植树问题教案(精选20篇)
作为一名优秀的教育工作者,通常需要用到教案来辅助教学,编写教案助于积累教学经验,不断提高教学质量。写教案需要注意哪些格式呢?下面是小编整理的植树问题教案,希望能够帮助到大家。
植树问题教案 1
教材分析
植树问题一共分三种情况,教材在编排时将它们分成三个例题进行教学,分别是两端都种、两端都不种、只栽一端。本节课我对教材进行了整合,在第一课时就将三种情况全部呈现,并且将重心放在探究只种一端时,棵树和间隔数之间的关系。其实只要是只种一端,不管路是几米,间隔数和棵数始终相等,因为树和间隔始终一一对应。处理好了这层关系,理解了一一对应,那么两端都种和两端都不种就可以根据对应思想,通过迁移发现间隔数和棵数之间的关系。
教学目标
1、通过探究,发现在一条线段上植树的问题的规律,理解并掌握不同种法中间隔数和棵数之间的关系。
2、经历探究规律的过程,培养学生观察、分析、合作等能力,初步渗透“一一对应”思想。
3、感受数学来源于生活更应用于生活,培养学生应用意识和解决问题能力。
教学重点
理解间隔数和棵数之间的关系,建构数学模型。
教学难点
建立模型及“一一对应思想”的应用。
教学过程
1、恰好3月份,植树节即将到来,因此在第一环节通过询问植树的好处,渗透环保意识,并让学生感受数学问题来源与生活。
2、第二环节我主要分三个层次进行教学,第一层通过小小设计师,将枯燥的解决问题转变成灵动的设计方案。先引导学生理解“每个5米种一棵”什么意思,有些学生可能认为只有两棵树之间的5米才是间隔,一边不种树的话那个5米就不是间隔,因此我将示意图这样设计,帮助学生更好地理解什么是间隔。再引导学生猜测并画图,让学生经历一个“猜想——验证”的过程。
第二层是本堂课最关键的部分,首先请学生展示作品,说说自己是怎么想的,在说的过程中询问学生分了几个间隔,为什么分4个间隔,它是怎么来的。接着引导学生观察三种画法,它们有什么共同点和不同点,沟通三者之间的联系,并揭示每种种法的名称。然后将探究的.重心放在只种一端的情况上,通过列算式,解释算式意义,并通过质疑,引导学生猜测棵数和间隔数之间有什么联系,为探究埋下伏笔。有些学生虽然对树和间隔的对应关系有点了解,但难以用语言概括,因此我在课件中用不同颜色描出树和它对应的间隔,闪烁树和间隔,并用圈一圈的方法,便于学生区分和发现,之后安排学生对照着左手,将自己的发现告诉同桌,深化对对应关系的理解。因为本节课的规律属于不完全归纳法,单靠一个例子是不科学,没有说服力的,所以我增加了300米的小路种树,想象着种树的过程,理解为什么只一端种时,棵数始终等于间隔数。最后运用迁移,理解为什么一个加1,一个减1。
第三层引导学生观察三个算式,有什么相同点,它们第一步都是先算什么?数学广角这类题目建模是关键,但没有解决问题的策略,就会使课显得空洞,这一层主要让学生形成一个策略:要知道一共有几棵树,必须先求出间隔数。接着通过例题,使知识得到一个巩固,最后展示生活中的植树问题,感受数学不仅来源于生活,更要运用于生活。
第三环节中设计了两道习题,第二题是生活中常见的例子,主要为了培养学生从字里行间寻找隐藏信息的能力,接着通过变式,隐去一座房子又会怎样种。其实在画图时会有这样一个疑惑,为什么那一端空在那不种树,而这道题目可以给出很好的说明,有时候在解决问题时还要注意联系生活实际。
教学反思
作为新教师,对于这类课我是比较难把握,数学思维如此缜密,我在教学的过程中难免有所疏忽。
1、语言不够精炼,会不自觉地重复学生的话。在讲解只种一端的时候,学生对一一对应还是明了。
2、评价语有些生硬,对于学生的回答有时不能及时得做出点评。
3、探究得太少,自己说得太多。使课堂不够开放。
4、本节课虽然渗透了解决的方法,先求间隔数,但没有明确间隔数的求法。应该在板书上指明。
植树问题教案 2
教学内容:
教科书106页例1及相关内容。
教学目标:
1、通过猜测、实验、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律,构建数学模型,解决实际生活中的有关问题。
2、培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。
教学重点:
发现并理解两端都栽的植树问题中间隔数与棵树之间的关系。
教学难点:
运用“植树问题”的解题思想解决生活中的实际问题。
教学准备:
多媒体课件、直尺、学习纸。
教学过程:
一、谜语引入做铺垫:
1、师:同学们,记得上一次上课前老师给同学们除了一个谜语,同学们一下子就猜出来了,今天老师又带来了一个谜语。
师说谜语,学生回答(手)
师:真厉害!现在举起你们的右手,手心向我,尽量把五指张开,大家看,每两个手指间都有一段?(距离)。在数学中,我们把这一段距离就叫做一个间隔。(板书:间隔)5个手指间有几个间隔呢?(4个),4个手指呢?(3个),3个手指呢?(2个),2个手指呢?(1个)。好,同学们可以把手放下了。
2、现在请第一小组的前5位同学站起来,站起来的这5位同学之间有没有间隔?(有)。从第一位同学到最后一位,一共有几个间隔呢?(4个)后面一位同学也请站起来,现在有几位同学?几个间隔呢?(6位,5个),再站起来一位,现在是?(7位同学,6个间隔)。好,请坐,谢谢你们。
手指之间有间隔,刚才站起来的同学间有间隔,我们在植树时,树与树之间也要有间隔,那么今天我们就以植树为例探讨与间隔数有关的问题。
板书课题:
植树问题
二、探索新知:
1、出示例题:植树节到了,同学们要在100m的小路一边植树,每隔5m栽一棵(两端要栽)。一共要栽多少棵树?
2、理解题意:
师:在这道题中,你们发现了什么数学信息?
生回答(总长度100m,5m一棵)。课件演示。
师:每隔5m一棵是指两棵树之间的距离是5m,我们把这个距离叫做间隔长度。
师:还要注意哪些重要的信息?生:一边。师:一边是什意思?路有左右两边,只要在一边栽树,另一边不栽。生:两端要栽。师:路的起点和终点都要栽。
课件演示。
3、学生猜想:
师:你们猜一猜,一共要栽多少棵树?谁来说说。
生回答。怎样得到的。师板书:100÷5=20(棵)等等。
师:到底要栽多少棵呢?哪一种猜想是对的,我们要检验一下,你们认为怎样检验?(画图)100m的小路每5m画一棵,5m画一棵,这样画下去你们觉得?(太麻烦)。为什么麻烦?(100里面有20个5m),怎么办呢?
像这样数据大、比较复杂的问题,我们可以先从简单的情况入手进行研究,我们可以选择100m中的一小段,如果是15m的小路,可以栽几棵?20m呢?
4、学生操作:
师:请同学们拿出学习纸,我们用线段表示小路,把小路的长度缩小100倍,学习纸上15cm的线段表示15m的小路。20cm表示20m,我们用5cm一个间隔表示5m一个间隔。可以用你喜欢的图案表示一棵树。画好后,完成下面的表格。
学生操作。师巡视。画好的互相检查。
5、学生汇报:
师:请一个同学汇报一下结果,15m的小路?生:3个间隔,4棵树。
师:同意吗?我们来演示一下栽的`情况。首先起点处栽一棵,隔5m栽一棵。
第3棵树时,师问:还要栽吗?(要)为什么?(两端都要栽)起点栽一棵,终点也就是末尾也要栽一棵。
大家看,15里面有几个5m?(3个),也就是3个间隔。1、2、3,3个间隔,1、2、3、4,4棵树。3个间隔4棵树。刚才那位同学的回答是正确的。20m的小路?(4个间隔,5棵树)。我们来看,(课件演示)还是5m一个间隔,终点还要栽一棵。20里面有几个5m?(4个)几棵树?(5棵)。4个间隔5棵树,回答正确。
6、尝试列式:
师:你发现了什么规律,不画图,你知道25m要栽几棵树吗?试一试。
学生尝试列式。汇报,师板书:25÷5=5(个间隔)5+1=6(棵)
学生说列式想法:5m一个间隔,25m里有几个5m就有几个间隔,求出的是间隔数,棵数比间隔数多1,所以要加1。
师:为什么要加1,你怎么知道棵数比间隔数多1(从刚才表格得到的规律)你们同意吗?(同意)。
7、理解规律:
如果说5个间隔就栽5棵树会出现什么情况呢?我们来看,一个间隔对应一棵树,5个间隔就是5棵树,这样栽完了吗?(没有)为什么?(末尾没栽,这是一端栽一端不栽)5个间隔栽5棵树行吗?(不行),应该栽几棵?(6棵)。
要使两端都栽树,棵树和间隔数有一个怎样的关系呢?谁来说。
(棵树比间隔数多1,反过来,间隔数比棵树少1)
8、巩固强化,得出结论:
师:同学们都明白了两端都栽的情况下,棵树和间隔数之间的关系,现在老师出几道题考考大家,7间隔栽几棵树?20个间隔栽几棵树?9棵树之间有几个间隔?20棵树之间有几个间隔?非常好!
如果用一个等式来表示间隔数和棵数之间的关系,应该怎样写?
间隔数+1=棵树(棵树—1=间隔数)
大家把这个关系齐说一次。
要求棵数必须要知道?(间隔数)
已知总长度和间隔长度怎样求间隔数?
总长度÷间隔长度=间隔数齐读一次。
9、运用方法,验证例题:
师:现在我们回到例题,100m的小路一边植树,每隔5m栽一棵(两端要栽),到底要栽多少棵树?你猜对了吗?
看看黑板上这种做法对吗?生回答,集体讲评。课件出示正确列式。
三、巩固练习:
1、同学们在全长400m的小路一边植树,每隔8m栽一棵树(两端要栽),一共要栽多少棵树?
学生完成,板演,讲评。、
把一边改为两旁,生独立完成,集体讲评。
2、工人叔叔正在架设电线杆,相邻两根间的距离是200m。在总长3000m的笔直路上,一共要架设多少根电线杆(两端都架设)?
师:这道题和我们今天学的植树问题有联系吗?(有)谁来说一说。
生回答,师引导找到联系,在课件上标示。
学生独立完成,板演,集体讲评。
3、在一条笔直的公路一侧植树,每隔6m种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?
学生独立完成,师提醒:先求间隔数。
四、课堂小结。
(略)
植树问题教案 3
第一课时
教学目标
1、使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。
2、掌握“植树问题”的第一种情况:“两端都要种”(即间隔数比株数少1的情况)。
3、培养学生认真审题的好习惯。
重难点
重点:掌握“两端都要种的植树问题”的解题方法。
难点:掌握已知间隔长度和全长,求间隔数的方法,以及已知间隔数和间隔长度,求全长的方法。
教学过程
一、引入。
1、春天是植树的季节,同学们,你们每年都参加植树造林的活动吗?美化绿化自己的家园,你们可曾注意到植树中也有很多学问,由于植树的线路不同,植树的情况也就不同,你们想了解植树中的学问并学会怎样解决植树问题吗?这个单元我们共同来研究你们想要解决的问题。
2、小游戏。
师生共同在毛线两端系个扣,然后等距离每隔一段系个扣,看一看,数一数,一共可以系几个扣。学生动手试一试。
小组讨论,看一看能得出什么结论。
集体交流,通过刚才的游戏,你得出了什么结论。
通过操作,观察讨论后得出系扣的个数比间隔数多1。
3、验证。
学生拿出一根20厘米的毛线绳,每隔5厘米系一个扣,绳子两端也要系,数一数,一共系了几个扣。
指名说说自己系了几个扣。验证扣的个数与间隔数的关系。
4、练习。
同桌两人各拿一张纸条,互提要求在纸上分段,要求两端均画上标志。相互评价,互提建议。
二、新授
1、出示教学教材第106页例1。
(1)读题,理解题意。
(2)交流从题目中获取的信息和所要解决的问题。
(3)学生动手试一试。
(4)小组看图讨论,各自交流。
想法一:100÷5=20,所以要准备20棵树苗。
想法二:我用画线段图的方式帮助思考,如果把一条线段平均分成4段,两端也要栽树,这样就可以栽5棵。照此思路,可以推出间隔数比棵数少1。
(5)猜测。
猜一猜,谁的思路对。
(6)集体反馈,发现规律。
经过集体交流,发现栽树的棵数比间隔数多1。在100米长的小路上共有20个间隔,那么就可以栽21棵树。
(7)教师讲解,帮助学生理解规律。
因为植树总数比间隔数多1,这样我们就可以先求出树与树之间一共有多少个间隔,而每个间隔的长度是已知的,就可以求出一共植树多少棵。
(8)研究列式的方法。
100÷5=20(段)
20+1=21(棵)
教师表扬能自己正确列式的学生,并请他们阐明思考过程。
2、尝试。
(1)出示例题:在一条18米长的水泥路上,从头开始每隔3米摆一盆花,一共摆多少盆花?
(2)读题,理解题意。
(3)明确已知条件和所求问题。
(4)找寻数量间的关系。同伴探究,并得出结论。
(5)独立列出算式。
(6)集体反馈。
指名板书:18÷3=6(段)
6+1=7(盆)请学生分别说出每步的意思。
3、巩固练习
1)有一根绳子,每隔2米挂一盏灯笼,起点和终点都挂,共挂了14盏灯笼。这根绳子长多少米?
2)学校领操台前从起点开始每隔2米插一面彩旗。一共需要多少面彩旗?
3)新建小区要在一条长1000米的路两旁安装路灯,每隔8米装一盏(两端都装)。一共需要多少盏路灯?
4)一个小学生从一楼上到三楼用了40秒。照这样计算,他从三楼上到六楼需要多长时间?
第二课时
教学目标
1、理解并掌握“植树问题”的基本解题方法,能解决一些实际生活中的与“植树”有关的问题。
2、掌握“植树问题”的第二种情况:“两端都不种”(即间隔数比株数多1的情况)。
重难点
重点:掌握“两端都不种的植树问题”的解题方法。
难点:掌握已知棵数和全长,求间隔长度的方法,以及已知棵数和间隔长度,求全长的方法。
教学过程
一、复习
提问:已知全长和间隔长度,怎样求棵数?
教师根据学生回答板书:棵数=全长÷间隔长度+1那么已知间隔长度和棵数,怎样求全长呢?答后板书:全长=间隔长度×(棵数—1)
二、新授
今天我们继续来研究另一种植树问题。
1)出示教材第107页例2。
(1)读题,理解题意。
(2)投影出示教材图,帮助理解。
(3)分组看图讨论。
(4)尝试列式计算。
(5)集体交流。
教师板书:60÷3=20(段)20—1=19(棵)19×2=38(棵)
(6)质疑。
为什么减1?(因为两端都不种树,所以植树的棵数比间隔数少1)为什么要乘2?(因为是在两馆间的路两旁植树,所以要乘2)
(7)比较与例1的不同。先分组讨论,再集体交流。
例1是两端都要栽树,所以棵数比间隔数多1。例2是两端都不栽树,所以棵数比间隔数少1。
(8)教师讲解,帮助学生理解。
教师讲述:相邻两棵树之间的距离是3米,60米里面有多少个3米,就是多少个间隔。我们知道大象馆和猩猩馆在路两端,也就是说两端不栽树,所以间隔数就比植树的棵数多1。
2)小游戏。
这里有一张彩纸条,老师想把它等分成2份,需要用剪刀剪几次?(一次)请你们拿出彩纸条,分别把它们分成3段、4段、5段,看一看要剪几次。看一看能得出什么结论。
总结:剪的次数比纸条的段数少1。
3)巩固练习
1、两根栏杆之间每隔3米放一个障碍物,一共放了8个。这两根栏杆相距多少米?
2、两栋楼之间每隔2米种一棵树,共种了15棵。这两栋楼相距多少米?
3、甲、乙两地相距4千米,每隔800米设一个站牌(甲、乙两地各设一个)。甲、乙两地一共设有多少个站牌?
4、小明家门前有一条35米的小路,绿化队要在路旁栽一排树。每隔5米栽一棵树(一端栽,一端不载)。一共要栽多少棵数?
学生独立思考小组讨论,后集体交流。教师指导:棵数=间隔数
第三课时
教学目标
1、使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。
2、掌握“植树问题”的第三种情况:“关于一个封闭图形的植树问题”。
3、培养学生认真审题的学习习惯。
重难点
重点:掌握封闭图形中“植树问题”的解题方法。
难点:掌握已知株数和全长,求株距的方法,以及已知株数和株距,求全长的方法。
教学过程
一、复习
1、前两节课都学习了有关“植树问题”的哪些情况?
根据学生的回忆内容,教师整理板书:
(1)两端都植树,则棵数比间隔数多1。全长、棵数、间隔长度之间的关系:
全长=间隔长度×(棵数—1)
棵数=全长÷间隔长度+1
间隔长度=全长÷(棵数—1)
(2)一端植树,则棵数就比在两端植树时的棵数少1,也就是棵数与间隔数相等,全长、棵数、株距之间的关系:
全长=间隔长度×棵数
棵数=全长÷间隔长度
间隔长度=全长÷棵数(3)两端都不植树,则棵数比间隔数少1。
棵数=全长÷间隔长度—1
间隔长度=全长÷(棵数+1)
2、设想。
你还知道有关“植树问题”的哪种情况?给同伴做一个介绍,说一说你是从哪知道或学到的`。
3、谈话。
同学们,今天我们继续来研究第三种“植树问题”,这种情况比较特殊,也很有意思,看谁最先发现规律。
二、新授
1、出示教材第108页例3。
(1)引导学生审题,从图中知道哪些信息?
生:从情境中知道张伯伯要在圆形池塘周围栽树,池塘的周长是120m,每隔10m栽1棵树,问题是求一共要栽多少棵树。
(2)引导学生:把这类问题转化成在封闭的图形上植树的问题。
师:什么是封闭图形呢?
学生思考后回答:无论什么图形,只要起点和终点重合,即首尾相连就是封闭图形。
师:观察封闭图形上的棵数与间隔数,你有什么发现?
生:棵数等于间隔数。教师板书。
师:本题该怎么解答呢?
生:因为圆形池塘是封闭图形,根据“棵数等于间隔数”解答。120÷10=12(棵)
师:如果把圆拉成直线,你能发现什么?
出示下图:
生:间隔数与棵数相同,也就是相当于一端栽树,另一端不栽树的情况。
2、解决实际问题。
(1)完成教材第108页“做一做”。
(2)读题,理解题意。
(3)分析数量关系。
(4)自主探究或同伴共同探究。
(5)集体交流。
(6)教师讲解,帮助学生理解。
(7)套用关系式进行验证。(8)解答。150÷15=10(盏)
三、巩固练习
1、一个圆形花坛,它的周长是150米,每隔2米栽一棵树。共需树苗多少棵?
2、社区有一块正方形活动区,每边都栽种19棵树,四个角各种1棵。共种树多少棵?
3、时钟6时敲6下,10秒敲完。那么12时敲几下,需要几秒?
第四课时
教学目标
1、使学生能够根据实际条件,解决“植树问题”。
2、熟练应用解决“植树问题”的方法。
3、培养学生研究问题的科学素养。
重难点
重点:能根据条件研究计算方法。
难点:熟练运用解决“植树问题”的方法。
教学过程
同学们,今天我们用这几天学习的知识来解决一些生活中的实际问题。
1、解决实际问题。
四(1)班同学办安全小报,全班48人每人展示一张。在每张作品的四个角都钉上图钉,一共需要多少个图钉?
(2)读题,理解题意。
(3)分小组讨论,制订方案。
学生动手试一试。
小组讨论,看一看能得出什么结论。重点是根据条件研究计算方法。
(4)分小组汇报设计方案。根据不同的方案进行计算。
①共1行,每行48张。列式:(1+1)×(48+1)=98(个)
②共2行,每行24张。列式:(2+1)×(24+1)=75(个)
③共3行,每行16张。列式:(3+1)×(16+1)=68(个)
④共4行,每行12张。列式:(4+1)×(12+1)=65(个)
⑤共6行,每行8张。列式:(6+1)×(8+1)=63(个)还有其他方法吗?
最简单的方法是48×4=192(个)。
但是,这种方法比较浪费图钉,生活中一般不会采用这种方法。
(5)说一说,你会选择哪种方法布置展板。
(6)观察算式,发现规律。
2、拓展。
(1)板书练习。
李明上楼,从第一层到第三层要走36级台阶。如果从第一层走到第六层,需要走多少级台阶?(各层之间台阶数相同)
(2)理解题意。
(3)尝试解答。
(4)交流反馈。
(5)教师讲解,帮助学生理解。
讲述:我们把从第一层到第二层看作1个间隔,第二层到第三层看作1个间隔,所以李明从第一层到第三层共走了2个间隔,根据“植树问题”的数量关系,可求出每相邻两层楼梯之间的台阶数为36÷(3—1)=18(级)。而从第一层到第六层共走了5个间隔,根据“植树问题”的数量关系可得,18×(6—1)=90(级)。(6)归纳。
这道题从表面看并不是“植树问题”,但是我们把层数看成棵数,可以抽象成为一条线段上的点数与间隔数之间的关系。
3、巩固练习。
(1)计划在一条长8064米的水渠的一条边上植树,包括两端在内,共植169棵。每相邻两棵树之间的距离是多少米?
(2)椭圆形的跑道周长是400米。每隔40米装一盏红灯,两盏红灯之间装2盏绿灯。一共装多少盏灯?
(3)舞蹈队排成一个方阵,最外一层的人数为60人,舞蹈队外层每边有多少人?这个方阵共有多少人?
4、学生独立完成练习二十四的题目,并逐一校对。
植树问题教案 4
教学目标:
1、利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。
2、进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。
教学重难点:
1、利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。
2、培养学生从实际问题中发现规律,应用规律解决问题的能力。
3、提高解决问题,让学生感受日常生活中处处有数学,激发热爱数学的情感。
教学、具准备:
课件、表格、尺子等。
教学过程:
一、教学间隔
1、教学间隔的含义。
师:同学们,在我们的身边到处有数学。请你们伸出一只手张开手指,仔细观察,你看到了什么?(5个手指,4个空)这4个空也可以说成4个间隔,5个手指之间有4个间隔。那4个手指之间有几个间隔?3个手指之间呢?(请生在自己的手上指一指)2个手指之间呢?(全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)
2、引入植树问题的学习。
师:你们真聪明!发现了手指数与间隔数之间的关系,像这类问题其实就是植树问题(揭示课题)。今天这节课我们就一起来研究植树问题。
二、自主探究找出规律
课件出示:为迎接2008奥运会,北京市城市规划局准备在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?
师:我们一起来读读题。谁知道每隔5米栽一棵是什么意思?那共需多少棵树苗,谁来猜一猜?
预设:学生可能大多数对得到20棵。
师:你们的猜测正确吗?下面我们就一起想办法来验证一下,但是100米这个数字有点大,不好验证,怎么办呢?在遇到比较复杂的问题是我们可以先用比较简单的例子来验证。假设路长只有20米,每5米栽一棵(两端都栽),要栽几棵呢?
师:下面就请小组同学一起想办法验证一下你们的猜测是否正确?
全班交流汇报。(重点让用线段图来验证的小组来说明理由。)
师:这个小组的同学真会想办法,他们用一条线段表示这条小路,平均分成4份,这时出现了几个间隔和几个间隔点?
生:4个间隔和5个间隔点。也就是把一条小路平均分成4份后,如果两端都要栽树的话,共要栽几棵?(5棵)205不是等于4吗?怎么是5棵呢?多的这一棵是怎么来的?
师:如果每隔4米栽一棵、每隔2米栽一棵又需要栽多少棵树苗呢?请小组同学一起讨论一下,并将你们解决的方法写在练习纸上。
根据学生的回答,师填写表格:
总长(米)
20
全班观察表格寻找规律。
师:同学们非常能干,通过猜测、讨论、验证发现了植树问题中一个非常重要的规律,那就是在一条路上植树,如果两端都要栽的话,栽树的棵数比平均分的`份数也就是间隔数多1。(板书:棵数=间隔数+1。)
师:对得到的这个规律有没有不同意见?
三、巩固练习
师:现在我们用得到的这个规律来验证一下你开始的猜测正确吗?
(1)基础练习。
师:请看题目,谁愿意来说一说?
A1、在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?
A2、如果是每隔10米栽一棵呢?(口答)
B、师:同学们真能干!其实在我们的生活周围存在许多类似的植树问题,这是陈老师家乡重庆的鹅公岩大桥,想知道这座桥上有多少盏路灯吗?
课件出示:大桥全长1420米,大桥的两侧每隔10米安装了一盏路灯。一共安装了多少盏路灯?
C、这是我们重庆的轻轨列车,陈老师每天就坐轻轨列车回家。
课件出示:从学校到老师家一共有14个站,每相邻两个站之间的距离平均是1千米,你知道陈老师的家离学校大约有多少千米吗?
(2)拓展练习。
师:老师的家乡重庆是一个美丽的城市,在重庆有一个解放碑,想听听它的钟声吗?
课件出示解放碑的大钟及题目。
解放碑的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间呢?
师:请同学们独立的在练习本上完成。
小结:同学们真棒!不仅能通过自己的观察、思考找到植树问题中当两端都栽树时棵数=间隔数+1,而且还运用规律解决了生活中的实际问题。
四、数学文化
介绍二十棵树植树问题:有20棵树,若每行四棵,问怎样种植,才能使行数更多?
五、全课总结
1、通过这节课的学习你有什么收获?
2、其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树以及围棋盘上摆棋子的问题等(课件图片展示),这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。
植树问题教案 5
设计理念
本课通过生活中的事例,调动学生已有的生活经验,接触一些重要的数学思想方法,经历猜想、实验、推理等数学探索过程,激发学生对数学的好奇心和探求新知的兴趣,增强学习数学的兴趣。以学生发展为本,着眼于数学思维能力的培养。注重引导学生充分体验探究过程,感受数学在日常生活中的广泛应用,培养学生的观察比较、动手操作、分析概括能力以及语言表达能力。
教学内容
《义务教育课程标准实验教科书数学》(人教版)四年级下册第117页。
学情与教材分析
“植树问题”是人教版四年级下册“数学广角”这个单元的一节内容。和前几册教材一样,主要是向学生渗透一些重要的数学思想方法。本课主要是渗透有关植树问题的一些思想方法,教学时通过现实生活中的一些常见的实际问题,让学生从中发现规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。
教学目标
1、通过动手操作、小组合作,使学生能理解间隔数与植树棵数之间的规律,并将这种规律应用到解决类似的实际问题之中。
2、培养学生在解决实际问题中探索规律,找出解决问题的有效方法的能力。渗透数形结合的思想,培养学生借助图形等方式解决问题的意识。
3、培养学生的合作意识,养成良好的交流习惯。通过实践活动激发热爱数学的情感,感受数学与现实生活的密切联系,体验学习成功的喜悦。
教学重点
引导学生发现不封闭线路上,两端都栽时间隔现象的简单规律。
教学难点
运用规律解决类似的实际问题的方法。
教学准备
电脑课件、泡沫条、小树模型、表格等等。
教学过程
一、创设情境,引入新课
1、初步感知植树方法的多样化
师:春天是个植树的好季节,你们知道植树有哪些好处吗?
植树原来有这么多的好处啊。这节课,我们就一起来研究植树中的数学问题。(板书课题)
(课件出示)兰兰想在门前小路的一侧种上三棵小树苗来美化环境。你们能帮她设计出一种方案吗?
请学生上台用课件演示:鼠标移动书苗介绍设计方案
【学情预设:有的学生在小路两端各栽一棵,中间栽一棵;有的学生把三棵都栽在中间;有的学生从一端栽起,另一端不栽。】
师示范给一种方案命名,其他方案请学生命名。
结论:
(1)两端都栽。
(2)只栽一端。
(3)两端都不栽。
(板书)
【设计意图:将生活中常见的植树问题,整体地呈现出来,培养学生“用数学”的意识,渗透“生活中处处有数学”的思想。放手让学生设计方案并冠名,充分体现学生的主体地位。】
二、动手操作,探究新知
1、教学例1
本节课我们主要学习两端都栽的植树问题。
(1)出示例1:六年级的学生想在全长100米的校园小路一边植树,每隔5米栽一棵(两端都栽),一共要准备多少棵小树苗?
读完题目,你们获得了哪些信息?
猜猜看,一共要准备几棵小树苗?
【设计意图:培养学生认真审题的好习惯。学生在猜想的过程中可能会出现几种不同的答案,到底哪种答案对呢?留下悬念,引发思考,激发学生探究新知的欲望。】
(2)学具操作,初步探究
到底谁的答案是对的呢?我们先取100米中的一小段20米来研究。
小组合作,用学具模拟栽树。思考:两端都栽的时候,应该栽多少棵?
学生展示学具,汇报模拟结果。
【学情预设:学生汇报:每隔5米栽一棵,所以在5米,10米,15米,20米的地方各栽一棵。两端都要栽,所以在0米的地方又栽一棵,一共是5棵。】
(3)教学画线段图
我们用一条线段来代表20米长的小路,用几个点来代表小树苗。这就是我们经常要用到的线段图,线段图可以很好地帮助我们思考。(课件展示)
师:这几个点除了可以代表小树苗,还能代表其他的东西吗?引导学生发现点可以表示很多物体。
师:两点间的距离可以用哪个词语来表示呢?(间隔)
生活中你们还见过哪些间隔,能举些例子吗?
刚才在植树中,你们发现了几个间隔(数)呢?是怎么知道的`?
【学情预设:学生可能会说是数出来的,可能会说是算出来的……每一种方法教师都予以肯定。】
【设计意图:老师呈现解决问题常用的方法:遇到复杂问题想简单的,从简单问题入手去研究。让学生利用学具模拟实际种树去检验,学生兴趣比较大,做到人人动手实践,丰富了学生的感性材料,并自然过渡引出线段图,为学生顺利发现并总结规律打下了基础。】
师:同学们在刚才栽树的过程中,还发现了什么?
【设计意图:给学生一个思考的空间,使学生发现植树时要准备树苗的问题并不能简单地用除法来解决。】
(4)感知规律
如果让你们来栽树,在这条20米的小路上,要使每棵树之间的距离相等,还可以每隔几米栽一棵树?
【学情预设:学生会提出每隔1米,2米,4米,10米,20米栽一棵。】
出示表格,根据学生的回答将间隔填上。
小组合作:选择一、两种间隔,用喜欢的方法找出间隔数和棵数,填入表格中。
总长
间隔(米)
间隔数(个)
棵数(棵)
20米
(两端都栽)
5米
4个
5棵
1米
2米
4米
10米
20米
填好表格后,小组派代表汇报结果。
【学情预设:学生可以用画线段图、算一算、数一数等方法完成。】
【设计意图:学生自由选择方案,并选择用自己喜欢的方式来找出间隔数和棵数,体现教学方法的开放性。展示学生不同的探究方法,体现“不同的学生学习数学的水平可以不同”的教育思想。】
谈论交流:两端都栽时,植树的棵数与间隔数之间有什么关系?
得出结论:两端都栽树时,棵数比间隔数多1。也可以说间隔数比棵数少1。
板书:(两端都栽)间隔数+1=棵数
质疑:为什么两端都栽时,棵数比间隔数多1?
配合学生的回答,课件展示
【设计意图:启发学生透过现象发现规律,也就是在两端都栽时,棵数比间隔数多一。】
(5)练习
老师有几个问题想请你们用刚才所学的规律以抢答的形式来帮忙解决。
两端都栽时,7棵树有几个间隔呢?9个间隔有几棵树?12棵树有几个间隔呢?20个间隔有几棵树?……
【设计意图:全体学生一起抢答,知识得到了巩固,同时也活跃了课堂的气氛。】
(6)验证
我们利用这个规律来算一算,两端都栽时,100米到底应该种多少棵树?看看前面哪些同学猜对了。
【设计意图:学生经历了分析、思考、解决问题的全过程,同时利用所学的规律加以验证。从中得到解决问题的方法,丰富了学生的解题策略,体验到成功的喜悦。】
三、应用规律
(1)任意一纵队的学生起立
师:谁能应用刚才所学的知识提几个数学问题?
【学情预设:学生可能会提:有几个间隔?头尾两个同学相距多少米?每相邻两个同学间隔有多少米?】
(2)学校小路一侧插上12面彩旗,两头各插一面,每两面彩旗之间相隔6米,这条小路长多少米?
(3)工人架设电线杆,每两根电线杆之间的电线长100米,从第1根到第9根之间要拉多长的电线?
(4)学校组织40名同学参加车鼓队排练,请你设计一下队形?可能会排成几排?
【学情预设:1排、2排、4排、5排、8排……】
师:如果老师想排成一排,每两个同学的间隔是2米,想想,这个车鼓队伍头尾相距多少米?
如果老师想排成两排呢?
(5)我们的城市建设正在火热进行中,市里决定在一条长20xx米的街道两侧安装节能路灯,(两端都要安装),每隔50米安一座,算算看一共要安装多少座路灯?
【设计意图:应用知识解决孩子们身边的问题,解决学校的问题,解决社会公益问题,提高了学生解决生活实际问题的能力。充分体现了新课标“数学学习内容应当是现实的,有意义的,富有挑战性的”的理念。】
四、全课总结
学完这节课,你有什么想对老师或者同学们说的呢?
五、课外思考
为了进一步美化我们的校园,学校准备沿着宣传廊一旁摆上漂亮的花。宣传廊全长约60米,如果每隔6米摆一盆花,你想怎么摆?一共需要购买多少盆花?
【设计意图:把探究活动延伸到课外,为下一节课的教学做好铺垫。】
设计思路:
《植树问题》是人教版小学数学实验教材四年级下册新增的一个内容,其目的是向学生渗透一些重要的数学思想方法。教材通过现实生活中一些常见的实际问题,让学生从中发现规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。
上课伊始,对学生们进行环境保护教育,让学生意识到植树和生活有紧密的联系,而且植树中还藏着有趣的数学问题,激发学生的求知欲。
导入新课后,让学生成为学习的主人,学生经历了猜猜,试试,画画,填填等多种学习形式,自主探究出规律。整个过程培养了学生的动手操作能力,自主探究能力,小组合作交流能力。学生自由选择方案,体现教学方法的开放性,在教师的引导下,学生很快地发现了规律,并构建起植树问题的数学模型,为下一节课的教学打下坚实的基础。
在练习巩固环节,让学生运用新获得的数学知识来解决生活中的实际问题,让学生意识到生活中处处有数学,数学源于生活,又用于生活,激发学生的学习热情。
本课设计的立足点在于学生的发展,把学生探索规律的过程作为课堂的中心点,把学习的主动权交给学生,发展了学生的潜能,培养了学生的实践能力和创新意识。
植树问题教案 6
【教学内容】:
《植树问题》是新课程标准实验教材四年级下册的内容。
【设计理念】:
《新课标》指出“应使学生经历从实际问题中抽象出数量关系,并运用所学知识解决问题的过程。”“植树问题”通常是指沿着一定的路线,这条路线的总长度被分成若干间隔。由于路线不同,植树要求不同,路线被分成的间隔和植树之间的关系就不同。本节课主要通过让学生自主探究、分析、比较的方法,找“植树问题”的规律。
【学期与教材分析】:
教材将植树问题分为几层次:两端都栽、两端不栽、环形情况等,其目的在于通过解决问题渗透数学思想方法。不同的教师在处理植树问题的教学上各有差别,而俞正强老师,一个衣着朴素、老式的布鞋、光亮的脑门、憨厚的笑容,对“植树问题”有自己独特的'教学和见解,他抛开课本给出解决植树这类型问题的方法,从练习题的引入出发,层层递进的引导学生思考、分析、具体问题具体分析,使学生在轻松、愉快的学习氛围中完成。
【教学目标】
1、通过动手操作、合作交流,理解一条线段上植树问题的规律。
2、学会应用植树问题的模型去解决实际问题的方法。
3、经历和体验“复杂问题简单化”的解题方法和策略。
【教学重难点】
引导学生在探索中发现规律,培养学生的归纳能力及概括能力,从而初步认识植树问题,会解决相关的实际问题。
为完成上述教学内容和目标要求,俞老师从简单的习题着手,进一步联系到生活中的植树等实际问题,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。
一、练习引入,构建新知。
课前创设简单易懂的题目“20米,平均每5段一份,可以分几份?”学生很快列出算式20÷5=4(段),紧接着引出例题“20米路,每5米栽一棵树,可以栽几棵?”学生列出算式20÷5=4。
俞老师没有直接告诉学生答案,而是询问,为什么用除法?问题(1)中两道题有什么共同点?目的在于,让学生在练习中,突现知识的起点————平均分。而不同点又是什么?一是求点数,一个求线段。那么一共可以栽几棵树呢?学生通过观察知道了一共可以栽4+1=5(棵)树,整节课条理清晰,层次分明,浅显易懂,始终围绕重点内容进行展开教学。
二、注重实践,体验探究。
教学中,俞老师多次引导学生观察、假设、思考,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个端点,也就是要在5棵树。使学生发现和理解,植树问题并非简单的除法就可以解决,植树问题种在的地方就是点,而非线段上,接着俞老师从生活实际出发,引导学生思考和观察,生活中哪些人把什么做在点子上?学生通过思考后纷纷答道:电线杆、垃圾桶、栽花、纽扣、排队等,从而发散了学生的思维,激起了学生的学习兴趣。在学生兴趣盎然的时候,俞老师提出问题“段数和点数有什么样的关系?”启发学生透过现象发现规律,也就是栽树的棵树要比段数(间隔数)多1。让学生经历这个过程并从中学习一些解决问题的方法和策略。
三、联系生活,拓展思维。
体验是构建的基础,俞老师通过有趣的游戏激发学生理解植树在实际生活中的利用。让一排学生当“点”每2米栽一棵树,可以栽几棵树?转变为如果路尽头有了一座房子,我们该怎么植树?如果路的头尾各有一个房子,又怎么植树?栽几棵?简单实在的实际问题,把本节课的知识点良好的应用到实际生活当中,使学生从旧知向隐含的新知迁移了,本节课也因此达到了升华。
总之,本节课,以学生的设计为出发点,通过线段这一简洁、直观的方法的观察、分析,引导学生积极认真的思考,进而透过现象发现不同情况下的棵树与段数之间的关系。本节课,俞老师没有课件,一支粉笔,一块黑板,真正是一节难得的常态课,值得我学习和借鉴。
植树问题教案 7
个人简介:陈智敏,男,30岁,本科学历,小学高级教师,现任乐清市雁荡镇一小副校长。先后被评为乐清市教坛新秀、温州市首届学科骨干教师,两次荣获乐清市先进教育工作者称号。20xx年获得乐清市优质课一等奖,并多次承担温州市、乐清市教研室组织的送教下乡活动、乐清市级公开课教学和新课程专题讲座,所撰写的论文、案例多次在乐清市、省级获奖及发表。
教学内容:
人教版实验教材四下P117—P118页《植树问题》例1、例2
教学目标:
1、使学生通过生活中的事例,初步体会解决植树问题的思想方法。
2、初步培养学生从实际问题中探索规律、找出解决问题的有效方法的能力。
3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
教学重点:
理解种树棵树与间隔数之间的关系,会应用植树问题的模型解决一些相关的实际问题。
教学难点:
应用植树问题的模型灵活解决一些相关的实际问题。
设计理念:
新课标实施,数学教材进行了相应的改革,数学思想方法的重要性更为彰显。每册教材通过“数学广角”来进一步渗透数学学习的思想、方法,加强学生综合运用知识的能力,逐步提高解决问题的能力。在植树问题的教学中,解题不是主要的教学目的,主要的任务是向学生渗透一种思想,一种在数学上、在研究问题上都很重要的思想——化归思想。
本课的设计,主要根据教学内容的特点,及学生的实际情况,引导学生积极参与,通过开放性的设计,让学生在设计植树方案的'过程中通过画图亲身体验在三种种植情况下,选择的间隔不同,但棵数与间隔数之间都存在一定的关系。通过学生的体验,建构植树问题的模型,再运用模型解决生活中的类似问题。教学中重在让学生体验知识获得的过程,更注重于培养学生运用所学知识,举一反三,解决实际问题的能力。
教学过程:
一、新课导入
1、师:大家知道3月12日是什么节日吗?(植树节)那么今天我们就一起来研究植树中的数学问题。
板书课题:植树问题
二、引导探究
1、创设情境,理解概念
(1)出示:“为了美化环境,学校准备在操场边上的一条100米长的小路一边植树,总务主任需要准备多少棵树苗呢?
(2)理解题意。
a、读题,从题中你了解到了哪些数学信息?有什么问题?
b、理解”间隔“的意思?
C、理解三种种植情况
(两端都种、一端种、两端不种)
2、主动探索,发现规律
(1)计算你的设计需要多少棵树苗?利用画线段图把它表示出来吗?并将植树方案补充完整
植树方案
总长(米)
间隔(米)
间隔数(个)
棵数(棵)
种植情况示意图
(2)学生反馈
(3)组织讨论:你发现什么规律?
两端都种时,棵数=间隔数+1
一端种是时,棵数=间隔数
两端不种时,棵数=间隔数-1
3、应用规律,解决问题
(1)出示例2:
(2)读题后思考,有什么地方需要提醒同学值得注意的。
(3)学生独立解题、反馈
三、回归生活,变式练习
1、封闭图形相当于一端种
(1)出示P122练习二十第4题
圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?
(2)讨论:封闭图形相当于植树问题中的哪个类型?
(3)学生独立解题,反馈。
2、同时出示两道习题:
(1)锯木头问题(两端都不种)
一根木头,要把它平均分成5段,每锯下一段需要8分钟,锯完一共要花多少分钟。
(2)排列问题(两端都种)
四、欣赏生活中类似于植树问题的事件
生活中的类似于植树问题的――――欣赏
植树问题教案 8
教学目标
1、借助围棋盘探讨封闭曲线(方阵)中的植树问题;
2、初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力;
3、让学生感受数学在日常生活中的广泛应用。
教学重难点
教学重点:
从封闭曲线(方阵)中探讨植树问题。
教学难点:
用数学的方法解决实际生活中的简单问题。
教学过程
一、复习旧知,情境导入(课件出示)
(1)在100米的小路边,每隔5米种一棵柳树,两端都要种,一共种了多少棵?
(2)校园图书馆和体育馆两栋楼之间长40米,每隔4米种一棵柏树,一共种了多少棵?
师:(第一题)1000÷20求的是什么?为什么要加1?(两端都栽:棵数=间隔数+1)
师:40÷4求的是什么?又为什么要减1呢?(两端不栽:棵数=间隔数—1)。让学生说出每个算式所表示的意义。
你能说说棵数与间隔数之间的关系
二、探索新知。
1、圆形花坛的一周全长12米,如果沿着这一圈每隔2米摆放一盆花,一共需要多少盆花?
板书课题:封闭图形的植树问题
2、运用规律。
圆形花坛的一周全长12米,如果沿着这一圈每隔2米摆放一盆花,一共需要多少盆花?
(1)引导学生读题,理解题意。独立完成。
(2)理解圆形的株数与间隔数相等,列出算式:12÷2=6(盆)
3、课件出示一个圆形,在圆形的花坛上种树,棵数=间隔数
4、发现规律:在圆形的花坛上种树,棵数=间隔数。
圆形花坛的一周全长50米,如果沿着这一圈每隔2米摆放一盘花,一共需要多少盘花?
5、学习例题:
(1)课件出示例题。例:在围棋的每边都放19个旗子,最外层一共可以放多少个旗子?(2)生读题,独立列出算式
学生小组合作,寻求解决问题的方法。学生自主探索会出现如下几种方法:
方法1:直接点数出最外层一共可以摆放72个棋子。
方法2:列式:19×2+(19—2)×2=72(个)
方法3:列式:(19—1)×4=72(个)
方法4:列式:4+(19—2)×4=72(个)
方法5:列式:19×4—4=72(个)
以上方法,教师引导比较:除方法1外,其余算法都抓住了4个角上的棋子不能重复计算的关键点。
6、探究规律。
(1)首先理解封闭图形
围棋盘的最外层是一个正方形,像这样首尾相连没有开口的图形就是封闭图形。(课件出示)
(2)提问:
我们学过的封闭图形有哪些?根据学生的回答课件出示部分学过的封闭图形。学生任选一个,用小圆点代替棋子在封闭图形中画一画,数一数,想一想,会有怎样的发现?
(3)引导学生运用数形结合思想寻找规律,学生交流说出:棋子数=间隔数的结论。
提问:这和我们学过的哪种植树情况一样呢?(帮助学生进行新旧知识的链接,迁移到一端栽一端不栽的植树情形。)这是巧合吗?想不想继续研究?
学生研究发现:如果将画好的封闭图形沿着一圆点断开拉直就变成一端栽一端不栽的植树问题模型,利用原理逆向思维再次验证棋子数=间隔数这一规律。
(4)回到原题:围棋盘最外层每边有19个棋子,即每边有(19—1)个间隔,4边共有18×4=72(个)间隔。因为最外层的棋子数=间隔数,所以72个间隔也就说明有72个棋子。
列式:(19—1)×4=72(个)
(5)请一学生板演,并说出每个算式所表示的意义19—1=18(段)————表示19个旗子有18段间隔18×4=72(个)————表示最外层的总数
答:最外层一共可以放72个旗子。
(6)引导学生说出公式:最外层的总数=(每边的棵树—1)×边数
7、运用规律解决问题。
(1)摆棋子:一个四边形,每个顶点都摆一个。
(2)如果最外层每边能放100个,最外层一共可以摆放多少个棋子?
设问:100—1求的.是什么?乘4呢?(为什么要乘4?)
(3)如果最外层每边能放200个,最外层一共可以摆放多少个棋子?
(4)如果在一个正五边形的边上摆,怎么算?一个三角形呢?
小结:看来,在封闭图形中的植树,只要先求出每边间隔数,再乘边数就可以求出最外层的总棵树。但是要注意在求每边间隔数时,要用棵数减1,你知道为什么吗?
8、摆花盆:完成做一做第2题问题:
沿正方形的池塘边植树,要求每边都植4棵,一共需要多少棵树苗?
三、巩固延伸
解决问题:
1、沿一个正三角形实验田的外边,每边种8棵向日葵最少能种几棵?
2、16名学生在操场上做游戏,围成一个正方形,每边人数相等。四个顶点都有人,每边各有几名学生?若相邻两个同学之间相隔1米,围成的正方形的边长是多少米?
课后延伸题
1、“四(4)班”召开班会时,同学们围坐在一起,如果每边做5人,(如下图),这个班一共有多少个同学?每边都有5张课桌,一共要多少张课桌子?
2、公园里的花坛有以下几种形状,请选择一种你最喜欢的形状,计算一下如果每边放4盆花,至少一共可以摆放多少盆花?
四、全课小结师:同学们,马上就要下课了,这节课你又收获吗?一起来分享分享吧?封闭图形的植树问题,株数=间隔数
最外层总数=间隔数×边数
五、作业布置
教材122页的第4、6、7、8题
植树问题教案 9
教材分析
本册教材的数学广角主要是渗透有关植树问题的方法。它通过生活中常见实际问题,让学生发现规律,抽取出植树问题的数学模型,再用来解决简单的实际问题。本课时是本单元的第一课时,是探讨关于一条线段并且两端都要栽的情况。
这是学生第一次接触“植树问题”,是后继学习的准备,需要正确建立数学模型。
教学目标
1、发现“植树棵数”与“间隔数”的规律,建立“树的棵数=总长÷间距+1”的数学模型。
2、能利用数学模型解决简单的实际问题。
3、在解决问题的过程中发现规律,建立模型,应用模型,建立初步的解决植树问题的方法。
4、体会数学模型的生活意义与作用,体验到学习的喜悦。
学习重点:采取什么策略正确解决“一条线段并且两端都种”的植树问题。
学习难点:发现“植树棵数”与“间隔数”的`规律,建立“树的棵数=总长÷间距+1”的数学模型。
预设过程
一、尝试解题发现问题
1、揭题:今天我们来研究植树方面的问题。(板)
2、课件呈现学习材料,请学生尝试。
3、反馈,形成争议:
1)100÷5=20
2)100÷5+1=21
4、提出研究问题:植树棵数正好等于间隔数,还是间隔数加1呢?(板)我们来研究。
二、研究规律
1、议:在晒场的一侧(8米)种小树,两端都种,可以怎么种?
2、生述师画,发现棵数比间隔数多1。
3、自己尝试画图,完成表格。
4、议:你发现什么?
5、当在路的一侧种树时,如果两端都种,棵数=间隔数+1,也就是等于总长÷间距+1。(板)
6、分析尝试题的正确解法
三、练习
1、变式练习
2、扩展练习
1、完成1—1。
1)议:已知什么,求什么?(师在模型的相应地方画√)
2)尝试完成,并反馈。
2、完成1—2。
1)议:已知什么,求什么?(师在模型的相应地方画√)
2)议:怎么求总长?(板)
3)尝试完成,并反馈。
3、完成2。
1)议:已知什么,求什么?(师在模型的相应地方画√)
2)议:从间隔10米,能停41辆,能求出什么?求出总长后,怎么安排这51辆车?
3)尝试完成,并反馈。
四、
植树问题教案 10
设计说明
这节课主要的教学目的是向学生渗透复杂问题从简单入手的思想,让学生有机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此本节课的设计说明如下:
1、让数学走进生活。
弗赖登塔尔说过:“数学是现实的,学生要从现实生活中学习数学。”在教学过程中以谜语导入,以学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,能清晰地看出手指的根数与间隔数之间相差1,让学生认识并总结出间隔数和手指根数的关系,为下面的学习作铺垫,同时也激起了学生的学习兴趣。
2、让学生成为学习的主人。
教师是学习的引导者,学生是学习的主人,教师在学生的学习过程中起到启发、引导的作用。在本节课的教学中,体现了学生的主体地位,发挥学生的主观能动性。因此,本节课的设计采用自主探究式学习模式,借助小组学习的'方式让学生经历从探究发现规律到应用规律的实践活动过程,通过有序的操作、思考、实践等活动,使学生的所想、所悟与直观形象结合,经历知识的探究过程,渗透数学学习方法,深刻体会到解决植树问题的思想方法的内涵。
课前准备
教师准备PPT课件
学生准备直尺
教学过程
谜语导入,揭示课题
1、猜谜语:两棵小树十个杈,不长叶子不开花。能写会算还会画,天天干活不说话。(手)
2、介绍间隔。
(1)找一找。
师:勤劳的人们用双手创造了幸福的生活,在我们的手上也隐藏了数学的奥秘,同学们想知道吗?伸出你的左手,你看到了什么?
(2)数一数。
师:5根手指之间有几个空?
(3)讲一讲。
师:在数学上,我们把像这样的空叫做间隔,手上每两根手指之间都有一个间隔。也就是说,5根手指之间有4个间隔,间隔数为4。(师伸出4根手指、3根手指、2根手指)现在有几个间隔?
(4)说一说。
师:你们发现手指数和间隔数的关系了吗?谁能说一说?(手指数比间隔数多1或间隔数比手指数少1)
3、引入新课。
师:生活中,间隔随处可见。每相邻两棵树之间的距离也是一个间隔,这节课我们就一起来研究和解决一些简单的与间隔有关的问题
植树问题教案 11
学习目标:
1、学生会探究发现一条线段上两端植树和一端植两种情况植树问题的规律。
2、使学生经历和体验复杂问题简单化的解题策略和方法。
3、让学生感受数学在日常生活中的广泛应用,激发数学兴趣,体会数学价值。
学习过程:
一、知识铺垫
马路一边栽了25棵梧桐树。如果每两棵梧桐树中间栽一棵银杏树,一共要栽多少棵?
1、你都知道了些什么?
2、一共要栽多少棵树?你是怎样想的。
二、自主探究
大象馆和猴山相距60m。绿化队要在两馆间的`小路两旁栽树(两端不栽),相邻两棵树之间的距离是3m。一共要栽多少棵树?
1、你都知道了。
2、你认为一共要栽多少棵树?你会计算吗?试一试吧!
总结
植树问题
总长()=()
两端栽:棵数=()+1
一端栽:棵数=()
两端不栽:棵数=()—1
三、课堂达标
1、小明家门前有一条35m的小路,绿化队要在路旁栽一排树。每隔5m栽一棵树(一端栽,一端不栽)。一共要栽多少棵?
2、一条走廊长32m,每隔4m摆放一盆植物(两端不放)。一共要放多少盆植物?
3、一根木头长10m,要把它平均分成5段。每锯下一段需要8分钟。锯完一共要花多少分钟?
植树问题教案 12
教学目标:
1、使学生通过生活中的事例,初步体会解决植树问题的方法。
2、初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力。
3、让学生感受数学在日常生活中的广泛应用,培养学生的应用意识和解决问题的能力。
教学重点:
用解决植树问题的方法解决实际问题。
教学难点:
栽树的棵数与间隔数之间的关系。
教具准备:
多媒体。
设计理念:新课标指出:“有效的数学学习活动不能单纯地依赖模仿与记忆。动手实践、自主探索与合作交流是学生学习数学的重要方式。”同时指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥学生的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。
教学过程:
一、谈话导入:
师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能绿化环境,造福人类。在生活中,常常遇到在路的一边、间隔一定的距离植树,这就需要计算准备多少棵树苗;还有许多类似的问题:比如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。
二、揭示学习目标:(媒体出示)
通过这节课的学习,我们要解决哪些问题呢?
1、能根据相关条件,求出需要多少棵树苗或计算两树间的距离。
2、能利用植树问题,灵活解决生活中类似的实际问题。
三、探究新知:
1、出示例1:同学们在全长100米的小路一边植树。每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?(生读题)
师:你会计算吗?(让学生回答)你算的对吗?请同学们自己动脑来验证一下。
学习提示:(媒体出示)
①假如路长只有10米,要栽几棵树?如果路长是20米,又要栽几棵树?请你画线段图来看看。(注意看图上有几个间隔和几个间隔点)
②通过上面的`分析,你能找出什么规律?和同桌或小组内说说。
③现在你能算出一共需要多少棵树苗吗?
④你还有别的想法吗,在小组内说说。
2、学生自学探讨。(师巡视)
3、班内交流。学生回答后,师媒体演示间隔数和间隔点数的关系。
总结规律:栽的棵数比间隔数多1。
完成例题。
四、变化巩固:
1、做一做:118页学生独立完成。订正时说说怎么想的。重点让学生明确先求出间隔数,即36棵树有35个间隔。
2、122页第2题。独立完成,同桌交流想法,可一生板演。
五、检测反馈:(独立完成)
1、在一条长400米的马路的一边,从头到尾每隔8米种一棵树。一共可以种多少棵树?
2、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?
3、从王村到李村一共设有16根高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远?
学生完成后师批阅订正,发现问题及时解决。
六、总结延伸:这节课我们学习了植树问题,并能利用植树问题解决生活中类似的实际问题。解答时要重点分清栽树的棵数与间隔数间的关系,后面还有一些不同的情况,希望大家开动脑筋,灵活处理。
植树问题教案 13
教学内容:
人教版小学数学五年级上册第106页例1。
教学目标:
1、知识与技能目标:
(1)、初步认识植树问题,理解并掌握在一条直线上“两端都栽”的情况下,间隔数和棵树之间的关系。
(2)、在理解间隔数和棵树规律的基础上解决简单的“两端都栽”的实际问题。
2、过程与方法目标:
(1)、通过观察比较、动手操作、合作交流等活动探究新知,经历知识的形成过程。
(2)、经历和体验“数形结合”、“化繁为简”的解题策略和数学方法。
(3)、培养学生的合作意识,养成良好的交流习惯。
3、情感态度与价值观目标:
(1)、感受数学在生活中的广泛应用。
(2)、在自主探究的过程中体验成功的喜悦,树立学生学习数学的决心。
教学重点:
通过动手操作、合作交流,探究出植树问题中两端都栽时,间隔数和棵树之间的关系,抽象出植树问题的数学模型。
教学难点:
把现实生活中类似的问题同化为“植树问题”,运用植树问题的模型解决一些相关的实际问题。
教学过程:
一、谜语导入。
(1)、师:同学们一定喜欢玩猜谜语吧?(课件出示):两棵小树十个叉,不长叶子不开花。能写会算还会画,天天干活不说话。(谜底:手)
谁能很快说出谜底?(生口答)。
师:你思维真敏捷。
(2)、师:同学们,伸出你的左手,仔细观察,你能看到数字几?
(3)、认识间隔、间隔数。
(预设1:数字5,5个手指;数字4,4个手指缝。)
师:你观察得真认真!
师:(课件出示)手指间的空隙,在数学上我们叫做间隔。(板书:间隔。)一只手上有四个间隔,我们就说它的.间隔数是4。(板书:“间隔”后加“数”)
(预设2:生:有5数字5,5个手指头;有数字4,手指之间有4个间隔。
师:你懂得真多,能告诉大家什么叫做间隔吗?
生口答,师出示手的图片,板书“间隔”和“间隔数”。)
(4)、认识生活中的“间隔”。
师:生活中间隔无处不在。(课件出示:人民大会堂柱子、路灯杆、摆花盆、钟声等),师边放课件边叙述说明。
师:想一想,生活中还有哪些地方有间隔?
生充分交流
(5)、揭示并板书课题。
师:像这样有间隔现象存在的问题,统称为植树问题。(板书:植树问题)。今天我们就一起来探究有关植树问题的知识。
二、探究新知。
(一)、创设情境,提出问题。
1、出示题目信息:一条新修的公路,全长1000米,在它的一侧种树(两端都栽),每隔5米栽一棵,一共要栽多少棵?
2、理解题意。
(1)、从题目中你得到了哪些数学信息?
(2)、理解题意。
师:解决问题时,要善于抓住关键词或句子,分析题意。你认为哪些词是比较重要的?
题目中,“两端都栽”是什么意思?
师:既然有“两端都栽”的情况,就有“两端都不栽”的情况,也有“只在一端栽”的情况。(课件演示:两端都栽,两端都不栽,一端栽一端不栽三种情况。)今天我们重点研究两端都栽的情况。
(3)、同学们大胆猜测一下,一共要栽多少棵?
(指名生答)
(4)、提出验证。
a:师:到底哪个结论是正确的呢?我们怎么来验证一下?
b:生尝试寻求方法。
生:可以画一画图。
师:你的想法非常好,可以用一条线段代表1000米长的公路,画一画图,数一数实际种了多少棵。)
(5)、尝试验证,边叙述边课件演示:因为两端都栽,所以要先在起点栽一棵,然后每隔5米栽一棵,再隔5米再栽一棵,再隔5米再栽一棵……看看一共要栽多少棵。
师:现在栽了多少米了?就这样一直栽到1000米处吗?
(预设生:太麻烦了,浪费时间)
(6)寻求“化繁为简”的数学方法。
师:老师和你们有同感。1000米的路太长了,你觉得路的总长要是多少米好了?
生尝试发表自己的想法。
(预设生:50米、20米、10米
师:我明白同学们的意思了,就是把路的总长换成比较小的数就行了。你们的想法太棒了!)
师:在数学研究中,遇到比较复杂的问题时,我们就从简单的问题入手,即把“大数变成小数”进行研究,这样就可以“化繁为简”,找出规律。(板书:大数——小数,化繁为简)。比如,1000米太长了,我们可以转化成20米栽几棵,从而找出规律。
师:老师在电脑上可以画成小树,你们在练习本上,也画成一棵棵小树吗?怎样表示小树比较简单?
(预设生:画成小树太麻烦,可以用一个点表示一棵小树比较简单。)
师:你的方法真好!用线段图来表示,简单明了。(课件演示:小树变点,成为线段图)
(二)、自主探究。
(1)、师:同学们,今天你们就来当一次“小小数学家”,研究一下当总长分别是10米,15米、20米、30米时,两端都栽的情况下,棵数有什么规律。请你们拿出题卡,认真画出线段图,并结合线段图把表格中的数据补充完整。
(2)、生独立填表。
(3)、汇报交流:谁把你的结果向大家展示一下?
(师:谁和他的结果一样请举手?
师:看来大家都做得非常认真!)
师:为了便于大家观察,我把表格展示在大屏幕上。
(4)、师:(边课件演示边引导)仔细回忆刚才画线段图填表的过程,认真分析这几组数据,能否说出总长、间隔、间隔数之间存在什么关系?(课件表格下出示:总长o间隔=间隔数)
间隔数与棵数之间又存在什么样的关系?(课件表格下出示:间隔数o()=棵数)。
那么,当两端都栽时,如果知道全长和间隔,怎样求出棵数?
(5)、学生独立思考,充分交流。
结合生答,师完成板书:总长÷间隔=间隔数,间隔数+1=棵树。
(6)、师:如果不画线段图,你能说出总长是50米时,每隔5米栽一棵,两端都栽,一共要栽多少棵吗?
学生口述答案。
师:你真了不起!
(三)、应用规律,解决问题。
(1)、出示前面的例题。
师:利用刚才我们发现的两端都栽时,棵数和间隔数之间的关系,你能找到这道题的正确结果吗?
(2)、生找出正确解法。
(3)师:200表示什么意思?为什么要加1?(200表示间隔数,因为间隔数加一等于棵树,所以要加一。)
(师:你讲得太棒了!老师真心佩服你!)
(4)、师:以后再遇到生活中类似于“两端都栽”的实际问题时,就可以运用我们今天学到的知识进行解决。
小练笔:运动会上,在一条长200米的笔直跑道的一侧插彩旗(两端都插),每隔10米插一面,一共要插多少面彩旗?
师:请大家默读题目,然后在练习本上独立完成。
三、学以致用。
1、同学们,数学就在我们身边!看,我们的《小苹果》舞蹈比赛中同样蕴含着植树问题的知识。
(课件配图片出示)五二班学生参加《小苹果》舞蹈表演,其中一列纵队全长18米,如果每两个同学之间相距2米,这列队伍一共站了多少人?
生独立审题,尝试在练习本上独立完成。
生交流方法和思路。
2、钟声与钟声之间也有间隔,你能同化成植树问题进行解答吗?
(课件出示)广场上的大钟,5时敲5下,8秒钟敲完。12时敲响12下,敲完需要多长时间?
指名读题,理解题意。
师:同学们,认真倾听钟声敲响几下?仔细观察它们之间有几个间隔?(课件出示:结合5次钟声,线段图出示四个间隔)
(学生结合课件演示,说出:钟声敲响5次,共有4个间隔。)
大钟5时敲5下,有4个间隔,共用了几秒钟?由此能求出什么?那么12时敲12下,有几个间隔?敲完用多长时间吗?请同学们尝试独立在练习本上完成。
汇报交流,说出思路。
3、师:你们真了不起。请到知识城堡一展身手吧。
(课件出示)8个同学站成一队,每两个同学之间距离1.5米。这列队伍全长多少米?
师:线段图可以帮助我们解决许多数学问题。请同学们在练习本上画出线段图,再解答。
生汇报交流。
四、全课总结。通过今天的学习,你有什么收获?
生充分交流。
师:在今天的探究活动中,我们不仅发现了植树问题中“两端都栽”的规律,能运用这个规律解决生活中类似的问题,而且知道了数学研究中“化繁为简”方法,会通过画线段图帮助我们解决数学问题。其实,在植树问题中还有许多知识,比如两端都不栽时、只有一端栽时,或在封闭图形上栽时,棵数分别有什么规律呢?我们将在以后的学习中继续探究。
植树问题教案 14
教材分析
本册教材的数学广角主要是渗透有关植树问题的方法。它通过生活中常见实际问题,让学生发现规律,抽取出植树问题的数学模型,再用来解决简单的实际问题。本课时是本单元的第2课时,是探讨关于一条线段并且两端都不栽的情况。
“两端都不栽”与“两端都栽”的区别是比较明显的,可以借助线段图帮助学生建立两者的表象,再正确建立数学模型。
教学目标
1、建立“树的`棵数=间隔数—1”的数学模型;能利用数学模型解决简单的实际问题。
2、在解决问题的过程中发现规律,建立模型,应用模型,建立初步的解决植树问题的方法。
3、体会数学模型的生活意义与作用,体验到学习的喜悦。
学习重点
建立“树的棵数=间隔数—1”的数学模型。
学习难点
“两端都不栽”与“两端都栽”有什么联系与区别。
预设过程
一、复习两端都栽
在一条12路的一侧种树(两端都种),每2米种一棵,共需种几棵?
1、揭题:植树问题。
2、呈现问题,请学生解决。新课标第一
3、反馈解法,强调“两端都种”与“间隔数+1”。
二、研究两端都不栽
在一条12路的一侧种树(两端都不种),每2米种一棵,共需种几棵?
1、提出研究课题:要是两端都不种呢?
2、呈现问题,请学生思考后试解。
3、反馈解法,强调“两端都不种”与“间隔数—1”。
4、比较:“两端都种”与“两端都不种”有什么不同?
三、练习
1、画示意图,完成P118例2,注意“两端都不种”与“两旁都种”。
2、画示意图,完成做一做1,注意“两端都种”与“两旁都种”。
3、画示意图,完成做一做2,发现“锯的次数=段数—1”。
4、完成补充题,知道“四层楼三个间隔”。
植树问题教案 15
教学内容:
人教版五年级上册数学第七单元数学广角植树问题
教学目标:
知识技能目标:
1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系;
2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。
过程目标:
1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力;
2、渗透数形结合的思想,培养学生借助图形解决问题的'意识;
3、培养学生的合作意识,养成良好的交流习惯。
情感目标:
1、通过实践活动激发热爱数学的情感;
2、感受日常生活中处处有数学,体验学习成功的喜悦。
教学重点:
理解“植树问题(两端要种)”的特征,应用规律解决问题
教学难点:
理解“间距数+1=棵数,棵数-1=间距数
教学过程:
一、设计情景、引入课题
1、教学“间隔”的含义
师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)
(课件出示)师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?
2、举例生活中的“间隔”
师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)
3、理解间隔数,引入课题。
在一条路上植树,每两棵树之间相等的段数叫间隔数(课件演示),每个间隔的长叫间距,研究间隔数和棵数之间关系的问题,我们统称为植树问题,这节课我们来研究植树问题。(板书课题)
二、探索新知,探究规律
1、出示招聘启事
在操场边,有一条20米长的小路。学校计划在小路一边种树,要求每隔5米栽一棵。特聘请校园设计师数名,要求设计植树方案一份,择优录取。
2、出示例题,理解题意:
师:(课件出示例题。)
师:谁能读一读?这道题告诉我们什么数学信息?求什么问题?你认为这道题中什么词语最关键?
(课件解释关键词语,加深学生理解)
师:你认为要求一共植树多少棵,关键是知道什么?(间隔数)那么间隔数和棵数之间是什么关系?下面我们就来研究。
3、出示合作要求。
(1)教师讲解小组合作要求。
(2)学生4人小组开始合作学习,利用学具设计出植树方案。(可以用不同的形式表达)
(3)教师巡视,指导学生小组合作。
(4)小组作品展示,及小组评价。教师及时点评学生的设计方案,并及时鼓励学生。
(5)引导学生总结出在实际生活中的植树情况可以分为三种:第一种两端都栽,第二种:只栽一端,第三种:两端都不栽。
4、以小组为单位探究棵数与间隔数间的关系:
(1)数一数:数出棵数和间隔数。
(2)比一比:比较出棵数和间隔数之间的规律。
两端都要栽时,植树的棵数比间隔数多1(棵数=间隔数+1)。
只栽一端时,植树的棵数与间隔数相同(棵数=间隔数)。
两端都不栽时,植树的棵数比间隔数少1(棵数=间隔数—1)。
三、课堂小结、反馈练习
1、公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?
2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间敲完?
植树问题教案 16
教学内容
义务教育课程标准实验教科书(人教版)四年级下册数学广角。
教学目标
1、经历将实际问题抽象成数学模型的过程,掌握种树棵数与间隔数之间的关系。
2、会应用植树问题的模型解决一些相关的实际问题,培养学生的应用意识和解决实际问题的能力。
3、感悟构建数学模型是解决实际问题的重要方法之一。
教学重点
让学生发现植树的棵数和间隔数之间的关系,并用发现的规律解决实际问题。
教学过程
一、创设情景,提出问题
情境:同学们参加植树活动,要根据植树要求“动脑筋,领树苗”。
问题:有一条12米长的小路,一小组要在小路的一边植树,要求每隔2米栽一棵(两端都栽),该领多少棵树苗呢?(大屏幕出示)
二、探索规律,建立模型
1、实践操作,得出结论
(1)初步感知,大胆猜想
你们认为一小组的同学该领多少棵树苗呢?
(2)动手操作,验证猜想
用画图法或摆一摆的.方法“栽一栽”。
2、尝试不同的栽法,积累研究素材
师:刚才我们是每隔2米栽一棵树,发现出现了6个间隔,可以栽7棵树。你们还有不同的栽法吗?
(1)激发兴趣谈栽法
(2)自由选择试栽法
(3)交流汇报作记录
3、观察分析,发现规律
师:现在请大家认真观察一下老师记录的这些数据,你会不会有所发现呢?先独立思考,再把你们思考的结果互相说一说。
(1)认真观察,独立思考
(2)小组交流,集思广益
(3)班级汇报,总结规律
三、运用规律,解决问题
1、运用规律,解答117页的例1。
同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?
2、运用规律,解答118页的“做一做”。
园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?
3、运用规律,解答119页的“做一做”的第1题。
在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50米安一座。一共要安装多少座路灯?
小结:安装路灯问题也是一种植树问题。
植树问题教案 17
教学内容:
义务教育课程标准实验科书(人教版)四年级下册第117——118页例题及相关练习。
教学目标:
知识性目标:
1、利用学生熟悉的生活素材、通过动手操作等实践活动,让学生感悟间隔数与棵数之间的关系。
2、通过小组合作、交流,使学生发现并理解段数与棵树之间的规律,并利用规律解决一些实际问题。
能力目标:
让学生经历感知、理解知识的过程,进一步培养学生从实际问题中发现规律;运用规律解决问题的'能力。
渗透数形结合的思想,培养学生借助实物,图形解决问题的意识。
情感目标:
培养学生的分析意识,养成良好的交流习惯,感觉日常生活中处处有数学,体验学习的成功喜悦。
教学重点:
引导学生发现植树与间隔数的关系。
教学重点:
理解间隔与发现植树棵数的规律并运用规律解决问题。
教学准备:
课件、学生用尺子、纸等。
教学过程:
一、导入新课
1、讲故事:(略)这个故事告诉我们:我们在说话、做事情时不能信口开河,不加思索来完成。
2、揭示课题:
明天就是“六一”儿童节,我们的节日有很多,同学们你们知道吗?3月12日是什么节?(植树节)其实,“植树”这件事还很有数学上的学问,今天我们就来研究“植树问题”(板书课题)
二、新授。
1、出示准备题:
同学们在全长100米的小路去植树,每隔5米分为一段,一共可以分成多少段?
100÷5=20(段)
2、出示例题
同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?
(1)读题分析理解:“一边植树,两端要栽”的意义。
可能许多同学列成:100÷5=20(棵)
(2)学生试做。
让学生讨论。
3、感知间隔的含义
请你们伸出右手,张开,数一数,5个手指间有几个空格?在数学上,我们把空格叫做间隔,也就是说,5个手指之间的有几个间隔?4个间隔是在几个手指之间?
4、学生依次画图,课件依次演示画图过程的算法。
段数棵数
12
23
34
56
通过上面的分析,你发现了什么?
棵数=段数+1
或:段数=棵数-1
5、完成例题。A:先要求出段数:100÷5=20(段)
B:再次求出棵数:20+1=21(棵)
6、再次感知,找到规律
课件上做习题栽了8棵树,有()个间隔。(两端都要栽)
有20个间隔,栽了()棵树(两端都要栽)
三、尝试练习,做一做
课件:1、园林工人沿路一侧植树,每隔6米种一棵,一共种了36棵,从第1棵到最后一棵的距离有多远?
2、做书上的练习P122(练习二十)。T1、T2写在书上。
四、巩固加深,拓展。
1、打开书P117读书,思考。
2、你在这一节课有什么遗憾?
3、你在这节课中有什么收获?
4、联系生活举例,加深理解。
五、总结延伸
植树问题还有许多学问,今天我们只是解决了两端都栽,如果两端都不栽,封闭图形(如圆形花坛)栽树又怎样计算等待下一节课再去研究。
板书设计:
段数棵数学生练习板演
12
23
34
45
规律:棵数=段数+1
或:段数=棵数-1
植树问题教案 18
教学目标:
1、建立并理解在线段上植树(两端都不栽)的情况中“棵数=间隔数—1”的数学模型。
2、通过画线段图初步培养学生探索解决问题的有效方法的能力,尝试用植树问题的模型解决实际生活中的简单问题,培养应用意识。教学重点:建立并理解“棵数=间隔数—1”的数学模型。教学难点:培养学生探索解决问题的有效方法的能力。
教学准备:
课件。
教学过程:
一、创设情境,导入新课:
师:同学们,你们参加过招聘会吗?
生:没有。
师:想不想拥有这样一次经历?
生:想。
师:瞧,老师带来了一份招聘启示。(课件演示)
招聘启示:
新兴学校将对校园进一步绿化,特聘请校园设计师一名。要求设计植树方案一份,择优录取。
师:愿意试试吗?我们先来看看设计有什么要求。(课件演示)
为了美化环境,要在的一条60米长的小路一边植树,每隔3米栽一棵,需要准备多少棵树苗呢?。
说一说,你们打算怎样植树?
师:哪位同学愿意来说说你的想法?
学生汇报讨论结果
生1:两端都栽。
生2:头栽尾不栽。
生3:尾栽头不栽。
生4:两端都不栽。
师:从这份要求上,你能获得哪些信息?
生:路全长有60米,只在路的一边栽,每隔5米栽一棵。
师:两端都栽要栽多少棵?这节课我们来研究两端不栽的植树问题。
二、民主导学:
任务呈现:
大象馆和猴山相距60m。绿化队要在两馆间的`小路两旁栽树,相邻两棵树之间的距离是3m。一共要栽多少棵树?
1、你都知道了什么?
2、你认为一共要栽多少棵树?
师:这道题和上节课学的植树问题有什么不一样呢?
提示:小路的两端都是场馆,还需不需要栽树呢?还有需要注意的吗?到底要栽几棵,我们还是用前面学习的方法,举简单的例子(9米、12米、15米、21米)画一画,栽一栽?
自主学习:
小组四人每人选一个长度,间距还是3米,来画一画,填一填。展示交流:
师:大家发现棵数和间隔数有什么关系?间距、间隔数和总长有什么关系?
生:棵数=间隔数—1
间距×间隔数=总长
讨论:在两头都不种的情况下,棵数为什么会比间隔数少1呢?师:那大象馆和猴山间栽多少棵数?
60÷3=20(个)
20—1=19(棵)
19×2=38(棵)
教师追问:为什么要“×2”?(因为小路两旁都要栽树)
师:大家在做题的时候,一定要判断是“两端要栽”还是“两端不栽”。
三、检测导结:
师:在刚才的学习过程中,同学们既发现了规律,又总结了方法,真了不起。老师这里有几道题,把明明难住了,我们来帮帮他。
目标检测:
一、填一填
1、一排同学之间有7个间隔,第一排有()个同学。
2、小红住的楼房每上一层要走20个台阶,从二楼到四楼要走()个台阶。
二、算一算
1、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米,一共有几个车站?
2、园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第一棵到最后一棵有多少米?
3、一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?
2、结果反馈:
3、反思总结:
师:通过今天的学习,大家有哪些收获?
学生畅谈收获。
师:同学们的收获真不少!通过今天的学习,我们不仅发现了植树问题中两端都栽和两端不栽的规律,而且还学会了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的问题还有一端栽一端不栽,下节课继续研究!
植树问题教案 19
教前分析:
1、教材分析:教材选取了在学校门前的一条小路一旁植树的素材,探索棵树和间隔数的关系,引导学生发现规律,有利于学生感受到数学来源于生活,从而产生亲切感,促使学生借助已有的生活经验自主探索规律。教材在编写时,不仅关注所选素材,而且在解决问题的方法上也注重了学生已有生活经验的利用。在学生对生活实际理解的基础上,感受到在一条直线上植树时,会有三种不同的情况:两端都栽、一端不载、两端都不栽;并在生活经验的基础上,借助线段图理解。
2、学情分析:数学学习的过程实际上就是一个对有关素材的规律理解、把握,并形成认识的过程。间隔现象的规律是生活中普遍存在的,学生都接触过,而且难度不大,有利于学生自主经历探究规律的过程,体会探究的方法,提高思维水平,感受数学的价值。但是借助一一对应的方法理解间隔数+1=棵数的过程中发现学生难以理解。
3、自我剖析:自己教龄3年,曾任教五年级数学和三年级数学。今年第一次任教一年级教学。从事高年级教学时发现基础薄弱学生存在的问题,因此更加重视一年级学生的基础教学。理解算理帮助学生内化尤为重要,特别关注计算能力培养。个人对数学学科比较热爱,喜欢钻研,积极参加各级各类数学教研活动和听评课活动。
教学目标:
1、知识目标:经历将实际问题抽象出植树问题模型的过程,掌握种树棵树与间隔数之间的关系。
2、能力目标:会灵活应用植树问题的模型解决一些相关的实际问题,培养学生的应用意识和解决实际问题的能力。感悟寻找规律,构建数学模型是解决实际问题的重要方法之一。
3、情感目标:培养学生保护环境的意识。
教学要点:
1、重点:理解种树棵树与间隔数之间的关系。
2、难点:灵活应用发现的规律解决一些相关的实际问题。
学习方法:
动手操作,合作交流
教学具准备:
课件、剪纸(小路、小树、房子)、板书用的字条
教学设计:
课前谈话:
人有两件宝,双手和大脑。双手会做工,大脑会思考。希望这节课同学们开动大脑积极思考,勇敢举手、大胆发言。
一、创设情境,导入新课
师:同学们喜欢猜谜语吗?老师出一个谜语,考考大家。
两个小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。你们猜出来了吗?
[设计意图:“猜谜”是中国传统文化之一,这里采用猜谜语不仅能够引导学生主动思考,还能调动学生学习的积极性,为接下来的知识学习打下良好的基础]
师:同学们真聪明。
师:我们的手不仅能写会算,在这其中还隐藏着许多的数学知识。
请同学们伸出你的左手张开五指,数数手指之间有几个空?
生答:4个,这个空我们在数学中把它叫做间隔。
师:老师要考考同学们的眼力。四根手指之间有几个间隔?
生答3个
师:两根手指有几个间隔?
生答:1
师:同学们的小眼睛真亮,反应真快!接下来同学们活动一下你的小手,请同学们伸出你的左手,老师说你来做。2个间隔,4个间隔,三个间隔。
师:同学们反应真迅速!其实在生活中和间隔随处可见,同学们能不能举出例子呀!
师:你有一双善于发现的眼睛。
师:老师也收集了一些,请看大屏幕。
[设计意图:引出“间隔”,将抽象的概念具体化。同时渗透了间隔与间隔数之间的关系。让学生将数学与生活紧密的联系在一起。]
师:在数学中,把和间隔有关的问题称为植树问题。
师:今天这节课我们就来一起研究植树问题,(板书课题植树问题)。同学们有信心学好吗?
二、探究新知
光明小学为了美化校园环境,计划在一条长20米的小路一边植树。想请同学们当小设计师。我们一起去看看吧!
[设计意图:在活动中学生实现了参与环境保护的愿望,提高了环保意识,增强了热爱环境的情感;同时也深化了数学课本上有关知识的学习。]
一)动手设计并交流
1、请同学们仔细观察,你知道了哪些重要的数学信息和数学问题?
请你说说看。
生答:长20米的小路,一边、每隔5米
2、我们的小路有几边呀!这条路的全长20米,每隔五米栽一棵你是怎么理解的?也就是相邻两棵树之间间隔长度是多少?这个五米我们就把它叫做间隔的长度,我们也用一个词叫做间隔长。
3、同学们大胆猜一猜这条小路上,应该需要种几棵树呀!
同学们敢于猜想就向成功迈出了一大步。
4、我们的数学是一个严谨的学科,在数学上许多结论的得出都是通过数学家经过大量的验证才得出来的。
刚才我们才想出这么多到底哪个答案是正确的呢?
下面就请同学们动手设计画一画来验证你的猜想。请同学们以小组为单位进行合作探究。动手之前我们一起来看看合作要求。
要求:
1、用一条线段代表20米的小路。
用最直观、最简洁的图形表示树,把你们的想法动手画一画。
2、再试一试把你的想法通过算式表示出来。
3、想一想间隔的个数和树的棵数有什么关系?
同学们动手画一画,看一看到底需要多少棵?
[设计意图:让学生动手设计调动学生学习的积极性,同时让学生在画一画的过程中潜移默化的'运用一一对应的数学思想。这个环节具有开放性,不局限学生的思维]
画完以后观察一下树的棵数与间隔数有什么关系?
2、交流展示设计方案
哪个小组想展示一下你们的合作成果?
二)探究两端都栽、一端不栽和两端不栽
师:仔细观察,我们刚才得到的。这三种设计方案有什么相同的地方。有什么不同的地方。
[设计意图:学生在观察三种设计方案中相同点和不同点时会发现棵数和间隔数之间有着密切的联系。而且也会发现两端都栽、只栽一端、两端都不栽三种情况]
师:同学们的眼睛很亮。很快就发现了相同点和不同点。由此我们知道了植树关键是得知道有几个间隔,也就是先求间隔数。然后再看需要栽树。
1、看第一种设计方案,我们给她起个名字叫两端都栽,观察棵数和间隔数之间有什么关系呢!可以和同桌两说一说。我们能不能用一个等式来表示刚才我们所发现的规律呢!
间隔数+1=棵数
棵数—1=间隔数
归纳:先求:总长÷间隔长=间隔数
再求棵数=间隔数+1
同学们的发现太了不起了!
2、第二种设计方案谁想给它起个名字?
生答:一端不栽或只栽一端
名字起的很有特点。
我们再来观察棵数和间隔数之间有什么关系?
谁想第一个说?生答:观察真仔细。老师给你点个赞!
3、这个咱一起给它起个名字吧!
这时候棵数和间隔数之间有什么关系?
师:你的发现太有价值啦!
看来刚才同学们的猜测都正确。下面我们再来一起欣赏同学们刚才的几种设计。
学生展示总结发现
两端都栽:棵数=间隔数+1
两端不栽:棵数=间隔数—1
只栽一端:棵数=间隔数
为了便于同学们记住我们的重大发现,老师送给大家一首儿歌。
4、植树问题好解决
知道间隔是关键
两端都栽间加1
两端不栽间减1
只栽一端与间同
[设计意图:根据低年级儿童的特点,儿歌琅琅上口更适合学生。学生喜欢读喜欢记。调动学生的学习积极性]
运用我们发现的规律不仅可以解决植树问题,还可以解决生活中的其他间隔问题如楼梯问题、钟表问题、队列问题、公交站问题、锯木头问题等等。接着我们走进生活,运用我们所学知识解决生活中的实际问题。
三、巩固练习
一)准备好接受挑战了吗?同学们请看题
1、一条走廊长50米,每隔10米放一盆花,一共需要放多少盆花?
师:真是会思考的孩子。
2、在两栋房子间有一条长100米的小路,如图在两栋房子间每隔10米种一棵树,共种多少棵树?(指生到黑板板演)
师:这道题我们首先看属于哪种情况?
生:两端都不栽,间隔数—1=棵数
师:你是个会学习的孩子,表现棒极了!
3、园林设计师听说咱班同学特别有想法,想请同学们帮忙。大显身手的机会来了。请看大屏幕。
为了保护一棵古树,园林处要为它做一个长30米的圆形防护栏。如果每隔2米打一个桩,一共需要打多少个桩?
首先同学想想他应该是这三种情况中的哪一种?老师这里带了一个小模型帮助同学理解。眼睛不要眨仔细观察,变变变。我把圆形防护栏给她拉直了。
老师用一种很巧妙的方法叫作化曲为直。我们可以把这个圆形护栏给它拉直。这时你发现它是只栽一端的情况。所以间隔数=棵数。
师:同学们很会思考啊!
4、拓展延伸
刚才的问题没有难倒大家,要打木桩我们需要准备合适长度的木头。看,出示问题:
把一根木头锯成5段,每锯断一次需要6分钟,锯完这根木头一共需要多少分钟?
在解决这个问题时我们可以借助线段图。把答案写练习本上。
四、课堂小结
同学们,愉快的一节课马上就要结束了。你们学会今天讲的植树问题了吗?在解决这类问题的时候要注意什么呢?把数学知识应用到实际的生活中是不是很有意思?
生活中处处有数学,希望同学们做生活中的有心人。
[设计意图:渗透好环保教育,进而让学生点滴积累环保知识,为培养学生爱护环境、热爱大自然的品质而做些添砖加瓦的工作]
五、课后作业:
孙老师从家到学校,乘公交车一共有5个站点,每相邻两个站点之间的距离平均约1千米,你知道孙老师家到学校大约有多少千米吗?
植树问题教案 20
教学内容:
《义务教育课程标准实验教科书数学(四年级下册)》第P117—P118
教学目标:
知识技能目标:
1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系;
2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。
过程目标:
1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力;
2、渗透数形结合的思想,培养学生借助图形解决问题的意识;
3、培养学生的合作意识,养成良好的交流习惯。
情感目标:
1、通过实践活动激发热爱数学的情感;
2、感受日常生活中处处有数学,体验学习成功的喜悦。
教学重点:
理解“植树问题(两端要种)”的特征,应用规律解决问题
教学难点:
理解“间距数+1=棵数,棵数-1=间距数”
教学准备:
课件
教学过程:
一、创设原型
1、教学“间隔”的含义
师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)
师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?
2、举例生活中的“间隔”
师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)
3、根据生活实景信息回答问题。
(1)公园的一侧一些树,数了数有6个间隔,一共栽了几棵树呢?(7棵)
(2)庄老师家在6楼,从1楼到6楼要爬几层楼?(5层)
(3)河边的护栏有5根铁链,需要几根柱子?(6根)
4、引入课题
师:同学们刚才我们了解的5根手指间有几个间隔;爬楼梯要几层;铁链需要几根柱子等,数学中统称为植树问题。(板书)
二、构建模型
1、用图象语言描述“植树棵数与间隔数”之间的关系。
师:(右手)我把5根手指看作5棵树,他有4个间隔。那么,6棵树、7棵树之间有几个间隔呢?你能用一个图来展示说明吗?(生作图,展示)
2、构建植树问题的数学模型
(1)我们一起来看一下这几位同学画的图,你能说说你是怎么画的吗?
(2)比较一下这几种作图方法,你觉得哪种方法简便,看起来清楚?(是啊,用线段图的方法最简便,因此它也是我们最常用的。)
(3)通过画图,我们发现这条路的.两端都栽了树,这就是我们今天研究的植树问题的一种类型。(板书:两端都栽)
(4)在线段图上,我们用点表示栽的树,几个点就是几棵树。通过画图,我们知道6棵树之间有5个间隔,7棵树之间有6个间隔,那么你能想象一下10棵树之间、50棵树之间、100棵树之间有几个间隔吗?你发现了什么规律?
植树棵数间隔数
(板书:棵数-1=间隔数间隔数+1=棵数)
师:今天表现真不错,一下子就能找到这其中的规律,老师真为你们感到高兴!
三、利用模型解决问题
1、教学例1
师:现在老师要考考你们了,谁敢接受检查?既然大家都想来,那么我们一起来。
课件出示:同学们要在全长50米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?
(1)谁能大声清楚朗读这个题目?
(2)从中你了解了哪些数学信息?(小路长50米,两端都要栽、每隔5米。)
(3)两端都要栽是什么意思?每隔5米是什么意思?哪两棵树之间相隔5米?
(3)这题也可以用画线段图的方法来解答,你能试着画线段图吗?
(4)展示学生线段图,你能说说你是怎么画的吗?
(5)为了看起来更清楚,老师把这张图移到了电脑上,你能猜猜许老师画图的意思吗?从这张图上你可以了解些什么信息?谁也知道了也想来说给大家听一听的?
(6)线段图里其实就反映着题目的意思,你能看着线段图用算式来解答吗?学生独立列算式。
(7)汇报:说说你的想法。
①出示学生各种答案,板书在黑板上。
②对于这几种方法,你们有什么看法吗?(生:我认为……)
③擦去错误答案,剩下正确答案:100÷5=10(个)10+1=11(棵)
④师追问:大家都认为这种方法是正确的,那么谁能告诉我算式中的“50”表示什么吗?“5”表示什么?“100÷5=10(个)”又表示什么?(板书:间隔)为什么“+1”?(两端要栽,它比间隔多1)“10+1=11(棵)”表示什么?(植树棵树)这其实就是运用了“间隔数+1=棵数”这个规律。
⑤谁能够完整地说一说这个算式的意思?有谁听明白了,也想来说一说的?既然大家都想来说,那么我们就同桌互相说一说。
2、试一试
师:如果老师把题目改一改,看看谁还会?
课件出示:“六一”儿童节快到了,学校决定在全长120米的求索大道一边插上彩旗。每隔8米插一面旗(两端都插),一共需要准备多少面彩旗?
(1)生轻轻读题,说说从这个题目中你了解了些什么信息?
(2)和刚才这题比较,你想说什么?
(3)学生独立列式并汇报。
3、巩固新知
师:恭喜大家,顺利通过检查!你们还想接受新一轮的挑战吗?
课件出示:园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?
(1)生独立阅题,说说这个题目中又有哪些数学信息呢?
(2)这个题目和前面做的两题有什么不同呢?(①前面那题告诉路的长度,而这题求路的长度。②前面那题求植树棵树,而这题已经告诉了植树棵树。)
(3)在做前面那题时,我们是先求什么的?(间隔数)那在这个题目中,我们应该先算什么?
(4)学生独立解答并汇报:
(5)板书学生的各种答案,你有什么看法?说说理由。生列式:36-1=35(个)35×6=210(米)
(6)擦去错误答案,师追问:“36”表示什么意思?再“-1”表示什么?(板书:间隔数)这其实就是运用了“棵数-1=间隔数”这个规律。再“×6”又是什么意思?(板书:总距离)
【植树问题教案】相关文章:
《植树问题》教案03-12
植树问题教案02-21
植树问题教案(精选15篇)03-01
植树问题教案15篇02-21
《封闭图形植树问题》教案04-02
植树问题封闭图形教案03-07
五年级植树问题教案03-09
五年级上册植树问题教案03-09
《相遇问题》教案09-09