近似数教案

时间:2023-02-27 18:49:51 教案大全 我要投稿

近似数教案

  作为一位杰出的老师,就有可能用到教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么问题来了,教案应该怎么写?以下是小编收集整理的近似数教案,仅供参考,欢迎大家阅读。

近似数教案

近似数教案1

  教学内容:

  教材P77—P80

  教学目的:

  1、结合现实素材让学生认识近似数,并能结合实际进行估计。

  2、通过教学活动培养学生的数感。

  3、知识与生活实际结合,让学生体会到近似数在生活中的作用和意义。

  教学重、难点:

  初步理解近似数的意义。

  教学过程:

  一、游戏引入:猜数:教师或学生悄悄指定一个4位数,学生猜猜是什么数。猜的'过程中提示学生所猜数是否与目标数接近,猜中为止。

  二、探究新知

  1、教学例8

  (1)出示主题图和近似数“约是1500人”。

  请猜猜育英小学的准确数是多少。

  猜中之后提问:你如何想到这个数的?

  (2)比较1500和1506两数

  指出:1506是一个准确数,1500是它的近似数,在不需要准确数据的情况下,选择一个近似数可方便记忆。

  (3)一个数的近似数不唯一

  出示主题图2“新长镇有9992人”

  9992的近似数有什么?

  同学们说的数哪个最接近9992?

  在不要求准确的情况下,你会选择哪个数来表示新长镇的人数?为什么?

  小结:一般情况下选择最接近的整十、整百、整千数,方便记忆。

  2、生活中的数学

  近似数的使用

  举例:二年级同学304人,可说大约300人。

  购物总价钱2998元,可说大约3000元。

  学生举例

  3、练习:P794、5、6

  三、课堂作业P808、9

  四、课后任务P807

  教学反思:

近似数教案2

  教学目的:

  ●使学生能够根据要求会用:“四舍五入”法保留一定的小数位数,求出一个小数的近似数。

  ●培养学生的类推能力,增进学生对数学的理解和应用数学的信心。

  教学重点:能正确的求一个小数的近似数。

  教学难点:怎样准确的求一个小数的近似数。

  教学过程:

  一、导入新课

  师:我们已经认识了小数,生活中有许多小数的信息,你收集到了吗?

  生:汇报,教师按准确数和近似数把学生提供的信息中的小数分成两种写在黑板上。

  师:谁注意到了老师为什么把同学提供的这些小数分成两种写在黑板上呢?(生通过观察回答)

  师:在实际生活中有时不必说出小数的准确数,只要说出它的近似数就可以了,同学们看一看自己收集到的信息中有这样的情况吗?(生汇报和小数近似数有关的信息。)

  师:听了同学们的汇报,你有什么感受呢?小数的近似数在生活中应用的这么广泛,怎么求一个小数的近似数呢?今天我们就来一起学习。师板书课题。

  1、把下面各数省略万后面的尾数,求出它们的近似数(卡片出示)

  986534 58741 31200

  50047 398010 14870

  2、下面的□里可以填上哪些数字?

  32□645≈32万 47□05≈47万

  学生填完后,说一说是怎么想的。

  [以上复习内容重点抓住了整数取近似值的方法让学生回忆练习,通过复习唤起学生印象,为求小数的近似值打下基础]

  二、探究新知

  我们学过求一个整数的近似数。在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了。如:如豆豆的身高0.984米,平常不需要说得那么精确,那么如何求一个小数的近似数呢?今天我们就来学习这一内容。

  师:豆豆的身高0.984米,我们一般怎么表述豆豆的身高?

  你是怎样得出豆豆身高的进似数的?

  师:你们能利用已有的知识来求出这个小数在不同情况下的近似数吗?

  生:自己练习在练习本上做一做,然后在小组内进行交流,看一看有没有争议的地方。并引导学生按顺序进行汇报。

  生:

  (1)学生汇报保留两位小数求近似数的思维过程,并再找一名同学进行汇报,加深对方法的理解。

  (2)保留一位小数,有争议吗?找同学汇报自己的想法。学生讨论近似数是1.0还是1。教师出示线段图,看一看给学生带来什么启示。

  引导学生小组讨论交流:使学生明确保留一位小数是1.0,原来的长度在0.95与1.04之间。保留整数为1,原来的准确长度在1.4与1.0之间,所以1.0比1精确的程度高一些。也就是小数保留的位数越多,精确的'程度越高。

  师:总结出尽管两个数的大小相等,但表示的精确程度不同,同学们认为哪个答案是正确的呢?求近似数时,小数末尾的零不能去掉。

  (3)保留整数部分应怎样思考,注意什么问题呢?

  师:请同学们回忆求0.984近似数的过程,你能发现求一个小数的近似数有什么共同的特点吗?同学们利用我们以前学过的知识也就是求整数近似数的方法,四舍五入的方法来求小数的近似数,希望同学在今后的学习中也能运用我们学过的知识来解决新的问题。下面我们就用这种方法来求课前同学们提供的这些小数的近似数。(保留到十分位)

  (4)小结:

  问:求一个小数的近似数应注意什么?

  引导学生讨论知道:求一个小数的近似数要注意两点:

  ①要根据题目的要求取近似值,如果保留整数,就看十分位是几;要保留一位小数,就看百分位是几;……然后按“四舍五入法”决定是舍还是入。

  ②取近似值时,在保留的小数位里,小数末一位或几位是0的.0应当保留,不能丢掉。

  三、练习

  (1)师:最后一个信息谁提供的,你能把这个信息用小数近似数的形式)表示出来吗?学生自己修改自己手中的信息,汇报后,再同桌之间交流。

  (2)师:老师也收集到了一些小数的信息,这些信息能用小数近似数的形式表述吗?能请你表示出来,不能,请说明理由)

  (3)师:同学们还记得自己的身高大约是多少吗?想知道老师的身高吗?教师提示:身高大约是1.6米,老师的实际身高是两位小数,猜一猜老师的实际身高是多少米?老师的身高是用四舍法得到的,再来猜一猜。

  (4)出示食物的价格,判断小明带12元钱够吗?学生自由发言,说明自己的理由。

  (5)出示租车说明,判断租多少辆车去出游?

  师:看来我们不仅要掌握求近似数的方法,还要灵活的运用所学的知识才能解决生活中的实际问题。

  四、全课小结:教师明确小数的近似数的方法与整数的近似数相似。要用“四舍五入”法保留小数位数。要注意保留小数位数越多,精确程度越高。

近似数教案3

  教学目标

  (一)教学知识点

  1、了解近似数的概念,并按要求取近似数

  2、体会近似数的意义及在生活中的作用

  (二)能力训练要求

  能根据实际问题的需要选取近似数,收集数据

  (三)情感与价值观要求

  进一步体会数学的应用价值,发展“用数学”的信心和能力

  教学重点

  1、体会和感受生活中的近似数和精确数,明白测量的结果都是近似数

  2、能按要求对一个数四舍五入取近似数

  教学难点

  合理地对一个数四舍五入取近似值

  教学方法

  实验——讲——练相结合

  通过测量实验体会生活中存在着近似数和精确数,经过讲解和练习能将一个数按要求取近似值

  教具准备

  1、收集不同形状的树叶制成标本

  2、最小单位是厘米的刻度尺和最小单位是毫米的刻度尺

  教学过程

  Ⅰ、创设情景,引入新课

  [师]在我们学习和生活中,经常会遇到一些数据。例如:

  (1)小明班上有45人;

  (2)吐鲁番盆地低于海平面155米;

  (3)某次地震中,伤亡10万人;

  (4)小红测得数学书的长度为21.0厘米

  而这些数据在收集的过程中,有些是精确的,而有些由于客观条件无法或难以得到精确数据或无需要得到精确数据而取了近似数

  凭你生活的经验,你能判断一下,哪些是精确数?哪些是近似数吗?

  [生]我认为第(1)个中的数据是精确的,而第(2)、(3)、(4)中的数据都是近似的

  [师]很好,下面我们接着来做一个实验,进一步体验近似数的意义和在生活中的作用、

  Ⅱ、引入新课,获得直观的体验

  1、实验——测得树叶的长度

  [师]同学们在下面收集了不少的树叶,把这些树叶制成标本的时候,要求必须在标本中注明每片树叶的长度,下面我们就以同桌为一小组,用你准备好的最小刻度是厘米和最小刻度是毫米的刻度尺测量你收集到的树叶的长度,并读取数据

  (教师可以让学生交流,讨论读取数据的方法,同时给予指导,让同学们体验到测量读取的数据是有误差的)

  [师]在同学们测量的过程中,同桌的小明和小颖用最小单位不同的刻度尺测量了同一片树叶的长度,如图3-1所示:

  图3-1

  (1)根据小明的测量方法,你能知道他用的刻度尺最小刻度是什么吗?这片树叶的长度约为多少?根据小颖的测量呢?

  (2)谁的测量结果更精确一些?说说你的理由

  [生]小明用的刻度尺最小单位是厘米,这片树叶的长度约为6.8厘米,其中6是精确的,8是估计的,即是近似的;小颖用的刻度尺最小单位是毫米,她测量的结果可以读成6.78厘米,其6和7都是精确的',而8是估计的,即是近似的

  [生]从刚才这位同学的分析,很容易看出小颖测量的结果要比小明的更精确一些

  [师]同学们分析得很精细,同桌的小明和小颖共收集了12片树叶,测得刚才那片树叶的长度的值分别约为6.8厘米和6.78厘米、在这一收集数据的过程中,哪些数据是精确的,哪些数据是近似的呢?

  [生]他们一共收集了12片树叶,这个数据是精确的,而测量的树叶的长度的值是近似的

  [师]大家还可以用你的刻度尺测量一下桌子的长度、厚度,数学课本的长度、厚度,又可以读出一些数据,它们是精确的还是近似的?

  [生]我测得我的课桌的长度是80.5厘米,它是近似的

  [生]我测得课桌的长度是80.45厘米,它也是近似数

  [师]由此,我们可知测量得出的结果都是近似的,例如珠峰的高度是8848米,是测量得出的,它是近似数

  在生活中,除了测量的结果是近似数以外,还有没有其他数据也是近似的?

  [生]有,例如方便面袋子上写着:总净含量110克,数据110克是近似的

  [生]饮料桶标注的净含量是350 mL也是近似数

  [生]天气预报中报到今天的最高气温是28℃,“28℃”这个数据也是近似数

  [生]咱们这本教科书字数是202千字,“202千字”这个数据也是近似的

  [师]真棒,同学们能列举生活中这么多的近似数据,说明同学们平时很留心观察一些事物,这一点很值得肯定

  2、议一议

  图3-2

  (1)上面的数据,哪些是精确的?哪些是近似的?

  (2)举例说明生活中哪些数据是精确的?哪些数据是近似的?

  [生](1)2000年第五次人口普查表明,我国人口总数为12.9533亿,人口总数为12.9533亿这个数据是近似数

  [师]为什么呢?(Why?)

  [生]因为我国地域辽阔,客观条件就决定了在人口普查的过程中是无法或难以得到精确数据的

  [师]的确如此,在测量过程中,我们难以得到精确数据,尽管现在科技的发展,有了更为精密的仪器、在人口普查中,由于客观条件等的限制,也难以或无法取到精确值

  [生]第二幅图是精确值

  [生]第三幅图中,年级共有97人是精确值,而买门票大约需要800元是近似值、

  [师]回答正确、这里的“800元”也是近似值,但这个近似值不是无法或难以得到精确数据,而是根据实际情况要估算一下大约需多少钱,无需得到精确值

  你还能举出生活中一些例子说明哪些数据是精确的?哪些数据是近似的吗?

  [生]小明的身高是1.58米,体重40公斤,年龄14岁,这些数据都是近似数

  [生]小明今天上了6节课,是精确的

  [生]一条草鱼重2.854千克,这个数据也是近似数

  [生]我们班有25个女生,这个数据是精确数

  [师]我们了解了生活中存在着这么多的近似数和精确数,下面我们来看一看如何根据具体情况和要求采用四舍五入法求一个数的近似数、

  3、做一做

  例1小明量得课桌长为1.025米,请按下列要求取这个数的近似数:

  (1)四舍五入到百分位;

  (2)四舍五入到十分位;

  (3)四舍五入到个位、

  [分析]用四舍五入法求一个数的近似数,关键是看四舍五入到哪一位,看这一位后面一位的数够五不够五,来决定取舍,特别注意近似数1.0,末尾的0不能随意去掉、

  解:(1)四舍五入到百分位为1.03米;

  (2)四舍五入到十分位为1.0米;

  (3)四舍五入到个位为1米

  例2小丽与小明在讨论问题

  小丽:如果你把7498近似到千位数,你就会得到7000

  小明:不,我有另外一种解答方法,可以得到不同的答案、首先,将7498近似到百位,得到7500,接着把7500近似到千位,就得到了8000

  小丽:……

  你怎样评价小丽和小明的说法呢?

  [生]小丽的说法是正确的因为一个数近似到千位,要一次做完,看百位上的数决定四舍五入,而不能先近似到百位,再近似到千位

  例3中国国土面积约为9596960千米2,美国和罗马尼亚的国土面积约为9364000千米2(四舍五入到千位)和240000千米2(四舍五入到万位)如果要将中国国土面积与它们相比较,那么中国国土面积分别四舍五入到哪一位时,比较起来的误差可能会小些?

  [分析]对数据进行比较是培养数感的一个重要方面、在对数据进行比较时,有时可以根据需要选择各自的近似数进行比较、在选择近似数时,一般数据要四舍五入到同一数位,这样出现较大误差的可能性会小一些

  解:当与美国的国土面积比较时,可将中国国土面积四舍五入到千位,得到9597000千米2,因为它们同时四舍五入到了千位,这样比较起来误差会小一些

  类似地,当与罗马尼亚国土面积相比较时,可以将中国国土面积四舍五入到万位,得到9600000千米2、

  Ⅲ、课时小结

  [师]通过这节课的学习,你有何体会和收获呢?

  [生]我们知道了测量所得的数据都是近似数

  [生]生活中既有精确的数据,也有近似的数据,因此我们的生活丰富多彩、

  [生]能根据具体情况和要求求一个数的近似数

  [生]用四舍五入法取近似数时,不能随便将小数末尾的零去掉、例如2.03取近似数,四舍五入到十分位,得到近似数2.0,不能把零去掉、

  板书设计

  一、生活中的数据——近似数和精确数

  1、实验测量所得的结果都是近似的(测量树叶的长度)

  2、议一议

  二、根据具体情况,采用四舍五入求一个数的近似数、(师生共析,由学生板演)

近似数教案4

  教学目的:

  复习用四舍五入法求一个小数的近似数。

  使学生会把较大数改写成用万或亿作单位的小数。

  培养同学们分析问题、解决问题的能力。

  教学重点:

  使学生会把较大数改写成用万或亿作单位的小数。

  教学难点:

  使学生会把较大数改写成用万或亿作单位的小数。

  教学过程:

  一、复习

  用四舍五入法分别求出近似数。

  5.9685:保留两位小数、保留一位小数(末尾的0怎么处理)、保留整数部分。

  二、学习把较大的数改写成用万或亿作单位的数。

  1.以前我们学过把整万、整亿的数改写成用万或亿作单位的数,现在我们继续学习把较大的数改写成用万或亿作单位的数。

  (1)教学例11:

  20xx年我国生产汽车4443900辆,把这个数改写成以万辆为单位的数。再保留一位小数。

  (2)引导学生分析题目要求,理解改写隐含的意思和解题方法。

  与小数点为之移动建立起联系(除法)[理解改写的结果是怎样得到的]。

  4443900辆=444.39万辆

  444390010000=444.39(为什么除以10000?)

  (3)学生独立完成改写和求近似数。

  (4)交流订正:

  (5)观察:今天所学的哪儿是新知识?(改写的过程和方法)

  2.把61581400台改写成以万台作单位的数就是看这个数里有多少个万,应当怎样想?

  (1)应该怎么办?(要把6158100缩小多少倍?小数点应向哪个方向移动几位?)

  (2)引导学生小结方法,教师说明:为了简便,只在万位后面点上小数点,去掉小数末尾的0,在数的后面加上万台。

  板书:61581400台=6158.14万台 6158140010000=6158.14

  3.练习:

  (1)把356000改写成以万作单位的数。

  让学生完成后说说是怎么做的。

  (2)1999年我国生产水泥573000000吨,把这个数改写成以亿吨作单位的数,再保留一位小数。

  学生独立试做,指名板演,订正时说明改写和省略的`方法。

  提醒学生防止将改写与省略和精确混淆。

  4.整理:比较改写与求近似数的区别。

  三、小结

  本节课我们主要学习了哪些内容?

  四、课堂作业:

  完成练习五的第5、6题。

  教学反思:学生很好的掌握了小数改写的方法,能够正确区分改写和近似的区别,本课中要是加强练习量,扩展练习形式。增强学生兴趣上下功夫,课堂气氛可能会好一些的,建议可以尝试着把近似和改写一起讲可能就提高教学效率了。

近似数教案5

  教学内容:

  P23例7、做一做。

  教学目的:

  1、使学生学会用“四舍五入”法取商的近似数。

  2、培养学生的实践能力和思维的灵活性,培养学生解决实际问题的能力。

  3、引导学生根据生活中的实际情况多角度思考问题,灵活地取商的近似数。

  重点:

  使学生知道为什么要求商的'近似数,会用“四舍五入”法取商的近似数。

  难点:

  使学生能根据生活中的实际情况多角度思考问题,灵活地取商的近似数。

  教学过程:

  一、复习

  1.按“四舍五入法”,将下列各数保留一位小数.

  6.03  7.98

  2.按“四舍五入”法,将下列各数保留两位小数.

  8.785  7.602  4.003  5.897  3.996

  做完第1、2题后,要让学生说明其中小数末尾的“0”为什么不能去掉.

  3.计算0.38×1.14(得数保留两位小数)

  二、新课

  1.教学例7:

  教师出示例7,口述图意,再列式计算。当学生除到商为两位小数时,还除不尽。教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候要除到哪一位?为什么?(应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)横式应该怎样写出?教师板书.

  教师问:表示计算到“角”需要保留几位小数?除的时候要除到哪一位?应该约等于多少?

  教师要让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”。)

  我们学习班了求积的近似值和求商的近似值,比一比这两者有什么相同点和不同点?

  2.P23做一做:

  教师让学生按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)

  师:解题时用了什么技巧?

  三、巩固练习

  1、求下面各题商的近似数:

  3.81÷732÷42246.4÷13

  2、P26第10题第(1)题。

  四、作业:

  P26第10题第(2)题、第11题。

  五、总结:

  今天大家有什么收获?

  板书设计:商的近似数

  3.81÷7≈0.5432÷42≈0.76246.4÷13≈18.95

  0.5440.76118.953

近似数教案6

  设计说明

  学生在之前学习过求整数的近似数,已经掌握了基本的学习经验。因此,在本节课的教学设计上注重体现以下几点:

  1.创设生活情境,感受数学与实际生活的联系。

  《数学课程标准》中指出:数学源于生活又服务于生活。据此,在教学时,结合教材例1创设的豆豆测身高的情境引入新课,使学生体会到小数在生活中的广泛应用。这样就把求一个小数的近似数的知识还原于生活,应用于生活,让学生感受到数学与实际生活的紧密联系。

  2.注重类推,让学生经历知识迁移的过程。

  求小数的近似数的方法与求整数的近似数的方法相同,学生对用“四舍五入”法求近似数有了一定的理解和掌握。在此基础上,让学生把学过的求整数的近似数的方法迁移类推到求小数的近似数上去,实现知识的良好迁移,使学生掌握迁移、类推的学习方法。

  3.注重引导,让学生在探究中学习。

  在教学求小数近似数的过程中,我充分放手,先引导学生在小组合作学习、讨论交流的基础上理解保留几位小数的意义,再引导学生探究如何求一个小数的近似数,最后引导学生总结归纳出求小数近似数的方法。

  课前准备

  教师准备 多媒体课件 卡片

  教学过程

  ⊙复习导入

  1.复习旧知。

  (1)把下面各数省略“万”位后面的尾数,求出它们的近似数。(课件出示)

  986534 58741 31200

  50047 398010 14870

  (2)下面的□里可以填哪些数字?

  32□645≈32万 47□905≈47万

  学生填完后,引导学生说一说是怎么想的。

  2.导入新课。

  师:我们学过求一个整数的近似数。在实际应用小数时,往往没有必要说出它的准确数,只要说出它的'近似数就可以了。那么如何求一个小数的近似数呢?今天我们就来学习这一内容。(板书课题)

  设计意图:借助复习求整数的近似数引入新的学习内容,使学生能更好地理解求一个小数的近似数的方法,由旧知迁移到新知,既激发了学生的求知欲,又为新知的探究做好铺垫。

  ⊙探究新知

  1.课件出示教材例1情境图。

  从图中你获得了哪些数学信息?

  (豆豆的身高是0.984 m)

  2.探究求近似数的方法。

  (1)豆豆的身高是0.984 m。说明已经精确到了毫米,平常不需要说得这么精确,那我们一般怎么描述豆豆的身高呢?(出示课堂活动卡,组织学生讨论交流,然后指名汇报。学生的回答可能有两种情况:①豆豆的身高约是0.98 m;②豆豆的身高约是1 m)

  (2)你是怎样得出豆豆身高的近似数的?

  生1:我用“四舍五入”法把0.984保留两位小数。因为在生活中,表示身高的米数通常是两位小数,也就是精确到厘米。把0.984保留两位小数就要看千分位上的数,千分位上的数不满5,舍去,求得近似数是0.98。

  生2:我用“四舍五入”法把0.984保留整数。保留整数就要看十分位上的数,十分位上的数是9,满5,向前一位进1,求得近似数是1。

  教师小结:求一个小数的近似数与求一个整数的近似数相同,也是根据“四舍五入”法保留一定的位数。

  教师板书: 0.984≈0.98

  ↑

  小于5,舍去

  (3)如果要保留一位小数,应该怎么做呢?(组织学生小组内讨论、交流,然后汇报:0.984保留一位小数就要看百分位上的数,百分位上的数是8,满5,向十分位进1。十分位上本来是9,进1后满10,向个位进1,求得近似数是1.0)

  教师板书:0.984≈1.0

  ↑

  大于5,向前一位进1

近似数教案7

  一、素质教育目标

  (一)知识教学点

  1.使学生理解近似数和有效数字的意义

  2.给一个近似数,能说出它精确到哪一痊,它有几个有效数字

  3.使学生了解近似数和有效数字是在实践中产生的.

  (二)能力训练点

  通过说出一个近似数的精确度和有效数字,培养学生把握关键字词,准确理解概念的能力.

  (三)德育渗透点

  通过近似数的学习,向学生渗透具体问题具体分析的辩证唯物主义思想

  (四)美育渗透点

  由于实际生活中有时要把结果搞得准确是办不到的或没有必要,所以近似数应运而生,近似数和准确数给人以美的享受.

  二、学法引导

  1.教学方法:从实际问题出发,启发引导,充分体现学生为主全,注重学生参与意识

  2.学生学法,从身边找出应用近似数,准确数的例子→近似数概念→巩固练习

  三、重点、难点、疑点及解决办法

  1.重点:理解近似数的精确度和有效数字.

  2.难点:正确把握一个近似数的精确度及它的有效数字的个数.

  3.疑点:用科学记数法表示的近似数的精确度和有效数字的个数.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪,自制胶片

  六、师生互动活动设计

  教者提出生活中应用准确数和近似数的.例子,学生讨论回答,学生自己找出类似的例子,教者提出精确度和有效数字的概念,教者提出近似数的有关问题,学生讨论解决.

  七、教学步骤

  (一)提出问题,创设情境

  师:有10千克苹果,平均分给3个人,应该怎样分?

  生:平均每人千克

  师:给你一架天平,你能准确地称出每人所得苹果的千克数吗?

  生:不能

  师:哪怎么分

  生:取近似值

  师:板书课题

  2.12近似数与有效数字

  【教法说明】通过提出实际问题,使学生认识到研究近似数是必须的,是自然的,从而提高学生近似数的积极性

  (二)探索新知,讲授新课

  师出示投影1

  下列实际问题中出现的数,哪些是精确数,哪些是近似数.

  (1)初一(1)有55名同学

  (2)地球的半径约为6370千米

  (3)中华人民共和国现在有31个省级行政单位

  (4)小明的身高接近1.6米

  学生活动:回答上述问题后,自己找出生活中应用准确数和近似数的例子.

  师:我们在解决实际问题时,有许多时候只能用近似数你知道为什么吗?

  启发学生得出两方面原因:1.搞得完全准确有时是办不到的,2.往往也没有必要搞得完全准确.

  以开始提出的问题为例,揭示近似数的有关概念

  板书:

  1.精确度

  2.有效数字:一般地,一个近似数,四舍五入到哪一位,就说这个数精确到哪一位,这时,从左边第一个不是0的数字起,到精确的数位止,所有的数字,都叫做这个数的有效数字.

  例如:3.3?有二个有效数字

  3.33?有三个有效数字

  讨论:近似数0.038有几个有效数字,0.03080呢?

  【教法说明】通过讨论学生明确近似数的有效数字需注意的两点:一是从左边第一个不是零的数起;二是从左边第一个不是零的数起,到精确的位数止,所有的数字,教者在有效数字概念对应的文字底下画上波浪线,标上①、②

  例1.(出示投影2)

  下列由四舍五入吸到近似数,各精确到哪一位,各有哪几个有效数字?

  (1)43.8(2).03086(3)2.4万

  学生口述解题过程,教者板书.

  对于近似数2.4万学生又能认为是精确到十分位,这时可组织学生讨论近似数与5.4和近似数5.4万中的两个4的数位有什么不同,从而得出正确的答案.

  【教法说明】对于疑点问题,通过启发讨论,适时点拨,远比教者直接告诉正确答案,理解深刻得多.

  巩固练习见课本122页练习2、3页

  例2(出示投影3)

  下列由四舍五入得来的近似数,各精确到哪一位,各有几个有效数字?

  学生活动,教者不给任何提示,请三位同学板演(基础较差些的做第一小题,基础较好的做第二、三小题)其余学在练习本上完成,请一优秀学生讲评同桌同学互相检查评定.

  【教法说明】①通过本例的教学,学生能进一步把握近似数的精确度和有效数字的概念,②通过分层板演,学生点评,能提高所有学生的积极性,每个层次的学生都得到发展

  (三)尝试反馈,巩固练习

  (出示投影4)

  一、填空

  1.某校有25个班,光的速度约力每秒30万千米,一星期有7天,某人身高约1.65米,远些数据中,准确数为_________,近似数为____________

  2.近似数0.1080精确到__________位,有_________个有效数字,分别是____________

  二、下列各近似数,各精确到哪一位,各有哪几个有效数字:

  1 32.0  2 1.5万3

  学生活动:学生抢答:

  【教法说明】抢答培养学生的竞争意识.

  (四)归纳小结

  师生共同小结

  (1)有效数字的意义及两个注意点;

  (2)带单位的近似数(为2.3万)和用科学记数法表示的近似数的精确度和有效数字的求法.

  八、随堂练习

  1.判断下列各题中的效,哪些是准确数,哪些是近似数?

  (1)小明到书店买了10本书

  (2)中国人口约有13亿

  (3)一次数学测验中,有5人得了100分

  (4)小华体重约54千克

  2.填空题

  (1)3.14精确到________位,有_________有效数字

  (2)0.0102精确到_________位,有效数字是__________

  (3)精确到__________位,有效数字是___________

  3.选择题

  (1)下列近似数中,精确到千位的是()

  A.1.3万B.21.010

  C.1018  D.15.28

  (2)有效数字的个数是()

  A.从右边第一个不是0的数字算起

  B.从左边第一个不是0的数字算起

  C.从小数点后的第一个数字算起

  D.从小数点前的第一个数字算起

  九、布置作业

  课本第124页A组l.

  十、板书设计

近似数教案8

  教学内容:求一个小数的近似数--教材第105-106页例1,做一做题目及练习二十四1-3题。

  教学目的:使学生初步学会根据要求用四舍五入法保留一定的小数位数,求出小数的近似数。培养学生综合运用知识的能力。

  教学重、难点:求一个小数的近似数及把较大数改写成以万或亿作单位的小数是教学重点。把较大数改写成以万或亿作单位的小数,容易丢掉计数单位或单位名称,求近似数与改写求准确数容易混淆,这是学习的难点。

  教学过程:

  一、复习

  先省略万后面的尾数,求出近似数,再省略千后面的尾数,求出近似数。

  1295356089020114536697010

  二、新课

  教师:我们已经学过求一个整数的近似数(或近似值)。在实际使用小数的时候,有时也没有必要说出它的准确数,只要说出它的近似数就够了,例如,量得大新的身高是1.625米,平常不需要说得那么精确,只说大约1.6米或1.63米。

  我们已经会求一个整数的近似数,求一个小数的近似数的方法,同求整数的近似数的方法相似,是根据需要用四舍五入法保留一定的`小数位数。

  教师用投影片(或小黑板)出示例1的第1小题:2.953保留两位小数,它的近似数是多少?

  教师:2.953保留两位小数,就是要省略哪一位后面的尾数?(省略百分位后面的尾数。)

  省略百分位后面的尾数,要看哪一位上的数?(要看千分位上的数。)

  接下来用四舍五入法怎样做?(因为千分位上的数3不满5,把它舍去。)

  教师板书:2.9532.95

  教师:谁能连贯地把做这题的过程说一说。

  指名让学生说一说,然后教师总结:

  做这题时要想:要保留两位小数,就要省略百分位后面的尾数。千分位上不满5,直接舍去。

  教师用投影片(或小黑板)出示例1的第2小题:2.953保留一位小数,它的近似数是多少?

  教师:2.953保留一位小数,就是要省略哪一位后面的尾数?(省略十分位后面的尾数。)

  省略十分位后面的尾数,要看哪一位上的数?(要看百分位上的数。)

  用四舍五入法怎样做呢?(因为百分位上的数满5,省略百分位和千分位上的数后,要向十分位进1。)

  2.9加上进上来的1就是3.0。所以2.9533.0。

  教师板书:2.9533.0

  教师强调:这题的要求是保留一位小数,所以小数末尾的0不能去掉。

  教师:谁能连贯地把做这题的过程说一说。

  指名让学生说一说,然后教师总结:

  做这题时要想:要保留一位小数,就是省略十分位后面的尾数。百分位上满5,省略尾数后,向十分位进1,末尾的0不能去掉。

  教师用投影片出示例1的第3小题:2.953保留整数,它的近似数是多少?

  教师板书:2.953

  教师:谁能做出这题并且说一说应该怎样做?

  指名让学生做这题,并且说一说是怎样做的。

  根据学生的发言,教师板书:2.9533,并且总结:做这题时要想;要保留整数,就要省略整数后面的尾数。十分位上满5,省略尾数后向个位进1,所以2.9533。

  教师:观察上面三道题,是同一个小数保留两位小数,保留一位小数和保留整数。每一次求出的近似数的精确度是不同的。保留整数,表示精确到个位;那么保留一位小数,表示精确到什么位?(十分位。)保留两位小数呢?(表示精确到百分位。)

  指名学生回答上述问题。条件较好的班,教师可以接着讲一讲关于精确度的问题。讲法可以如下:

  教师:那么,上面的三个近似数哪一个更精确一些呢?我们现在证明一下。如果2.953表示的是测量一段绳子的长度得到的结果:2.953米。

  教师用投影片(或小黑板)出示图如下:

  教师:2.953保留两位小数时,是2.95米,表示精确到百分位。保留一位小数是3.0米,表示精确到十分位,也就是说绳子的准确长度不小于2.95米,也不能等于或大于3.05米。因为如果是2.94米,保留一位小数就是2.9米了;如果是3.05米或3.06米,保留一位小数就是3.1米了。再看当保留整数位3时,表示精确到整数个位,也就是说准确长度不能小于2.5米,不能等于或大于3.5米。所以前一个近似数都比后一个近似数精确程度要高一些,即2.95米的精确度高于3.0米的精确度,3.0米的精确度又高于3米的精确度。

  教师用投影片或小黑板出示第106页上半页做一做中的第1题,并且加一题:4.795(保留两位小数)。指名让学生做,集体订正。

  教师:我们学会了怎样求一个小数的近似数。想一想,求一个小数的近似数应该注意什么?同桌讨论一下。

  指名让学生发言,在学生发言的基础上教师总结:

  1.要根据题目的要求取近似值,即:保留整数,就看十分位是几,要保留一位小数,就看百分位是几,......然后按四舍五入法决定是舍还是入。

  2.取近似值时,在保留的小数位里,小数末一位或几位是0的,应当保留,不能去掉。

  三、课堂练习

  1.做第106页上半页做一做的第1、2题,学生独立做,做完以后,集体订正。

  2.做练习二十四的第3题。

  教师先提问:精确到十分位是什么意思?(保留一位小数。)

  精确到百分位是什么意思?(保留二位小数。)

  然后,让学生独立做,教师巡视,个别辅导,强调要注意的两点。做完后,集体订正。

  四、课堂作业

  练习二十四的第1-2题。

近似数教案9

  教学内容:教材第32页例6及练习八相关题目。

  教学目标:

  1、使学生能理解商的近似数的意义,掌握用“四舍五入”法求商的近似数的一般方法。能根据实际情况和要求求商的近似数。

  2、经历用“四舍五入”法求商的近似数的过程,体验迁移应用的学习方法。

  3、提高学生的比较、分析、判断的能力,感受数学与现实生活密切相关,培养学习数学的兴趣。

  教学重点:让学生学会用“四舍五入”法取商的近似数。

  教学难点:结合实际情况和要求来求商的近似数。

  教学准备:多媒体课件。

  教学过程

  学生活动

  (二次备课)

  一、复习导入

  教师课件出示下面的题目:

  1、用“四舍五入”法将下面的数改写成一位小数。

  9、12

  11、59

  22、03

  11、96

  32、34

  7、88

  2、按要求计算下面各题:

  0、34×0、86???(保留一位小数)

  1、37×0、45???(保留两位小数)

  师:通过上面的练习,说一说你是用什么方法求这些数的近似数的?

  指名学生说一说。

  小结:保留几位小数就看这位小数后面的数位,大于或等于5就向前一位进一,小于或等于4就舍去。这样的方法就叫“四舍五入”法。

  今天我们要学习“商的近似数”。

  教师板书:

  商的近似数

  二、预习反馈

  点名让学生汇报预习情况。(重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,什么问题)

  三、探索新知

  1、教师课件出示教材第32页例6情境图。

  学生读题,独立列式。

  教师指名学生回答是怎么列式的。

  板书:19、4÷12

  师:请大家尝试计算。

  学生尝试计算,教师巡视。

  师:同学们在计算的过程当中发现什么?

  指名学生说一说。

  师:除不尽,我们该怎么办?

  学生交流。指名学生说一说。

  师生共同得出结论:在实际生活中,已经不用“分”了,所以可以算到“角”,也可以算到“元”。也就是可以保留整数,也可以只保留一位小数或两位小数。这样就需要进行取近似数了。怎样求商的近似数呢?保留哪一位比较合适?联系求积的近似数的方法,请动脑筋想一想。

  学生讨论。

  指名学生汇报:

  方法1:保留两位小数。因为单位是元,小数点后第二位是分,是最小的面值,所以保留两位小数。

  方法2:保留一位小数,可以精确到角,因为实际生活中已经用不到“分”了,找零不方便,所以只要保留一位小数。

  方法3:可以只保留整数。

  师:这些方法都可以,但想一想,这样的话要除到哪一位?

  指名学生回答。

  方法:保留两位小数,除到小数点后第三位;保留一位小数,除到小数点后第二位;只保留整数,除到小数点后第一位。最后用“四舍五入”的方法求近似数。因为是近似数,不是准确数,所以要用“≈”。

  师:大家快快计算,并求商的近似数吧!

  学生计算。

  投影展示学生的计算过程。

  师:同学们观察这三种方法,你觉得哪种方法更合理?

  指名学生说一说。

  第二种方法,因为每个羽毛球的价格是1、6元,更接近准确值。

  2、发现求商的`近似数的规律。

  师:说一说如何求商的近似数?

  学生交流,指名说一说。

  师生共同总结:

  ①看:需要保留几位小数或整数。

  ②除:除到比需要保留的小数位数多一位。

  ③取:用“四舍五入”法取商的近似数。

  四、巩固练习

  1、完成教材第32页做一做。

  学生独立完成,指3名学生板演。

  集体交流,订正。重点让学生说一说怎样求商的近似数。

  2、完成教材练习八第3题。

  学生独立完成,指名汇报。

  五、拓展提升

  9、125除以一个小数,商是两位小数,保留一位小数约是3、7,除数最大是多少?2、5

  六、课堂总结

  这节课有什么收获?想一想,求商的近似数和求积的近似数有什么相同点和不同点?

  七、作业布置

  教材练习八第1、2题。

  课前复习求一个数的近似数,和求积的近似数方法,为学生完整地认识取商的近似值做铺垫。

  教师根据学生预习的情况,有侧重点地调整教学方案。

  结合实际情况,让学生去感悟、体验、经历求商的近似数的需要,激起学生探究欲望,使他们在反思、调整中不断构建属于自己的知识。

  引导学生总结发现规律,培养学生的概括能力,体会自主学习的乐趣。

  板书设计

  商的近似数

近似数教案10

  设计说明

  本课时主要学习将非整万、整亿数用“四舍五入”法求出近似数。学生在学习万以内数的认识时,已初步了解了近似数,生活中也经常遇到近似数。同时根据《数学课程标准》中关于学生观和学习方式的论述,在设计本课时的教学过程中突出了以下两个方面:

  1.注重已有的生活经验。

  对于学生来说,先前的经验是非常重要的,他们在日常生活中,在以往的学习中,已经形成了比较丰富的经验,遇到某些问题时,他们会从有关的知识经验出发,形成对问题的某种合乎逻辑的解释。如近似数的概念学生虽然没有接触过,但近似数在日常生活中是很常见的,通过学生对生活事例的调查和直观的描述,让学生进一步认识和理解近似数。

  2.注重以学生为主体。

  既然知识是个体主动建构的,不可能所有的知识都要通过教师的讲解传授给学生。因此,学生必须主动地参与到整个学习的过程中,要根据学生自己先前的经验来建构新知识。本课时在设计上更多地通过展示生活中的一些数学信息来激发学生的学习兴趣,让学生主动地投入到对近似数的认知中去,让学生经历探究求一个数的近似数的过程,理解并掌握求近似数的方法。

  课前准备

  教师准备 PPT课件

  学生准备 收集有关近似数的数据

  教学过程

  ⊙创设情境,导入新课

  1.获取信息。

  让学生观看一个短片(课件出示国庆60周年庆典片段),提问:这是什么场面?

  生:国庆60周年庆典。

  师:请同学们阅读资料,说一说从资料中你获取了哪些信息。(课件出示教材10页主题图的文字资料)

  2.处理信息,建立数学模型。

  观察这组信息中的数据,它们有什么特点?你们能不能试着将它们分分类?

  (1)小组讨论。

  (2)全班汇报,说明理由。

  (学生分类的角度不同,但大部分学生会按是不是准确的数这一标准将这些数据分为两类:准确的数和大概的数)

  设计意图:通过国庆庆典资料中的数据,让学生初步体会什么是近似数,什么是精确数。同时对学生了解近似数的特点也有一个潜移默化的作用。

  ⊙合作交流,探究新知

  1.理解精确数、近似数的含义。

  (1)介绍精确数和近似数。

  说明:在人类实践活动中,经常遇到各种数据。有些数据与实际完全相符,这样的数叫精确数。例如:四(1)班有40名同学,40就是精确数;而有些数据与实际大体符合,或者说比较接近实际数据,这样的数叫近似数。例如:课桌宽约50厘米,50就是近似数。

  (2)分辨精确数和近似数。

  师:说一说国庆庆典数据中,哪些是精确数?哪些是近似数?为什么?

  “60周年”中的“60”是精确数,“60响礼炮声”中的“60”是精确数,“行进了169步”中的“169”是精确数,“169年”中的“169”是精确数,“近66分”中的“66”是近似数,“有56个方队和梯队”中的'“56”是精确数,“约20万人”中的“20”是近似数,“近2万平方米”中的“2”是近似数)

  2.了解近似数的作用。

  (1)教师质疑,激发思考。

  为什么这些情况要用近似数来描述呢?(课件出示近似数)像接受检阅的人数和巨幅国画《江山如此多娇》的画布总面积,它们为什么不用精确数来表示呢?

  (2)学生探讨。

  (3)指名交流想法。

  教师小结:有些情况很难、也没有必要用准确的数据来描述它,只要知道一定的范围就足够了,这个时候就需要用到近似数。这说明近似数在生活中的应用还是相当广泛的。

  3.发现生活中的近似数。

  (1)请同桌说说自己收集的数据中的近似数。

  (2)请同学找一找日常生活中的近似数。

  (学生纷纷发言,表述自己的看法)

近似数教案11

  教学内容:

  课本第77页例8及练习十六第6题。 授课日期 __年__月_ 日 星期

  教学目标:

  1、通过具体的情景让学生理解近似数的含义,体会近似数在生活中的作用。

  2、通过独立猜测、交流等活动让学生掌握一定猜测的方法,培养学生的数感和估计能力。

  教学重、难点:

  1、通过独立猜测、交流等活动让学生掌握一定猜测的方法。

  2、培养学生的数感和估计能力。

  教学准备:教学挂图。

  教学过程:

  一、准备练习

  1、 接着数数。

  1998、( )、( )、( )

  9997、( )、( )、 ( )

  497、( ) ( ) 、( )

  2、按照要求排列下面各数。

  1001 996 1008

  ( ) > ( ) > ( )

  205 306 402

  ( ) < ( ) < ( )

  复习旧知,为新知学习作好铺垫。

  二、新课教学

  1、组织理解近似数的含义。

  出示例8的主题图。

  聪聪去调查了育英小学的学生数,他写下了这样的一句话:“育英小学有1506人,约是1500人。”育英小学到底有1506人还是1500人呢?为什么?

  组织学生进行讨论、交流。思考:后半句约1500人是什么意思?

  小组汇报:

  A、认为育英小学的认数是1506人,因为他告诉我们就是1506人,后半句他说的是约是1500人,是说他们学校的人数和1500人的差不多。

  B、也认为育英小学有1506人,他说约有1500人是大概就是1500人的意思。

  师小结:我们把1506这个很准确的.数字就叫做“准确数”,而1500这个和1506差不多的数就叫做“近似数”。(边说边板书)

  引导学生明白近似数更容易记,因为它正好是正百数。

  出示例8主题图比较一下1506和1500这两个数,体会一下准确数和近似数哪个数更容易记住

  (2) 聪聪那天不仅调查了育英小学的人数,还调查了新长镇的人数是9992人,约是( )人,先独立填填,再和你的同桌交流交流。谁来说说你写出的近似数是多少?

  个别汇报:

  A、约是10000人,因为我觉得9992人接近10000人,

  B、我写的是“约9990人”因为9992人和9990只相差2。

  同学们你们同意哪位写的呢?为什么?

  师生小结:我们用近似数就是为了让我们更容易记住,所以,一般我们都用整百、整千、整万数。

  通过活动的学习,理解近似数的含义,感受到近似数的作用,同时掌握近似数的写法。

  2、请你说说身边的近似数,找找生活中的近似数。按照教师的要求,先独立想想,再和小组的同学交流。

  3、组织活动3——猜一猜。

  (1)(练习十六第9题)

  提出题中的要求。

  请大家独立动脑筋想一想,再和同桌交流看你们手猜的一样吗?互相说说你们为什么要这样猜。

  (2)组织进行集体交流。说一说你猜出来的结果是什么样的?你是怎么猜的?

  及时肯定回答好的学生,并帮助学生总结应当怎样猜。

  让学生将所准备的卡片,按照教师的要求摆一摆:将所准备的卡片组成三位数或四位数;读一读:同桌相互读摆出的数;

  说一说:再互相说一说对方所摆事出的数的组成;

  比一比:比较两个数的大小。

  通过“说一说、猜一猜”活动让学生感受到近似数与生活的联系。

  三、课外训练

  1、组织数学游戏——猜价格/

  (1)电视节目“幸运52”猜商品价格的游戏大家看过吗?

  其实这样的游戏应用的也是数学知识。今天我们也来玩一玩这样的猜数游戏。

  (2)游戏规则:老师给你一个提示,比如这个数几千几百的数,然后就开始猜,老师提示手中的数比你猜的数大还是小。同学们再根据这个提示继续猜直到猜对为止。

  (3)进行第一轮猜数游戏。

  此活动培养学生的思维能力和数感。

近似数教案12

  教学内容:

  用“四舍五人”法写出一个数的近似数

  教学目标:

  1、能说出“四舍五人”的含义。

  2、能运用“四舍五人法”省略万或亿后面的尾数,用近似数表示出来。

  教学重点、难点

  用“四舍五人法”省略万或亿后面尾数,求出近似数。

  教学过程

  (一)实例导入

  在我们周围的生活中,经常碰到一些与实际数值完全符合的数。如教室中有25张桌子,我们班24个男生,26个女生,像这些25、24、26都叫准确数。但在实际生活叶,有时我们很难得到或不需要准确数。如我国的粮食总产量约是4149亿千克,世界人口约60亿,像这些都是近似数。今天这节课我们就要学习用“四舍五人法”写出一个数的近似数。

  (二)学习新知

  1、明确“四舍五人法”

  要省略万后面的尾数,就是省略什么数?看什么位?怎样的情况采用五人法?四舍法呢?它们分别怎样操作?

  2、把下面各数四舍五人到万位。

  (1)出示182300,指名读数。

  (2)提问:这个数要四舍五人到万位,就是要省略哪一位后面的'尾数?尾数的最高位是什么?

  (3)操作:保留到万位,就是要省略尾数千位、百位、十位、个位,看尾数的最高位千位,现在千位是2,比4小,所以把2300舍去,近似数就是18万。182300≈18万,强调“≈”的读写法。

  (4)练习。784700≈( )万 94800≈( )万

  3、尝试改写2497300。

  (1)引导观察万后面尾数的最高位是几?你认为该怎样求它的近似数?

  (2)反馈评讲2497300≈250万。

  4、练习:297210≈( )万 2376500≈( )万

  5、想想怎样求省略万后面尾数的近似数?归纳方法

  (1) 看被省略尾数的最高位上的数。

  (2) 比较,选用四舍法还是五人法。

  (3) 写出得数。

  6. 把下面各数四舍五人到亿位。

  8470000000 460000000

  学生先尝试练习,说说改写的思路,然后自己小结求省略亿后面尾数的近似数方法。

  (三)巩固新知

  396400≈( )万 2380000000≈( )亿

  (四)课堂总结

  1、什么叫四舍五人法。

  2、用四舍五人法求一个数的近似数,主要看哪一位决定“舍”还是“人”。

  3、怎样写一个数的近似数?

  (五)作业

近似数教案13

  教学目标

  (一)能正确地比较亿以内数的大小。

  (二)能把整万的数改写成用万作单位的数。

  (三)能正确地写出省略万后面尾数的近似数。

  (四)培养学生比较、分析的思维能力,养成良好的学习习惯。

  教学重点和难点

  重点:亿以内的数位顺序。

  难点:数位与位数的区别,省略万后面的尾数求近似数的方法。

  教具和学具

  投影片。

  教学过程设计

  (一)复习准备

  在下面○里填上>、<或=,再说一说你是怎样比较的?

  999○1010 601○564 687○678

  提问:

  1.第一组两个数你是怎样比较的?

  (三位数与四位数比,四位数一定比三位数大,因为三位数比一千小,四位数大于或等于一千。)

  2.第二、三组数都是三位数,你是怎样比较的?

  (两个三位数比较,百位上数大的那个数就大;百位上相同,十位上大的那个数就大。)

  (二)学习新课

  教师谈话:我们已经学过万以内数的比较大小,今天我们要学习的第一个内容,是亿以内数的比较大小。(板书课题:比较数的大小)

  1.出示例5。

  比较下面每组中两个数的大小:

  (1)99864和101010。

  提问:

  ①两个数各是几位数?

  ②五位数最高位是什么位?六位数最高位是什么位?

  9万多与10万多来比较,谁大谁小?

  (10万多比9万多大。)

  所以99864<101010。(板书)

  由此来看,五位数与六位数比较,谁比谁大?

  (六位数比五位数大。)

  ③同学们推想一下,七位数与六位数比较呢?八位数与七位数比较呢?那么如果两个数的位数不同,怎样比较大小呢?

  (如果两个数的位数不同,位数多的那个数大,七位数比六位数大,八位数比七位数大。)

  出示第二组数:(2)356000和360000。

  提问:

  ①这两个数各是几位数?

  ②这两个数都是六位数,位数相同的两个数怎样比较大小呢?先比较哪位上的数?

  ③两个数左起第一位十万位上都是3,怎么比较?

  (两个数左起第一位十万位上都是3,看左起第二位,第一个数左起第二位万位上的5比第二个数万位上的 6小,所以356000<360000。)

  教师把第一个数356000的万位改成6,即366000和360000。

  ④两个数左起第一位十万位上都是3,万位上都是6,怎么比较呢?

  (两个数左起第一位十万位上都是3,第二位万位上都是6,就要看第三位。第一个数第三位千位上是6,第二个数千位上是0,所以366000>360000。)

  启发学生逐步总结出完整的比较数的大小的方法。

  提问:

  ①比较两个数的大小有几种情况?位数不同怎么比?

  ②如果位数相同怎么比?先要从哪一位比?如果左起第一位上的数相同,怎么比呢?

  指导学生阅读课本中关于比较两数大小方法的结语,并提问学生结语的最后为什么有省略号“……”,表示什么意思?举例说明。

  教师说明:“位数”是指一个数用几个数字写出来的(最左端的数字不能是0),有几个数字就是几位数。如99864是五位数,101010是六位数。“左起第一位”是数位,数位是指一个数中的数字所占的位置。如 99864左起第一位是“9”,“9”是在万位上,101010左起第一位是“1”,“1”在十万位上。“数位”与“位数”是不一样的。

  练一练

  (1)比较每组中两个数的大小,说说是怎么比的?

  70080○70101 98965○100000

  (2)按照从小到大的顺序排列下面各数。

  40400 400400 44000 50004

  指导学生做第(2)题时,先比较位数的多少,再把位数相同的几个数进行比较,也可以把这四个数排成一竖行,相同数位对齐。如:

  可以看出:400400最大,40400最小。再把它们从小到大编成序号,按序号进行排列:40400<4400<50004<400400就不容易错。

  2.教学把整万的数改写成用“万”作单位的数。

  出示50000,让学生读数。

  教师指出:这是一个整万的数。像这样整万的数,写成用“万”作单位的数比较简便。

  提问:万位在右起第几位?整万的数万位后面有几个0?

  把整万的数改写成用“万”作单位的数,只要把后面的四个0去掉,加上一个万字就行了。例如 50000写成 5万,或 50000=5万。又如 1800000写成 180万,或 1800000=180万。

  练一练

  把下面的数改写成用“万”作单位的数。

  (1)250000

  (2)3200000

  (3)1994年我国共生产自行车40450000辆。

  其中第(3)题强调单位名称,即4045万辆。

  3.教学求近似数。

  教师谈话:我们学过用四舍五入法求一个数的近似数,请同学们把下面各数千后面的尾数省略,求出它的近似数。

  4926 9375

  提问:省略千后面的尾数,根据哪一位上的数进行四舍五入?(根据百位上的数进行四舍五入。)

  教师叙述:比万大的数,我们也可以用同样的方法来求它的近似数,这就是我们今天要学习的第二个内容。(板书课题:求近似数)

  出示例6:把下面各数万位后面的尾数省略,求出它们的近似数。

  (1)84380 (2)726310

  出示第(1)题。提问:

  (1)省略千后面的尾数时,是根据百位上的数进行四舍五入的,省略万后面的数,要根据哪一位上的数进行四舍五入?

  根据学生的回答,教师强调,只要根据尾数的最高位,不要管尾数的后几位是多少。教师把千位上的4用方框框起来,即8(4)380。

  (2)千位上的数不满5,怎么办?

  根据学生的回答,把万后面的尾数舍去。教师板书:8(4)380≈8万。

  (3)为什么中间用约等于符号连接起来,而不用等号?为什么整万的数用万作单位可以用等号连接起来?

  出示第(2)题。

  由学生说一说,根据哪一位上的数进行四舍五入?千位上的数比5大,该怎么办?教师板书:72(6)310≈73万。

  练一练

  把下面各数万位后面的尾数省略,求出近似数。

  (1)63599 (2)709327

  (3)1994年我国大学毕业生有637000人。

  其中第(3)题要强调写单位名称,即637000≈64万人。

  (三)巩固反馈

  1.总结性提问:

  (1)今天我们学习了哪些内容?

  (2)怎样比较两个整数的大小?

  (3)怎样把整万的数改写成以万作单位的数?

  (4)怎样省略万后面的尾数,求出它的近似数?

  2.发展性练习。

  指导学生做练习三的第5题。

  第(1)题指导性提问:

  (1)49999前面一个数是多少?把它写出来。

  (2)49999后面一个数是多少?把它写出来。

  第(2)题指导性提问:

  (1)最小的一位数是几?最大的一位数是几?

  (2)最小的两位数是几?最大的两位数是几?

  (3)最小的三位数是几?最大的三位数是几?

  请独立填写练习三第5题第(2)题。

  3.思考性练习。

  下面的□里可以填哪些数字?

  19□785≈20万 60□907≈60万

  9□8765≈1000000 9□4765≈900000

  先出示第一横排两道题,相邻两位同学讨论怎样填,然后全班交流。同学们可能填不全,最后由老师小结:第一道题,19万多的近似数是20万,说明千位上的数是5或比5大的数,方框里可填9,8,7,6,5;第二道题,60万多的数的近似数是60万,说明千位上的.数是比5小的数,方框里可填0,1,2,3,4。第二横排则由学生独立来填。

  4.课后练习:

  练习三第1,3,4题。

  课堂教学设计说明

  本节课是在学生基本上掌握了亿以内数的读写方法以后,学习比较两个数的大小,把整万的数改写成以万作单位的数,用四舍五入法求近似数。虽然内容不十分集中,但与过去学过的旧知识联系紧密。因此,教学过程的设计,采用帮助学生回忆有关的旧知识,引导学生探索出新方法。

  本节课分三个层次,分两段提出课题。

  第一层次是比较两个数的大小。由复习万以内数比较大小,引伸到比较亿以内两个整数的大小。分成位数不同和位数相同的两种情况,引导学生总结出比较两个整数大小的方法。

  第二个层次是学习把整万的数改写成以万作单位的数。

  第三个层次是学习求近似数,由复习省略千后面的尾数求出近似数,类推到省略万后面的尾数,求出近似数,归纳为根据尾数的最高位,进行四舍五入。这样引导,有利于培养学生的归纳推理能力。

  根据本节课的内容,教学中采用边讲边练的形式,对课本中的练习进行适当地指导。最后的思考性练习对本节课所学的求近似数知识,起到进一步巩固和提高的作用。

  板书设计

  比较数的大小 求近似数

  复习:

  999○1010

  601○564

  687○678

  4926≈5千

  9375≈9千

  例5 比较下面每组中两个数的大小。

  99864和101010 356000和360000

  99864<101010 356000<360000

  50000=5万 1800000=180万

  例6 把下面各数万后面的尾数省略,求出它的近似数。

  (1)84380 (2)726310

  8(4)380≈81万

  72(6)310≈73万

近似数教案14

  教学目标:

  教科书P96-97页的内容,求大数目的近似数 。

  教学要求:

  1、让学生知道近似数的含义,并会根据要求用四舍五入的 方法省略一个数的尾数,写出它的近似数。

  2、在认识近似数、理解近似数的过程中培养学生的估算意识。

  3、使学生体会近似数的含义,增强对近似数的感受,发展学生的数感。

  教学重难点:

  用四舍五入的方法求一个数的近似数

  教学准备:

  课前查资料,了解一些数量信息。

  教学过程:

  一、认识近似数

  1、读中感悟 :

  (1)出示:到20xx年末,我国共有公共图书馆2709个,图书馆藏书约43776 万册。

  到20xx年末,我国共有自然保护区1999个,自然保护区的面积大约 有14398万公顷。

  (2)学生读一读, 师:画线的.四个数所表达的数量的准确程度是否一样?

  组织讨论,引入准确数、近似数的概念 。

  像2709和1999 表示准确的数量 准确数

  像43776万和14398万表示大约的数,与实际比较接近的数 近似数

  生活中的一些事物的数量,有时不用精确的数来表示,而只是用一个与它比较接近的数来表示,这样的数是近似数。

  2、生活中再认识

  师:生活中的许多数量是用近似数表示的,你留心了吗?你在哪 见过或听过?(或课前同学们也搜集了一些数,请拿出你搜集到的资料,和同桌说说这些数是准确数还是近似数)

  回忆,交流 。

  说明:没有办法得到一个精确结果或没有必要用一个准确数表示 时,就用近似数 。

  3、读数,判断近似数

  过度:老师这里也搜集了几组数据,你能读出这些数,说说哪些是近似数吗?

  出示信息,要求读出,并说明哪些是近似数(或用想想做做 第1题)

  ①《中国昆虫名录》收录了当时已知的中国昆虫20069种。

  ②20xx年4月英国《自然》杂志报告说,全球昆虫可能仅有200万到 600万种。

  ③江阴市实验小学共有学生4502人。

  ④20xx年五一黄金周期间,苏州东方水城7天来共接待境内外游 客230万人次,旅游总收入约16亿元。

  指名读题 组织交流

  二、探索求一个近似数的方法

  1、出示例题

  下面是某市20xx年末全市人口情况统计。

  总计(人) 男性(人) 女性(人)

  970889 484204 486685

  先把男性和女性的人数分级,它们各接近四十几万?你能写出它们的近似数吗?

  2、求近似数的方法,一般采用四舍五入法

  (板书:四舍五入法)

  什么叫四舍五入法呢?请你自学书P96页下方的一段话。

  交流,老师解释。

  例如 48 4204 通过分级,我们知道大约有四十几万,然后看万位后一位,千位上是4,比5小,四舍去,所以

  (板书 480000

  48万)

  同样,486685怎样取近似数? 学生说,老师板书。

  970889呢? 自己坐在作业本上。注意格式。

  3、以万或亿作单位

  (1)对着前面判断的信息,提问这些近似数是以什么为单位的? 万或亿作单位写近似数有什么好处?

  以万或亿作单位的由于实际的需要、为了读写方便

  (2) 出示:283000 1970000000它们选用什么单位比较合适?

  集体讲评,说思考过程 。

  (3)比较:有何相同点和不同点?

  讨论得出:相同方法相同四舍五入,不同前者用0占位,后者省略尾数后用万或亿作 单位 。

  三、巩固练习

  完成第97页的想想做做,师指名回答,并纠正学生的错误的认识。

  四、课堂总结。

  通过这节课的学习,你有什么收获?

  五、课后延伸

  从报纸、杂志或网上收集一些近似数,在班级里交流

  六、作业设计:

  1、省略下面各数最高位后面的尾数,再写出近似数。

  705 385 1994 3208 9775

  2、用亿、作单位写出下面各数的近似数。

  8340000000 20680000000 980000000

  七、课堂作业

  完成相应的《三级训练》。

近似数教案15

  教学目标:

  1、通过具体的情景让学生理解近似数的含义,体会近似数在生活中的作用。

  2、通过独立猜测、交流等活动让学生掌握一定猜测的方法,培养学生的数感和估计能力。

  教学重、难点:

  1、通过独立猜测、交流等活动让学生掌握一定猜测的方法

  2、理解近似数的含义,并会合理的取近似数。

  3、培养学生的数感和估计能力。

  教具、学具以及课件准备:

  多媒体课件

  教学方法:

  以现实情境为基础,独立思考,小组交流,在交流中体验近似数的特点,并将数学知识延伸到课外。

  教学过程设计:

  一、创设情境,生成问题。

  1、导入

  在上课之前,老师想考考你们谁能起来介绍一下我们学校?最好是用上一些数据。

  刚才你们介绍了我们学校的一些情况,老师课前也了解了一些情况,知道我们学校大约有20个班级,学生700多名,教职工大概70人。

  问:你能猜猜我们学校的这些信息的准确数据是多少吗?

  生猜。

  老师去了解了一下,知道我们学校有21个班级,学生713名,教职工74名。

  2、观察数据、比较

  用小黑板或者多媒体课件出示相关数据,让学生观察这两组数据,看看有什么发现?(学生可能会回答这两组数据很接近)

  问:你们有什么疑问吗?

  预设答案:(它们有什么含义?有什么区别很联系?)

  师:看来数字里面还有很大的学问,今天我们就来研究这些数字。

  (设计意图;介绍自己的学校,贴近学生生活实际,两组数据对比,让学生产生疑问感知近似数)

  二、探索交流,解决问题。

  1、组织理解近似数的含义。

  多媒体课件出示例8的主题图。

  聪聪去调查了育英小学的学生数,他写下了这样的一句话:“育英小学有1506人,约是1500人。”育英小学到底有1506人还是1500人呢?为什么?

  组织学生进行讨论、交流。

  (1)后半句约1500人是什么意思?

  (2)独立思考后,把自己的想法在组内交流。

  (3)选派组内代表在班中汇报小组讨论结果。

  预设小组汇报结果:

  A、认为育英小学的认数是1506人,因为他告诉我们就是1506人,后半句他说的是约是1500人,是说他们学校的人数和1500人的差不多。

  B、也认为育英小学有1506人,他说约有1500人是大概就是1500人的意思。

  师小结:我们把1506这个很准确的数字就叫做“准确数”,而1500这个和1506差不多的数就叫做“近似数”。(边说边板书)

  1500是1560的近似数

  师:你认为那个数好记呢?

  (学生讨论)

  引导学生明白近似数更容易记,因为它正好是整百数。

  汇报交流:都觉得1500更容易记住

  出示例8主题图比较一下1506和1500这两个数,体会一下准确数和近似数哪个数更容易记住。

  2、聪聪那天不仅调查了育英小学的人数,还调查了新长镇的人数是9992人,约是( )人,先独立填填,再和你的.同桌交流交流。谁来说说你写出的近似数是多少?

  预设回答:

  A、约是10000人,因为我觉得9992人接近10000人,

  B、我写的是“约9990人”因为9992人和9990只相差2。

  这两个数都是1000的近似数,哪个更好呢?为什么?

  (设计意图:一个数的近似数并不是唯一的,教师要给予肯定,并让学生比较哪个数更容易接近准确数、哪个数更容易记住)

  (生讨论交流)

  板书:10000是9992的近似数

  问:生活中为什么要用到近似数?

  师生共同小结:我们用近似数就是为了让我们更容易记住,所以,一般我们都用整百、整千、整万数。

  (设计意图:通过活动的学习,理解近似数的含义,感受到近似数的作用,同时掌握会合理的取近似数)

  3、你还能举出近似数的例子吗?

  (设计意图:请学生列举生活中的近似数,体会近似数的价值,从而在生活中恰当选用近似数)

  三、巩固应用,内化提高

  1、做一做

  (1)陈东家到学校有603米,约是( )米。

  (2)每台洗衣机售价为1198元,约是( )元。

  (3)这个果园有597棵苹果树,约是( )棵。

  (4)这个收费站昨天通过7006辆汽车,约是( )辆。

  2、下面哪些是近似数,哪些是准确数?

  (1)小明身高约140厘米,体重35千克。

  (2)二年级二班有56人,全校约有800人。

  (3)大天鹅可以飞越海拔8800多米的珠穆朗玛峰。

  (设计意图:通过学习,让学生深入体会,准确数与近似数的区别,并会合理的取近似数)

  四、回顾整理,反思提升

  孩子们,这节课我们学习了那些知识,你有什么收获?对自己的表现满意吗?

  (设计意图:让学生进行自我评价,对本节课的知识进行梳理)

【近似数教案】相关文章:

《近似数》教案03-12

《积的近似数》教案10-02

商的近似数教案02-26

《求小数的近似数》教案03-18

《求近似数、四舍五入》教案03-04

七年级数学教案近似数与有效数字12-28

积的近似值教案03-23

数100以内的数教案12-09

数花生教案03-30