- 相关推荐
《绝对值》教案
作为一名辛苦耕耘的教育工作者,时常需要用到教案,教案有助于学生理解并掌握系统的知识。那么问题来了,教案应该怎么写?以下是小编整理的《绝对值》教案,仅供参考,欢迎大家阅读。
《绝对值》教案1
教学目标
1.了解绝对值的概念,会求有理数的绝对值;
2.会利用绝对值比较两个负数的大小;
3.在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力.
教学建议
一、重点、难点分析
绝对值概念既是本节的教学重点又是教学难点。关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有
。
教材上绝对值的定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。此外,0的绝对值是0,从几何定义出发,就十分容易理解了。
二、知识结构
绝对值的定义
绝对值的表示方法
用绝对值比较有理数的大小
三、教法建议
用语言叙述绝对值的定义,用解析式的形式给出绝对值的定义,或利用数轴定义绝对值,从理论上讲都是可以的.初学绝对值用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示绝对值的定义,即
在教学中,只能突出一种定义,否则容易引起混乱.可以把利用数轴给出的定义作为绝对值的一种直观解释.
此外,要反复提醒学生:一个有理数的绝对值不能是负数,但不能说一定是正数.“非负数”的概念视学生的情况,逐步渗透,逐步提出.
四、有关绝对值的一些内容
1.绝对值的代数定义
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零.
2.绝对值的几何定义
在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值.
3.绝对值的主要性质
(2)一个实数的绝对值是一个非负数,即|a|≥0,因此,在实数范围内,绝对值最小的数是零.
(4)两个相反数的绝对值相等.
五、运用绝对值比较有理数的大小
1.两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数左边,所以,两个负数,绝对值大的反而小.
比较两个负数的方法步骤是:
(1)先分别求出两个负数的绝对值;
(2)比较这两个绝对值的大小;
(3)根据“两个负数,绝对值大的反而小”作出正确的判断.
2.两个正数大小的比较,与小学学习的方法一致,绝对值大的较大.
教学设计示例
绝对值(一)
一、素质教育目标
(一)知识教学点
1.能根据一个数的绝对值表示“距离”,初步理解绝对值的'概念.
2.给出一个数,能求它的绝对值.
(二)能力训练点
在把绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.
(三)德育渗透点
1.通过解释绝对值的几何意义,渗透数形结合的思想.
2.从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性.
(四)美育渗透点
通过数形结合理解绝对值的意义和相反数与绝对值的联系,使学生进一步领略数学的和谐美.
二、学法引导
1.教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现“教为主导,学为主体”的教学要求,注意创设问题情境,使学生自得知识,自觅规律.
2.学生学法:研究+6和-6的不同点和相同点→绝对值概念→巩固练习→归纳小结(绝对值代数意义)
三、重点、难点、疑点及解决办法
1.重点:给出一个数会求出它的绝对值.
2.难点:绝对值的几何意义,代数定义的导出.
3.疑点:负数的绝对值是它的相反数.
《绝对值》教案2
教学目标:
通过数轴,使学生理解绝对值的概念及表示方法
1、 理解绝对值的意义,会求一个数的绝对值及进行有关的简单计算
2、 通过绝对值概念、意义的探讨,渗透数形结合、分类讨论等数学思想方法
3、 通过学生合作交流、探索发现、自主学习的过程,提高分析、解决问题的能力
教学重点:
理解绝对值的概念、意义,会求一个数的绝对值
教学难点:
绝对值的概念、意义及应用
教学方法:
探索自主发现法,启发引导法
设计理念:
绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义 .通过想一想,议一议,做一做,试一试,练一练等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力.
教学过程:
一、 创设情境,复习导入
1.今天我们来学习一个重要而很实际的数学概念,提高我们的数学本领,先请大家看屏幕,思考并解答题中的问题.(用多媒体出示引例)
星期天张老师从学校出发,开车去游玩,她先向东行20千米,到了游乐园,下午她又向西行30千米,回到家中(学校、游乐园、家在同一直线上),如果规定向东为正,①用有理数表示张老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?
① +20千米,-30千米; ②(20+30)0.15=7.5升
2.在学生讨论的基础上,教师指出:这个例子涉及两个问题,第一问中的向东和向西是相反
意义的量,用正负数表示,第二问是计算汽车的耗油量,因为汽车的耗油量只与行驶的
路程有关,而与行驶的方向没有关系,所以没有负数.这说明在实际生活中,有些问题
中的量,我们并不关注它们所代表的意义,只要知道具体数值就行了.你还能举出其他
类似的`例子吗?
3.小组讨论,有的同学在思考,有的在交流,有些例子被否定,有的得到同伴的赞许, 气氛热烈.教师巡视,偶尔参加其中一组的讨论,但不直接肯定或否定学生的问题,而是引导鼓励学生思考、交流,请各小组派代表汇报讨论结果.
我们小组举的例子是:我爸爸喜欢炒股,一天他支出10 000元购买A股票,同一天他又抛出B股票收入15 000元,规定支出为负,那么爸爸两次的交易额用有理数如何表示?如果交易所每次交易按总额的千分之一收费,那么爸爸的这两次交易需交多少交易费?
4.在实际生活中存在不关注相反意义的例子,刚才我们所举例子中的计算,都不必考虑它们的正、负性,看来我们的确很有必要给上面涉及的量取一个名字.我们把这个量叫做有理数的绝对值.
二、 合作交流、探索新知
1. 绝对值的概念
⑴ 如图,在数轴上,+3和-3虽然符号不同,但表示这两个数的点到原点的距离都是3,
我们把这个距离叫做+3和-3 的绝对值.
+3的绝对值就是数轴上表示+3的点到原点的距离,+3的绝对值是3,记作: =3
-3的绝对值就是数轴上表示-3的点到原点的距离, -3的绝对值是3,记作: =3
⑵ 一个数a的绝对值是数轴上表示数a的点到原点的距离, 数a的绝对值,记作:
2. 探索绝对值意义
⑴ 学生探索:求6,-6, ,- ,2.5,-2.5的绝对值
小组讨论:互为相反数的两个数的绝对值有什么关系?
规律总结:互为相反数的两个数的绝对值相等
⑵ 学生抢答:
学生小组讨论得出:
一个正数的绝对值是它的本身. 即:若a0,则 =a
一个负数的绝对值是它的相反数. 即:若a0,则 =-a
0的绝对值是0 . 即:若a=0,则 =0
(3)学生活动:
在数轴上自己标出五个数,让同桌指出它们的绝对值,引导学生观察,讨论得出:
任何一个数的绝对值都是非负数(正数和0). 0
= =
三、 举一反三,灵活应用
例1.求下列各数的绝对值:-4,-1 ,0,+2,+3
解: ; ; ;
; .
注:通过此题,复习巩固绝对值的概念,表示法,意义
例2,计算
① ②
解: 原式=5-3.4-0+1.9 解: 原式=
=3.5 =0
注:通过此题,复习巩固绝对值的意义
例3.求出绝对值是12, ,0的有理数
解: ① ∵
绝对值是12的有理数是12
② ∵
绝对值是 的有理数是
③∵
绝对值是0的有理数是0
小结:绝对值等于一个正数的数有两个,它们互为相反数;
绝对值等于0的数有一个,是0;
没有绝对值等于负数的数,绝对值是个非负数. 0
四、达标反馈
1. 填空
(1) 数轴上离开原点2个单位长的点所表示的数是___
(2) 数轴上到原点的距离等于1.5的点所表示的数是 ______
(3) 正数的绝对值是_________,负数的绝对值是___________, 零的绝对值是______
(4) 从数轴上看,一个数的绝对值就是表示这个数离开原点的________
(5) 49是______的相反数,它是_______的绝对值
(6) 如果一个数的绝对值等于 ,那么这个数是________
(7) 绝对值小于3的整数有___,它们的和为___
(8) 若 =0,则a_____0
2.选择题
⑴ - 是一个
A.正数 B.负数 C.正数或零 D.负数或零
⑵ 如果一个数的绝对值是5.2 ,那么这个数是
A.5.2 B.一5.2 C.5.2或-5.2 D.以上都不对
⑶ 任何有理数的绝对值都是
A.正数 B.负数 C.有理数 D.正数或零
⑷ 一个数的绝对值是它本身,那么这个数是
A.正数 B.正数或零 C.零 D.有理数
五、学习小结:
1、 绝对值的概念、意义
① 数轴上的点到原点的距离叫做这个点表示的有理数的绝对值
② 正数的绝对值是它的本身
负数的绝对值是它的相反数
0的绝对值是0
③ = =
④ 绝对值是非负数 0
⑤ 有理数可理解为由性质符号和绝对值组成
⑥ 互为相反数的两个数可理解为符号相反、绝对值相同的两个数
2、 学会发现、探索、合作交流,体会数形结合,分类讨论等数学思想方法
六、设计理念:
绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义.通过想一想,议一议,做一做,试一试,练一练等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力.
《绝对值》教案3
导学目标
1、借助数轴,初步理解绝对值的概念,能求一个数的绝 对值,会利用绝对值比较两个负数的大小。
2、通过应用绝对值解决实际问题绝对值的意义和作用。
导学重点:
正确理解绝对值的概念?
导学难点:
负数大小比较??
导学过程
温故:
1、下列各数中:
+7,—2, ,—8?3,0,+0?01,— ,1 ,哪些是正数?哪些是负数?哪些是非负数?
2、什么叫做数轴?画一条数轴,并在数轴上标出下列各数:
—3,4,0,3,—1?5,—4, ,2?
链接:
问题2中有哪些数互为相反数?从数轴上看,互为相反数的一对有理数有什么特点?
知新:
1、什么叫绝对值?
在数轴上,一个数所对应的点与 的 叫做这个 数的绝对值.例如+5的绝对值等于5,记作+5=5 ;—3的绝对值等于3,记作 。
2、绝对值的特点有哪些?
(1)一个正数的绝对值是 ;例如,4= , +7。1 = 。
(2)一个负数的绝对值是 ;例如,-2= ,-5。2= 。
(3)0的绝对值是 .
容易看出,两个互为相反数的数的绝对值 .如—5=+5=5.
练一练:1。已知| |=5,求 的值。
2、填空:
(1)+3的符号是_____,绝对值是_ _____;(2)—3的符号是_____,绝对值是______;
(3)— 的符号是____,绝对值是______;(4)10—5的符号是_____,绝对值是______?
3、填空:
(1)符号是+号,绝对值是7的.数是________;(2)符号是—号,绝对值是7的数是________; (3)符号是—号,绝对值是0?35的 数是________;(4)符号是+号,绝对值是1 的数 是________;
4、(1)绝对值是 的数有几个?各是什么?(2)绝对值是0的数有几个?各是什么?
(3)有没有绝对值是—2的数?
3。理解:
若用a表示一个数,当a 是正数时可以表示成a>0,当a是负数时可以表示成a<0,这样,上面的绝对值的特点可用用符号语言可表示为:
(1) 如果a>0,那么a=a;
(2) 如果a<0,那么a=-a;
(3) 如果a=0,那么a =0。
4。 比较两个负数的大小
由于绝对值是表示数的点到原点的距离,则离原点越远的点表示的数的绝对值越大.负数的绝对值越大,表示 这个数的点就越靠左边,因此,两个负数比较,绝对值大的反而小.
练一练: 比较 和 的大小
《绝对值》教案4
教学目标
1.知识与技能
①能根据一个数的绝对值表示距离,初步理解绝对值的概念,能求一个数的绝对值.
②通过应用绝对值解决实际问题,体会绝对值的意义和作用.
2.过程与方法
经历绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.
3.情感、态度与价值观
①通过解释绝对值的几何意义,渗透数形结合的`思想.
②体验运用直观知识解决数学问题的成功.
教学重点难点
重点:给出一个数,会求它的绝对值.
难点:绝对值的几何意义、代数定义的导出.
教与学互动设计
(一)创设情境,导入新课
活动 请两同学到讲台前,分别向左、向右行3米.
交流 ①他们所走的路线相同吗?
②若向右为正,分别可怎样表示他们的位置? ③他们所走的路程的远近是多少?
(二)合作交流,解读探究
观察 出示一组数6与-6,3.5与-3.5,1和-1,它们是一对互为________,它们的__________不同,__________相同.
总结: 例如6和-6两个数在数轴上的两点虽然分布在原点的两边,但它们到原点的距离相等,如果我们不考虑两点在原点的哪一边,只考虑它们离开原点的距离,这个距离都是6,我们就把这个距离叫做6和-6的绝对值.
绝对值:在数轴上表示数a的点与原点的距离叫做a的绝对值,记作│a│.
想一想 -3的绝对值是什么?
《绝对值》教案5
●教学目标
知识与能力:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。
过程与方法:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。
情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。
●教学重点与难点
教学重点:绝对值的概念和求一个数的绝对值
教学难点:绝对值的几何意义及求绝对值等于某一个正数的有理数。
●教学准备
多媒体课件
●教学过程
一、创设问题情境
用多媒体动画显示:两只小狗从同一点O出发,在一条笔直的街上跑,
一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记做__________,B处记做__________。
以O为原点,取适当的单位长度画数轴,并标出A、B的位置。
(用生动有趣的图画吸引学生,即复习了数轴和相反数,又为下文作准备)。
2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两
又有什么特征?(从形和数两个角度去感受绝对值)。
3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?
小结:在实际生活中,有时存在这样的情况,无需考虑数的'正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。
二、建立数学模型
绝对值的概念
(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)
绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5。
注意:①与原点的关系②是个距离的概念
练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。
(通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。)
三、应用深化知识
1、例题求解
例1、求下列各数的绝对值
-1.6, , 0, -10, +10
解:|-1.6|=1.6 ||= |0|=0
|-10|=10 |+10|=10
2、练习2:填表
相反数 绝对值 2.05 1000 0 - -1000 -2.05
(以表格的形式将绝对值和相反数进行比较,为归纳绝对值的特征作准备)
3、根据上述题目,让学生归纳总结绝对值的特点。(教师进行补充小结)
特点:1、一个正数的绝对值是它本身
2、一个负数的绝对值是它的相反数
3、零的绝对值是零
4、互为相反数的两个数的绝对值相等
4、练习3:回答下列问题
①一个数的绝对值是它本身,这个数是什么数?
②一个数的绝对值是它的相反数,这个数是什么数?
③一个数的绝对值一定是正数吗?
④一个数的绝对值不可能是负数,对吗?
⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗?
(由学生口答完成,进一步巩固绝对值的概念)
5、例2、求绝对值等于4的数。
(让学生考虑这样的数有几个,是怎样得出这个结果的呢?对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。)
分析:
①从数字上分析
∵|+4|=4,|-4|=4 ∴绝对值等于4的数是+4和-4画一个数轴(如下图)
②从几何意义上分析,画一个数轴(如下图)
∵数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点P和表示-4的点M
∴绝对值等于4的数是+4和-4
注意:说明符号“∵”读作“因为”,“∴”读作“所以”
6、练习本:做书上16页课内练习3、4两题。
四、归纳小结
本节课我们学习了什么知识?
你觉得本节课有什么收获?
由学生自行总结在自主探究,合作学习中的体会。
五、课后作业
让学生去寻找一些生活中只考虑绝对值的实际例子。
课本16页的作业题。
本人在近几届乐清市中、小、幼教师教学论文联评中均有获奖,特别是论文《谈数学学困生的惰性心态及教学策略》在全国数学教研第十一届年会论文(初中组)比赛中获三等奖;而且在近几年的说课比赛和优质课评比中表现出色;是校青年骨干教师,名教师培养对象。
乐清市虹桥镇第一中学 陈杨明
-4 -3 -2 -1 0 1 2 3 4
4个单位长度 4个单位长度
M
《绝对值》教案6
一、知识与技能
(1)借助数轴初步理解绝对值的概念,能求一个数的绝对值。
(2)通过应用绝对值解决实际问题,体会绝对值的意义和作用。
二、过程与方法
通过观察实例及绝对值的几何意义,探索一个数的绝对值与这个数之间的关系,培养学生语言描述能力。
三、情感态度与价值观
培养学生积极参与探索活动,体会数形结合的方法。
教学重、难点与关键
1.重点:正确理解绝对值的概念,能求一个数的绝对值。
2.难点:正确理解绝对值的几何意义和代数意义。
3.关键:借助数轴理解绝对值的几何意义,根据绝对值定义和相反数的概念,理解绝对值的'代数意义。
四、教学过程
1.复习提问,新课引入
2.什么叫互为相反数?
3.在数轴上表示互为相反数的两个点和原点的位置关系怎样?
五、新授
在一些量的计算中,有时并不注意其方向,例如,为了计算汽车行驶所耗的油量,起作用的是汽车行驶的路程而不是行驶的方向。
1.观察课本第11页图1.2-5,回答:
(1)两辆汽车行驶的路线相同吗?
(2)它们行驶路程的远近相同吗?
这两辆车行驶的路线不同(方向相反),但行驶的路程的远近相同,都是10km.
课本图1.2-5中表示-10的点B和表示10的点A离开原点的距离都是10,我们就把这个距离10叫做数-10、10的绝对值。
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作│a│。
这里的数a可以是正数、负数和0.
《绝对值》教案7
一、教学目标:
1、掌握绝对值的概念,有理数大小比较法则。
2、学会绝对值的计算,会比较两个或多个有理数的大小。
3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想。
二、教学难点:
两个负数大小的比较。
三、知识重点:
绝对值的概念。
四、教学过程:
(一)设置情境。
1、引入课题。
星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正:
(1)用有理数表示黄老师两次所行的路程。
(2)如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?
2、学生思考后,教师作如下说明:
实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关。
3、观察并思考:
画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离。
4、学生回答后,教师说明如下:
数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。
例如,上面的问题中|20|=20,|-10|=10显然,|0|=0这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义。为引入绝对值概念做准备。使学生体验数学知识与生活实际的联系。因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备。
(二)合作交流。
1、探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?
-3,5,0,+58,0.6。
2、要求小组讨论,合作学习。
3、教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页)。
(三)巩固练习:教科书第15页练习。
1、其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别。求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例。 学生能做的尽量让学生完成,教师在教学过程中只是组织者。本着这个理念,设计这个讨论。
2、结合实际发现新知引导学生看教科书第16页的图,并回答相关问题:
(1)把14个气温从低到高排列。
(2)把这14个数用数轴上的点表示出来。
3、观察并思考:
(1)观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?应怎样比较两个数的大小呢?
(2)学生交流后,教师总结:
14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则。
4、想象练习:
想象头脑中有一条数轴,其上有两个点,分别表示数-100和-90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系。要求学生在头脑中有清晰的图形。让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。
数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习 ,加强数与形的想象。
5、课堂练习例2,比较下列各数的大小。(教科书第17页例)
比较大小的过程要紧扣法则进行,注意书写格式。
6、练习:第18页练习。
(三)小结与作业。
课堂小结怎样求一个数的绝对值,怎样比较有理数的大小?
(四)本课作业。
1、必做题:教产书第19页习题1,2,第4,5,6,10
2、选做题:教师自行安排。
五、本课教育评注(课堂设计理念,实际教学效果及改进设想)。
1、情景的创设出于如下考虑:
(1)体现数学知识与生活实际的紧密联系,让学生在这些熟悉的.日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣。
(2)教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受。
2、一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。
3、有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,帮助学生建立数轴上越左边的点到原点的距离越大,所以表示的数越小这个数形结合的模型。为此设置了想象练习。
4、本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。
《绝对值》教案8
教学目标:
知识目标:(1)理解绝对值的概念及表示法。
(2)理解数的绝对值的几何意义。
能力目标:(1)掌握求一个数的绝对值及有关的简单计算,
(2)掌握绝对值等于某一正数的有理数的求法,探索绝对值的简单应用。
情感目标:让学生经历绝对值的产生过程,体会数形结合思想。
教学重点、难点:
重点:绝对值的概念和求一个数的绝对值。
难点:绝对值的几何意义。
教学手段:多媒体(powerpoint)教学与板书相结合。
教学过程:
一、新课引入
我们已经知道有理数在日常生活中应用广泛,与生产实践联系紧密,用正、负数可以来表示相反意义的量,而数轴使我们直观的感受到有理数中正、负数的区别和数在数轴上相应的位置。
乘城市中的出租车去逛商店是我们经常经历的事,其中的数量关系与我们所学的有理数、数轴有密切联系。例如有2位同学在书店购买书籍后回家,一位同学乘上甲出租车向东行驶10Km到达A处,另一位同学乘上乙出租车向西行驶10Km到达B处。
二、合作学习
把全班同学分4—5组分组讨论完成下面的三个问题
1:描述请大家用数轴来表示这一过程(记向东行驶的里程数为正)
2:思考两位同学付费额度是否一样?为什么?
3:结论付费额度与行驶方向有没有关系?
然后请各组代表总结发言:(鼓励学生积极参与,并给予高度的评价)
这两位同学由于乘车离开书店的距离一样,所以付费额度也是一样的,与行驶方向无关。说明在数轴上的A(+10)、B(—10)两点到原点(书店)的距离是一样的,都是10。同样数轴上+5和—5两点到原点的距离也是一样的。
我们把一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。(注意是离开原点的距离)
如数轴上表示-5的点到原点的`距离是5,所以—5的绝对值是5,记作;+5的绝对值也是5,记作。其实际意义是:数轴上+5这个点到原点的距离为5。(强调绝对值符号的书写格式)
三、课内练习
1、求下列各数的绝对值:-1。60-10+10同时说出它们的几何意义。
2、说出下列各数的绝对值:-7-2。0501000
由上述两题可概括出:(在教师的引导下让学生得出结论)
一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,互为相反的两个数的绝对值相等。(注意一个数的绝对值不可能是负数,而是非负数。)
(一)典例分析
1、求绝对值等于4的数?
注:分析例题时尽量培养学生利用数轴来解决问题的能力。
2、计算:
四、反馈练习
3、举一个生活中的实际例子,说明解决有的问题只需考虑数的绝对值。(如港口的吞吐量;一位学生上学、放学一共所走过的路等)
4、填表:
相反数
绝对值
21
—0。75
5、画一条数轴,在数轴上分别标出绝对值是6,1。2,0的数
6、计算:
五、探究学习
1、某人因工作需要租出租车从A站出发,先向南行驶6Km至B处,后向北行驶10Km至C处,接着又向南行驶7Km至D处,最后又向北行驶2Km至E处。
请通过列式计算回答下列两个问题:
(1)这个人乘车一共行驶了多少千米?
(2)这个人最后的目的地在离出发地的什么方向上,相隔多少千米?
2、写出绝对值小于3的整数,并把它们记在数轴上。
六、小结
一头牛耕耘在一块田地上,忙碌了一整天,表面上它在原地踏步,没有踏出这块土地,但我们说,它付出了艰辛和汗水,因为它所走过的距离之和,有时候我们是无法想象的。这就是今天所学的绝对值的意义所在。所以绝对值是不考虑方向意义时的一种数值表示。
七、布置作业
做作业本中相应的部分。
《绝对值》教案9
一、学习与导学目标:
知识与技能:会求出一个数的绝对值,能利用数轴及绝对值的知识,比较两个有理数的大小;
过程与方法:经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略;
情感态度:通过创设情境,初步感悟学习绝对值的必要性,促进责任心的形成。
二、学程与导程活动:
A、创设情境(幻灯片或挂图)
1、两辆汽车,其一向东行驶10km,另一向西行驶8km。为了区别,可规定向东行驶为正,则分别记作+10km和-8km。但在计算出租车收费,汽车行驶所耗的汽油,起主要作用的是汽车行驶的.路程,而不是行驶的方向。此时,行驶路程则分别记作10km和8km。
再如测量误差问题、排球重量谁更接近标准问题
2、在讨论数轴上的点与原点的距离时,只需要观察它与原点相隔多少个单位长度,与位于原点何方无关。
B、学习概念:
1、我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作︱a︱(幻灯片)。因此,上述+10,-8的绝对值分别是10,8。
如在数轴上表示数-6的点和表示数6的点与原点的距离都是6,所以,-6和6的绝对值都是6,记作︱-6︱=6,︱6︱=6。(互为相反数的两个数的绝对值相同)
2、尝试回答(1)︱+2︱= ,︱1/5︱= ,︱+8.2︱= ;
(2)︱-3︱= ,︱-0.2︱= ,︱-8.2︱= ;
(3)︱0︱= 。(幻灯片)
思考:你能从中发现什么规律?引导学生得出:(幻灯片)
性质:一个正数的绝对值是它本身;
一个负数的绝对值是它的相反数;
零的绝对值是零。
如果用字母a表示有理数,上述性质可表述为:
当a是正数时,︱a︱=a;
当a是负数时,︱a︱=-a;
当a=0时,︱a︱=0。
解答课本P19/7及P15练习,由P19/7体会绝对值在实际中的应用,由练习1体会上面的三个等式,由练习2中提到的绝对值大小、数轴,引出问题:
在引入负数以后,如何比较两个数的大小,尤其是两个负数的大小?
3、让我们仍然回到实际中去看看有怎样的启发,引导阅读P16(幻灯片)。
显然,结合问题的实际意义不难得到:-4-202。
因此,在数轴上你有何发现?生讨论后发现:从左往右表示的数越来越大。
再找几个量试试是否如此?这些数的绝对值的大小如何?(可利用P19/6,8为素材)
通过以上探究活动得到:正数大于0,0大于负数,正数大于负数;
两个负数,绝对值大的反而小。
4、师生活动比较下列各对数的大小:P17例,P18练习。
5、师生小结归纳(幻灯片)
三、笔记与板书提纲:
1、 幻灯片
2、 师生板演练习P15/1
四、练习与拓展选题:
P19/4,5,9,10
《绝对值》教案10
1.2.4绝对值
教学目标1,掌握绝对值的概念,有理数大小比较法则.
2,学会绝对值的计算,会比较两个或多个有理数的大小.
3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.
教学难点两个负数大小的比较
知识重点绝对值的概念
教学过程(师生活动)设计理念
设置情境
引入课题星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?
学生思考后,教师作如下说明:
实际生活中有些问题只关注量的具体值,而与相反
意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;
观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.
学生回答后,教师说明如下:
数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|
例如,上面的问题中|20|=20,|-10|=10显然,|0|=0这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.使学生体验数学知识与生活实际的联系.
因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.
合作交流
探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对
有什么规律?、
-3,5,0,+58,0.6
要求小组讨论,合作学习.
教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页).
巩固练习:教科书第15页练习.
其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别.求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例.学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论.
结合实际发现新知引导学生看教科书第16页的图,并回答相关问题:
把14个气温从低到高排列;
把这14个数用数轴上的点表示出来;
观察并思考:观察这些点在数轴上的'位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?
应怎样比较两个数的大小呢?
学生交流后,教师总结:
14个数从左到右的顺序就是温度从低到高的顺序:
在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.
在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则
想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系.
要求学生在头脑中有清晰的图形.让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。
数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习,加强数与形的想象。
课堂练习例2,比较下列各数的大小(教科书第17页例)
比较大小的过程要紧扣法则进行,注意书写格式
练习:第18页练习
小结与作业
课堂小结怎样求一个数的绝对值,怎样比较有理数的大小?
本课作业1,必做题:教产书第19页习题1,2,第4,5,6,10
2,选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.
2,一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。
3,有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习.
4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。
附板书:
1.2.4绝对值
《绝对值》教案11
教学目标:
1、知识与技能:
(1)借助数轴理解相反数的概念,会求一个数的相反数。
(2)培养学生观察、猜想、验证等能力,初步形成数形结合的思想。
2、过程与方法:
在教师的指导下,让学生通过观察、比较,归纳出相反数的概念和性质。
重点、难点
1、重点:理解相反数的意义,会求一个数的相反数。
2、难点:对相反数意义的'理解。
教学过程:
一、创设情景,导入新课
1、请两位同学背靠背,一个向左走5步,另一个向右走5步,如果向右走为正,向左、向右分别记作什么?(生答:+5、-5),+5与-5这样成对出现的数就是为们今天要学习的相反数。
二、合作交流,解读探究
1、(出示小黑板)
教师提出问题:上图中数轴上的点B和点D表示的数各是什么?有什么关系?
学生活动:分小组讨论,与同伴交流。
教师活动:请几位同学说出他们讨论的结果,指出点B表示+2.6,点D表示-2.6,它们只有符号不同,到原点的距离都是2.6。
2、(板书):如果两个数只有符号不同,那么我们将其中一个数叫做另一个数的相反数,也称这两个数互为相反数。
0的相反数是0。
3、学生活动:
在数轴上,表示互为相反数的两个点有什么关系?
学生代表回答后,小结:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等。
4、练习填空:
3的相反数是;-6的相反数是;-(-3)=;-(-0.8)=;
学生活动:在练习本上解答,并与同伴交流,师生共同订正。
归纳:化简多重符号时,一个正数前不管有多少个“+”号,都可全部省去不写;一个数前有偶数个“-”号,也可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简后只保留一个“-”号。
三、应用迁移,巩固提高
1、课本P10第1题。
2、填空:
(1)xx的相反数是;(2)xx的相反数是;(3)xx的相反数是2/3。
3、如果一个数的相反数是它本身,则这个数是。
4、若α、β互为相反数,则α+β= 。
5、-(-4)是的相反数,-(-2)的相反数是。
6、化简下列各数的符号
-(-9)=; +(-3.5)= ;
-=;-{-[+(-7)]}= 。
7、若-x=10,则x的相反数在原点的侧。
8、若x的相反数是-3,则;若x的相反数是-5.7,则。
四、总结反思
本节课学习了相反数的意义,并认识了相反数在数轴上的特征,数a的相反数是-a,0的相反数是0,在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等。
五、课后作业
课本P13习题1.2A组第3、4题。
《绝对值》教案12
一、教学目标
1、知识与技能(1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个
负数的大小。 (2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。 2、过程与方法目标:(1)、通过运用“| |”来表示一个数的绝对值,培养学生的数感和符号感,达到发展学
生抽象思维的目的(2)、通过探索求一个数绝对值的方法和两个负数比较大小方法的过程,让学生学会通过
观察,发现规律、总结方法,发展学生的实践能力,培养创新意识; (3)、通过对“做一做”“议一议” “试一试”的交流和讨论,培养学生有条理地用语言
表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。
3、情感态度与价值观:
借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的.数形结合思想。通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。
二、教学重点和难点
理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。
三、教学过程:
1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟) 2.在组长的组织下进行讨论、交流。(约5分钟) 3、小组分任务展示。(约25分钟) 4、达标检测。(约5分钟) 5、总结(约5分钟)
四、小组对学案进行分任务展示
(一)、温故知新:
前面我们已经学习了数轴和数轴的三要素,请同学们回想一下什么叫数轴?数轴的三要素什么?
(二)小组合作交流,探究新知
1、观察下图,回答问题: (五组完成)
大象距原点多远?两只小狗分别距原点多远?
归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。一个数a的绝对值记作:.
4的绝对值记作,它表示在上与的距离,所以| 4|= 。
2、做一做:
(1)、求下列各数的绝对值:(四组完成) -1.5,0,-7,2 (2)、求下列各组数的绝对值:(一组完成)
(1)4,-4; (2) 0.8,-0.8;
从上面的结果你发现了什么?
3、议一议:(八组完成)
(1)|+2|=,
1=,|+8.2|= ; 5(2)|-3|=,|-0.2|=,|-8|= . (3)|0|= ;
你能从中发现什么规律?
小结:正数的绝对值是它,负数的绝对值是它的,0的绝对值是。
4、试一试:(二组完成)
若字母a表示一个有理数,你知道a的绝对值等于什么吗?
(通过上题例子,学生归纳总结出一个数的绝对值与这个数的关系。)
5:做一做:(三组完成)
1、( 1 )在数轴上表示下列各数,并比较它们的大小:
- 3,- 1
( 2 )求出(1)中各数的绝对值,并比较它们的大小
( 3 )你发现了什么?
2、比较下列每组数的大小。
(1) -1和– 5;(五组完成) (2) ?
(3) -8和-3(七组完成)
5和- 2.7(六组完成) 6五、达标检测:
1:填空:
绝对值是10的数有( )
|+15|=( ) |–4|=( )
| 0 |=( ) | 4 |=( ) 2:判断(1)、绝对值最小的数是0。( ) (2)、一个数的绝对值一定是正数。( ) (3)、一个数的绝对值不可能是负数。( )
(4)、互为相反数的两个数,它们的绝对值一定相等。( ) (5)、一个数的绝对值越大,表示它的点在数轴上离原点越近。( )
六、总结:
1绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.
2.绝对值的性质:正数的绝对值是它本身;
负数的绝对值是它的相反数; 0的绝对值是0.
因为正数可用a>0表示,负数可用a<0表示,所以上述三条可表述成:a="">0,那么|a|=a (2)如果a<0,那么|a|=-a (3)如果a=0,那么|a|=0
3、会利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小.
七、布置作业
P50页,知识技能第1,2题.
《绝对值》教案13
【学习目标】
1、使学生能说出相反数的意义
2、使学生能求出已知数的相反数
3、使学生能根据相反数的意思进行化简
【学习过程】
【情景创设】
回忆上节课的情境,小明从学校出发沿东西大街走了0.5千米,在数轴上表示出他的位置。点a,点b即是小明到达的位置。
观察a,b两点位置及共到原点的距离,你有什么发现吗?
观察下列各对数,你有什么发现?
‐5与5,‐6、1与6、1,‐34 与+34
相反数的描述性定义:符号不同,绝对值相等的两个数,叫做相反数(只有符号不同)
规定0的相反数是0
想一想:你能举出互为相反数的例子吗?
【例题精讲】
例1
例2
试一试: 化简―[―(+3、2)]
想一想:
请同学们仔细观察这五个等式,它们的符号变化有什么规律?
把一个数的多重符号化成单一符号时,若该数前面有奇数个“―”号,则化简的结果是负;若该数前面有偶数个“―”号,则化简的结果是正、
练一练:填空
(1)-2的相反数是 ,
3、75与 互为相反数,
相反数是其本身的数是 ;
(2)-(+7)= ,
-(-7)= ,
-[+(-7)]= ,
-[-(-7)]= ;
(3)判断下列语句,正确的是 、
① ―5 是相反数;
② ―5 与 +3 互为相反数;
③ ―5 是 5 的相反数;
④ ―5 和 5 互为相反数;
⑤ 0 的相反数还是 0 、
选择:
(1)下列说法正确的`是 ( )
a、正数的绝对值是负数;
b、符号不同的两个数互为相反数;
c、π的相反数是 ―3、14;
d、任何一个有理数都有相反数、
(2)一个数的相反数是非正数,那么这
个数一定是 ( )
a、正数 b、负数 c、零或正数 d、零
画一画:
在数轴上画出表示下列各数以及它们的相反数的点:
动脑筋:
如果数轴上两点 a、b 所表示的数互为相反数,点 a 在原点左侧,且 a、b 两点距离为 8 ,你知道点 b 代表什么数吗?
【课后作业】
1、判断题
(1) 0没有相反数。 ( )
(2)任何一个有理数的相反数都与原来的符号相反。 ( )
(3)如果一个有理数的相反数是正数,则这个数是负数、 ( )
(4)只有0的相反数是它本身 ( )
(5) 互为相反数的两个数绝对值相等
2、填空题
(1) —(—2、8)= _________; —(+7)= _________;
(2) —3、4的相反数是 ________、
(3) —2、6是________的相反数、
(4)│—3、4│=________;│5、7│=________;
—│2、65│=_______;—│—12、56│=_______
(5)绝对值等于5的数是_________
(6)相反数等于本身的数是__________
3、化简:
(1) —(—1966)=______ (2) +│—1978│=______(3)+(—1983)=______
(4) —(+1997)=_______ (5) +│+XX│=______
4、选择题:
(1)在—3、+(—3)、—(—4)、—(+2)中,负数的个数有( )
a、1个 b、2个 c、3个
(2)在+(—2)与—2、—(+1)与+1、—(—4)与+(—4)、
—(+5)与+(—5)、—(—6)与+(+6)、+(+7)与+(—7)
这几对数中,互为相反数的有( )
a、6对 b、5对 c、4对 d、3对
5、在数轴上标出3、—2、5、2、0、 以及它们的相反数。
6、请在数轴上画出表示3、—2、—3、5及它们相反数的点,并分别用a、b、c、d、e、f来表示
(1)把这6个数按从小到大的顺序用<连接起来
(2)点c与原点之间的距离是多少?点a与点c之间的距离是多少?
《绝对值》教案14
教学目标
1.知识与技能
会利用绝对值比较两个负数的大小.
2.过程与方法
利用绝对值概念比较有理数的大小,培养学生的逻辑思维能力.
3.情感、态度与价值观
敢于面对数学活动中的困难,有学好数学的'自信心.
教学重点难点
重点:利用绝对值比较两个负数的大小.
难点:利用绝对值比较两个异分母负分数的大小.
教与学互动设计
(一)创设情境,导入新课
投影 你能比较下列各组数的大小吗?
(1)│-3│与│-8│ (2)4与-5 (3)0与3
(4)-7和0 (5)0.9和1.2
(二)合作交流,解读探究
讨论交流 由以上各组数的大小比较可见:正数都大于0,0都大于负数,正数都大于负数.
思考 若任取两个负数,该如何比较它的大小呢?
点拨 若-7表示-7℃,-1表示-1℃,则两个温度谁高谁低?
【总结】 两个负数,绝对值大的反而小,或说,两个负数绝对值小的反而大.
注意 ①比较两个负数的大小又多了一种方法,即:两个负数,绝对值大的反而小.
②异号的两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑先比较它们的绝对值.
③在数轴上表示有理数,它们从左到右的顺序也就是从小到大的顺序,即:左边的数总比右边的数要小.即:利用数轴来比较有理数的大小.
《绝对值》教案15
教学目标
1.了解的概念,会求有理数的;
2.会利用比较两个负数的大小;
3.在概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力.
教学建议
一、重点、难点分析
概念,既是本节的教学重点又是教学难点。关于的概念,需要明确的是无论是的几何定义,还是的代数定义,都揭示了的一个重要性质——非负性,也就是说,任何一个有理数的都是非负数,即无论a取任意有理数,都有。
教材上的定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及,通过数轴,这些知识都联系在一起了。此外,0的是0,从几何定义出发,就十分容易理解了。
二、知识结构
的定义,的表示方法用比较有理数的大小
三、教法建议
用语言叙述的定义,用解析式的形式给出的定义,或利用数轴定义,从理论上讲都是可以的.初学用语言叙述的.定义,好像更便于学生记忆和运用,以后逐步改用解析式表示的定义,即
在教学中,只能突出一种定义,否则容易引起混乱.可以把利用数轴给出的定义作为的一种直观解释.
此外,要反复提醒学生:一个有理数的不能是负数,但不能说一定是正数.“非负数”的概念视学生的情况,逐步渗透,逐步提出.
四、有关的一些内容
1.的代数定义
一个正数的是它本身;一个负数的是它的相反数;零的是零.
2.的几何定义
在数轴上表示一个数的点离开原点的距离,叫做这个数的.
3.的主要性质
(2)一个实数的是一个非负数,即|a|≥0,因此,在实数范围内,最小的数是零.
(4)两个相反数的相等.
五、运用比较有理数的大小
1.两个负数大小的比较,因为两个负数在数轴上的位置关系是:较大的负数一定在较小的负数左边,所以,两个负数,大的反而小.
比较两个负数的方法步骤是:
(1)先分别求出两个负数的;
(2)比较这两个的大小;
(3)根据“两个负数,大的反而小”作出正确的判断.
2.两个正数大小的比较,与小学学习的方法一致,大的较大.
【《绝对值》教案】相关文章:
绝对值教案11-10
绝对值教案15篇11-12
教案中班教案02-23
教案教案及反思04-18
教案幼儿中班教案02-15
小班教案小班教案03-10
小班教案安全教案03-16
语言类教案中班教案02-27
科学教案模板教案03-01