路)。量程:0-3V(大格:1V,小格:0.1V) 333 0-15V(大格:5V,小格:0.5V)。 使用:1、电压表要并联在电路中;2、电流要从“+”接线柱流入,从“”接线柱流出;3、不要超过电压表的量程。(用大量程试触,不超小量程,用小量程测量) 二、探究串、并联电路的电压的规律 电池的串联:串联电池组的电压等于各节电池的电压之和。电池的并联:并联电池组的电压等于每节电池的电压。串联电路的电压:串联电路中,各部分电路的电压之和等于总电压。并联电路的电压:并联电路中,各支路两端的电压相等。 电池的能量转化:化学能转化为电能。(化学电池) 三、电阻 电阻:表示导体对电流阻碍作用的大小。(导体对电流的.阻碍作用越大,电阻就越大,通过导体的电流就越小)。物理量符号:R 单位:欧姆(Ω);常用的单位有:兆欧(MΩ)、千欧(KΩ)。1MΩ=10KΩ;1KΩ=10Ω。 决定电阻大小的因素:导体的电阻是导体本身的一种性质,它的大小决定于导体的材料、长度、横截面积和温度 控制变量法:物理中对于多个因素(多变量)的问题,常常采用控制因素(变量)的办法,把多因素的问题变成多个单因素的问题,分别加以研究,最后再综合解决,这种方法叫控制变量法。 33 四、变阻器 滑动变阻器:结构:(电阻丝、绝缘管、滑片、接线柱等) 原理::改变连入电路中电阻线的长度来改变电阻,从而改变电路中的电流的。作用:改变电路中的电流和电压;对电路起保护作用。 铭牌:例如一个滑动变阻器标有“50Ω2A”表示的意义是:最大阻值是50Ω,允许通过的最大电流是2A。 正确使用:(1)、应串联在电路中使用;(2)、接线要“一上一下”(不能同时用上面的两个接线柱【相当于导线】和同时用下面的两个接线柱【相当于一个定值电阻】;(3)、闭合开关前应把阻值调至最大的地方(电流最小的位置)【对电路起保护作用】 【物理知识点总结】相关文章: 初中物理知识点总结02-06 物理压强知识点总结10-14 初中物理知识点总结01-17 物理知识点总结(15篇)03-16 物理知识点总结15篇03-02 初中物理知识点总结(大全)10-28 人教版初中物理知识点总结10-28 初二物理知识点总结12-10 初三物理知识点总结12-12物理知识点总结11
物理知识点总结12
物理知识点总结13
物理知识点总结14
物理知识点总结15