范文资料网>反思报告>教案大全>《商的近似数教案

商的近似数教案

时间:2023-02-26 14:20:41 教案大全 我要投稿
  • 相关推荐

商的近似数教案

  作为一名专为他人授业解惑的人民教师,常常要写一份优秀的教案,教案是实施教学的主要依据,有着至关重要的作用。怎样写教案才更能起到其作用呢?下面是小编收集整理的商的近似数教案,欢迎大家分享。

商的近似数教案

商的近似数教案1

  教学内容:

  教科书第23页的例7和“做一做”中的题目。

  教学目的:

  1、使学生学会根据实际需要用“四舍五入”来求小数的近似数.

  2、提高学生的比较、分析、判断的能力。

  教学过程:

  一、复习

  1.按“四舍五入法”,将下列各数保留一位小数

  3.724.185.256.037.98

  2.按“四舍五入”法,将下列各数保留两位小数

  1.4835.3478.7852.864

  7.6024.0035.8973.996

  做完第1、2题后,要让学生说明其中小数末尾的“0”为什么不能去掉

  二、新课

  1.教学例6.

  教师出示例6,要求根据书上提出的信息列式计算.当学生除到商为两位小数时,还除不尽.教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候应该怎么办?(生:应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)

  教师问:保留一位小数,应该等于多少?表示计算到“角”。

  教师要让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”.)

  2.做第23页“做一做”中的题目.

  教师让学生按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的`近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)

  教师问:你解题时用了什么技巧?

  三、巩固练习

  1、求下面各数的近似数:

  3.81÷732÷42246.4÷13

  2、书上的作业。

商的近似数教案2

  一、教学目标

  (一)知识与技能

  通过具体实例体会求商的近似数的必要性,感受取商的近似数是实际应用的需要。

  (二)过程与方法

  掌握用“四舍五入”法截取商的近似数的一般方法。

  (三)情感态度和价值观

  在解决相关实际问题时能根据实际情况合理取商的近似数,培养学生探索数学问题的兴趣和解决实际问题的能力。

  二、教学重难点

  教学重点:掌握用“四舍五入”法截取商的近似数的一般方法。

  教学难点:理解求商的近似数与积的近似数的异同。

  三、教学准备

  多媒体课件。

  四、教学过程

  (一)复习旧知,揭示课题

  1.按照要求写出表中小数的近似数。(PPT课件出示题目。)

  2.求出下面各题中积的近似值。(PPT课件出示题目。)

  (1)得数保留一位小数:2.83×0.9;

  (2)得数保留两位小数:1.07×0.56。

  3.揭示课题:我们已经会求小数乘法中积的近似数了。在小数除法中,常常会出现除不尽的情况,或者虽然除得尽,但是商的小数位数比较多,实际应用中并不需要这么多位的小数,这时就可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数,这就是我们这节课要探究的内容。(板书课题:商的近似数。)

  【设计意图】通过复习求一个小数的近似数,为新课学习做好铺垫。通过复习求积的近似数,为后面将求积的近似数和求商的近似数进行对比做好准备,也利于引出课题。在引出课题的同时,让学生知道求商的近似数的必要性。

  (二)创设情境,自主探究

  1.教学教材第32页例6。

  (1)出示例6题目信息。(PPT课件演示。)

  (2)教师引导学生根据问题中的信息自主列式计算,并指名板演。(教师巡视,了解学生的计算情况,给予适当指导。)

  (3)当学生除到商为两位小数、三位小数……还除不尽时,教师适时引导学生思考:在计算价钱时,通常只精确到“分”,这里的计量单位是“元”,那应该保留几位小数?除的时候应该怎么办?(教师适时板书或PPT课件演示。)

  ①学生回答后,修改自己的计算过程,得到19.4÷12≈1.62(元)。

  ②订正后,教师引导学生明确:商保留两位小数时,要除到第三位小数,再将第三位小数“四舍五入”。

  (4)教师进一步引导学生思考:如果要精确到“角”,又应该保留几位小数?除的时候应该怎么办?

  ①学生独立完成。

  ②订正后,教师引导学生明确:商保留一位小数时,要除到第二位小数,再将第二位小数“四舍五入”。(教师适时板书或PPT课件演示。)

  (5)教师组织学生交流讨论。

  ①通过上面的两次计算,想一想怎样求商的近似数?

  ②教师引导学生小结:求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。(教师适时板书或PPT课件演示。)

  (6)介绍求商的近似数的简便的方法:求商的近似数时,除到要保留的小数位数后,可以不用再继续除,只要把余数同除数作比较。

  ①如果余数小于除数的一半,就说明下一位商小于5,直接舍去;(PPT课件演示例6精确到“角”的计算过程。)

  ②如果余数等于或大于除数的一半,就说明下一位商等于或大于5,要在已求得的商的末一位上加1。(PPT课件演示例6精确到“分”的计算过程。)

  【设计意图】复习已唤起了学生用“四舍五入”法取近似数的知识经验,这里通过买羽毛球的情境,让学生经历求商的`近似数的过程,体会和总结求商的近似数的一般方法。同时也结合实例体会了商的近似数的实际意义。

  2.对比求商的近似数与求积的近似数的异同。

  (1)对比求“1.07×0.56”的积的近似数与求“19.4÷12”的商的近似数,想一想,它们在求法上有什么相同和不同?(PPT课件演示。)

  (2)思考:求商的近似数与求积的近似数有什么相同和不同?(PPT课件演示。)

  (3)引导学生交流、概括。(PPT课件演示。)

  ①相同点:都是按“四舍五入”法取近似数。

  ②不同点:求商的近似数时,只要计算到比要保留的小数位数多一位就可以了;而求积的近似数时,则要计算出整个积后再取近似数。

  【设计意图】通过例题与复习题的对比,让学生明确求商的近似数与求积的近似数的异同,既突破了教学难点,又让学生形成了较完整的认知结构。

  (三)巩固应用,内化方法

  1.基本练习。

  (1)完成教材第32页“做一做”。

  ①学生独立完成,教师巡视,适时指导。

  ②集体订正,着重让学生明确每一小题除到第几位小数,然后怎么取近似数。

  (2)完成教材第36页练习八第3题。

  ①学生独立练习,教师巡视,适时指导。

  ②组织学生交流、比较取近似值的各种方法,看哪种方法既快捷又简便。明确从全局出发只列一个竖式,看最多保留三位小数,就先直接除到第四位小数,然后再一位小数、两位小数、三位小数地进行保留,这样既简便又不易出错。

  2.提高练习。

  判断对错。(对的在括号里打“√”,错的在括号里打“×”。)

  (1)求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。( )

  (2)求商的近似数时,精确到百分位,就必须除到万分位。( )

  (3)求商的近似数和求积的近似数一样,必须先求出准确数。( )

  3.解决问题。

  (1)完成教材第36页练习八第2题。

  ①引导学生理解题意,让学生说一说要想知道“是上午铺路的速度快,还是下午铺路的速度快”,该怎么办?(要分别计算出上午和下午铺路的速度,并比较大小。)

  ②学生独立计算,教师巡视,了解学生保留不同小数位数的取值情况。

  ③组织学生交流各种不同保留小数位数的情况,体会只要能比较出速度的快慢,保留的小数位数越少越简单,明确取近似值时可以根据实际情况确定精确度,灵活选择保留的位数。

  (2)完成教材第36页练习八第4题。

  ①引导学生审题,并让学生明白当题目中没有明确保留小数位数的要求时,一般要保留两位小数。

  ②引导学生自觉、灵活地进行简便计算(将“1.9÷0.045”转化为“3.8÷0.09”),并完成第(1)问。

  ③完成第(2)问:提出其他数学问题并解答。

  【设计意图】练习设计注意了练习的针对性和层次性,注重了让学生通过练习内化求商的近似数的方法。同时对解决问题的技巧进行了适时点拨和指导,发展了学生思维的深刻性和灵活性。

  (四)课堂小结,畅谈收获

  这节课你学会了什么?有什么收获?

  (五)作业练习,及时巩固

  1.课堂作业:教材第36页练习八第1题。

  2.课外作业:教材第36页练习八第5题。

商的近似数教案3

  一、教学目标:

  1.通过组织学生探讨,培养学生在解决实际问题时要根据实际情况取商的近似值的应用意识。

  2.使学生能联系生活实际体会取商的近似值的不同情况,并能根据实际需要选择“进一法”和“去尾法”解决生活中的问题。

  3.培养学生联系生活实际灵活解决问题的能力,体会数学与生活的密切联系。

  二、教学重、难点:

  感受商的近似值的现实意义,结合生活实际正确地选择“进一法”、“去尾法”解决问题。

  三、教学过程:

  (一)谈话导入,揭示课题

  同学们,昨天老师去逛超市。花10元钱买了3斤苹果。谁能告诉老师苹果的单价是多少呢?

  板书:学生的列式计算。引导学生说出用“四舍五入”的方法取得近似值。

  设计意图:除了让学生在体会学习数学是一件快乐的事情,更要让学生深刻地体会到数学知识来源于生活的实际,又服务于生活实际,体验学习探索成功给学生带来的愉快。

  (二)创设情境,探究新知

  1.出示例12(1):小强的妈妈要将2.5千克香油分装在一些玻璃瓶里,(每个最多可盛0.4千克)需要准备几个瓶?

  ①学生独立思考,列式解答。

  预设:生1:2.5÷0.4=6.25(个)

  生2:2.5÷0.4=6.25(个)≈6(个)

  生3:2.5÷0.4=6.25(个)≈7(个)

  ②组织学生以小组为单位进行讨论,说出自己的看法及理由。(小组汇报)

  预设:

  生1:瓶子需要整个数,不能用小数表示。把6.25个用“四舍五入法”约等于6个。

  生2:6个只能装0.4×6=2.4(千克),不够装应需要7个。

  ③教师概括。

  师:两种答案哪一个更符合生活实际?(第二种)

  师:像这样,在实际生活中,将6.25中的小数点后面的尾数舍去,向个位进1,这种求近似值的方法叫做进一法。

  2.再来看看王阿姨遇到的问题,如何解决?出示例12(2):王阿姨用一根25米长的红丝带包装礼盒。每个礼盒要用1.5米长的丝带,这些红丝带可以包装几个礼盒?

  ①先独立思考。

  预设:生1:25÷1.5=16.666……(个)

  生2:25÷1.5=16.666……(个)≈17(个)

  生3:25÷1.5=16.666……(个)≈16(个)

  ②全班交流答案,组织学生讨论,强调以理服人。

  预设:生1:盒数应取整数,把16.666……(个)用“四舍五入”法应进1,约等于17个。

  生2:但实际包装时,17个礼盒要用1.5×17=25.5(米)的红丝带,丝带不够包装,应是16个。

  生3:16个礼盒用了1.5×16=24(米)红丝带,剩下1米不能再包装一个礼盒,所以只能16个。

  ③教师概括。

  师:我们应取哪种呢?

  师:像这样根据实际情况,将16.666……中小数点后面的尾数去掉,这种求近似值的方法叫做“去尾法”。

  (三)教师小结:看来,“四舍五入”法取近似值只适用于一般情况,在解决问题时,要根据实际情况取商的.近似值,有时要多一点,即“进一法”;有时要少一点。即“去尾法”。这是我们今天所学的商的近似值实际应用。(板书)

  (四)巩固练习,拓展提高

  第一关:试一试

  第二关:比一比

  第三关:选一选

  第四关:说一说:

  五、课堂总结:

  同学们,通过今天这节课的学习,你对商的近似数又有哪些新的认识?

  (一般情况下采用“四舍五入”法取商的近似数。但在解决实际问题时,要根据实际情况,用“进一法”和“去尾法”取商的近似数。)

  六、板书设计:

  商的近似数

  10÷3= 3.333···(元)≈3.33(元)四舍五入法

  2.5÷0.4 = 6.25(个)≈7(个)进一法

  25÷1.5=16.66……(个)≈16(个)去尾法

商的近似数教案4

  教学内容:

  P23例7、做一做。

  教学目的:

  1、使学生学会用“四舍五入”法取商的近似数。

  2、培养学生的实践能力和思维的灵活性,培养学生解决实际问题的能力。

  3、引导学生根据生活中的实际情况多角度思考问题,灵活地取商的近似数。

  重点:

  使学生知道为什么要求商的近似数,会用“四舍五入”法取商的近似数。

  难点:

  使学生能根据生活中的实际情况多角度思考问题,灵活地取商的近似数。

  教学过程:

  一、复习

  1.按“四舍五入法”,将下列各数保留一位小数.

  6.03  7.98

  2.按“四舍五入”法,将下列各数保留两位小数.

  8.785  7.602  4.003  5.897  3.996

  做完第1、2题后,要让学生说明其中小数末尾的'“0”为什么不能去掉.

  3.计算0.38×1.14(得数保留两位小数)

  二、新课

  1.教学例7:

  教师出示例7,口述图意,再列式计算。当学生除到商为两位小数时,还除不尽。教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候要除到哪一位?为什么?(应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)横式应该怎样写出?教师板书.

  教师问:表示计算到“角”需要保留几位小数?除的时候要除到哪一位?应该约等于多少?

  教师要让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”。)

  我们学习班了求积的近似值和求商的近似值,比一比这两者有什么相同点和不同点?

  2.P23做一做:

  教师让学生按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)

  师:解题时用了什么技巧?

  三、巩固练习

  1、求下面各题商的近似数:

  3.81÷732÷42246.4÷13

  2、P26第10题第(1)题。

  四、作业:

  P26第10题第(2)题、第11题。

  五、总结:

  今天大家有什么收获?

  板书设计:商的近似数

  3.81÷7≈0.5432÷42≈0.76246.4÷13≈18.95

  0.5440.76118.953

商的近似数教案5

  教学内容:P23例7、做一做,P26练习四第10、11题。

  教学目的:

  1、使学生学会用“四舍五入”法取商的近似数。

  2、培养学生的实践能力和思维的灵活性,培养学生解决实际问题的能力。

  3、引导学生根据生活中的实际情况多角度思考问题,灵活地取商的近似数。

  教学重点:知道为什么要求商的近似数,会用“四舍五入”法取商的近似数。

  教学难点:能根据生活中的实际情况多角度思考问题,灵活地取商的近似数。

  教学过程:

  一、复习

  1.按“四舍五入法”,将下列各数保留一位小数.

  6。03 7。98

  2.按“四舍五入”法,将下列各数保留两位小数.

  8。785 7。602 4。003 5。897 3。996

  做完第1、2题后,要让学生说明其中小数末尾的“0”为什么不能去掉.

  3。 计算0。38*1。14(得数保留两位小数)

  二、新课

  1.教学例7:

  教师出示例6,口述图意, 再列式计算.当学生除到商为两位小数时,还除不尽.教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候要除到哪一位?为什么?(应 该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)横式应该怎样写出?教师板书。

  教师问:表示计算到“角”需要保留几位小数?除的时候要除到哪一位?应该约等于多少?

  教师要让学生想一想:“怎样求商的.近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”.)

  我们学习班了求积的近似值和求商的近似值,比一比这两者有什么相同点和不同点?

  2.P23做一做:

  教师让学生按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)

  师:解题时用了什么技巧?

  三、巩固练习

  1、求下面各题商的近似数:

  3.81÷7 32÷42 246。4÷13

  2、P26第10题第(1)题。

  四、作业:P26第10题第(2)题、第11题。

  课后小记:

  本以为求近似数是教学难点, 所以在新授前安排了大量相关知识的复习。但在实际教学中才发现计算才是真正的教学难点, 由于例题及做一做中所有习题全是小数除以整数, 所以当作业中出现小数除以小数计算时, 许多学生装都忘记了"一看, 二移"的步骤。 所以在设计巩固练习时应增加小数除以小数的练习。

  其次我根据学情补充介绍了一种求商近似数的简便方法。 即除到要保留的小数位数后不再继续除,只把余数同除数做比较,若余数比除数的一半小,就说明求出下一位商要直接舍去;若余数等于或大于除数的一半,就说明 要在已除得的商的末一位上加1。介绍了这种方法感觉好的同学算得更快了,但悟性较差的学生听完后连最基本的保留两位小数应除到小数点后面第几位也混淆不清 了。所以下次再教时,此方法的介绍时间可以适当后移,放在练习课上。

商的近似数教案6

  教学内容:教材第32页例6及练习八相关题目。

  教学目标:

  1、使学生能理解商的近似数的意义,掌握用“四舍五入”法求商的近似数的一般方法。能根据实际情况和要求求商的近似数。

  2、经历用“四舍五入”法求商的近似数的过程,体验迁移应用的学习方法。

  3、提高学生的比较、分析、判断的能力,感受数学与现实生活密切相关,培养学习数学的兴趣。

  教学重点:让学生学会用“四舍五入”法取商的近似数。

  教学难点:结合实际情况和要求来求商的近似数。

  教学准备:多媒体课件。

  教学过程

  学生活动

  (二次备课)

  一、复习导入

  教师课件出示下面的题目:

  1、用“四舍五入”法将下面的数改写成一位小数。

  9、12

  11、59

  22、03

  11、96

  32、34

  7、88

  2、按要求计算下面各题:

  0、34×0、86???(保留一位小数)

  1、37×0、45???(保留两位小数)

  师:通过上面的练习,说一说你是用什么方法求这些数的近似数的?

  指名学生说一说。

  小结:保留几位小数就看这位小数后面的数位,大于或等于5就向前一位进一,小于或等于4就舍去。这样的方法就叫“四舍五入”法。

  今天我们要学习“商的近似数”。

  教师板书:

  商的近似数

  二、预习反馈

  点名让学生汇报预习情况。(重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,什么问题)

  三、探索新知

  1、教师课件出示教材第32页例6情境图。

  学生读题,独立列式。

  教师指名学生回答是怎么列式的。

  板书:19、4÷12

  师:请大家尝试计算。

  学生尝试计算,教师巡视。

  师:同学们在计算的`过程当中发现什么?

  指名学生说一说。

  师:除不尽,我们该怎么办?

  学生交流。指名学生说一说。

  师生共同得出结论:在实际生活中,已经不用“分”了,所以可以算到“角”,也可以算到“元”。也就是可以保留整数,也可以只保留一位小数或两位小数。这样就需要进行取近似数了。怎样求商的近似数呢?保留哪一位比较合适?联系求积的近似数的方法,请动脑筋想一想。

  学生讨论。

  指名学生汇报:

  方法1:保留两位小数。因为单位是元,小数点后第二位是分,是最小的面值,所以保留两位小数。

  方法2:保留一位小数,可以精确到角,因为实际生活中已经用不到“分”了,找零不方便,所以只要保留一位小数。

  方法3:可以只保留整数。

  师:这些方法都可以,但想一想,这样的话要除到哪一位?

  指名学生回答。

  方法:保留两位小数,除到小数点后第三位;保留一位小数,除到小数点后第二位;只保留整数,除到小数点后第一位。最后用“四舍五入”的方法求近似数。因为是近似数,不是准确数,所以要用“≈”。

  师:大家快快计算,并求商的近似数吧!

  学生计算。

  投影展示学生的计算过程。

  师:同学们观察这三种方法,你觉得哪种方法更合理?

  指名学生说一说。

  第二种方法,因为每个羽毛球的价格是1、6元,更接近准确值。

  2、发现求商的近似数的规律。

  师:说一说如何求商的近似数?

  学生交流,指名说一说。

  师生共同总结:

  ①看:需要保留几位小数或整数。

  ②除:除到比需要保留的小数位数多一位。

  ③取:用“四舍五入”法取商的近似数。

  四、巩固练习

  1、完成教材第32页做一做。

  学生独立完成,指3名学生板演。

  集体交流,订正。重点让学生说一说怎样求商的近似数。

  2、完成教材练习八第3题。

  学生独立完成,指名汇报。

  五、拓展提升

  9、125除以一个小数,商是两位小数,保留一位小数约是3、7,除数最大是多少?2、5

  六、课堂总结

  这节课有什么收获?想一想,求商的近似数和求积的近似数有什么相同点和不同点?

  七、作业布置

  教材练习八第1、2题。

  课前复习求一个数的近似数,和求积的近似数方法,为学生完整地认识取商的近似值做铺垫。

  教师根据学生预习的情况,有侧重点地调整教学方案。

  结合实际情况,让学生去感悟、体验、经历求商的近似数的需要,激起学生探究欲望,使他们在反思、调整中不断构建属于自己的知识。

  引导学生总结发现规律,培养学生的概括能力,体会自主学习的乐趣。

  板书设计

  商的近似数

商的近似数教案7

  教学目标:

  1.知识与技能:能理解商的近似数的意义。

  2.过程与方法:掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。

  3.情感、态度与价值观:培养学生在实际生活中灵活运用数学知识的能力,能根据实际情况进行求近似数。

  教学重点:

  掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。

  教学难点:

  根据题意正确求出商的近似数。

  教学方法:

  注重新旧知识的迁移,引导学生自主学习、总结。

  教学准备:

  多媒体。

  教学过程:

  一、复习导入

  复习旧知:(出示如下题目)

  1.用“四舍五入”法将下面的数改写成一位小数。

  8.7693.45212.7118.64

  2.计算下面各题,得数保留两位小数。

  2.43×4.67 12.15×3.41

  订正答案,并通过问题:你是用什么方法求这些数的近似数?

  (保留几位小数就看这位小数后面的数位,大于4就向前一位进一,小于五就舍去。师引导总结方法的名称:“四舍五入”法。)

  引出课题:这节课我们要学习“商的近似数”。(板书课题:商的.近似数)

  二、互动新授

  1.出示教材第32页例6情境图。

  阅读情境图中的信息,并问:怎样解决爸爸提出的问题呢?

  引导学生自主列算式,并试着计算:19.4÷12

  学生在计算过程中,会发现除不尽。这时,师引导学生小组交流,遇到这种情况应该怎么办?

  通过交流,学生可能会想到:实际计算钱数时应该算到分,因为分是人民币的最小单位;也可以算到角,因为现在买东西时已经不用分了。

  教师小结:根据我们的生活实际,当所买的商品数量少的时候,可以保留整数,或者保留一位小数,或者两位小数。当然如果数量很多的时候,通常会计算到分,这就要根据我们的实际需要进行取近似数了。看来取近似数一种是按照要求去取,一种是按照实际情况去取。(板书:按要求取,按需要取。)

  然后再引导学生想一想:算到分和角时分别需要保留几位小数?

  (算到分要保留两位小数,算到角就要保留一位小数。)

  师引导学生思考并讨论:除的时候应该怎么算?

  小组讨论后,学生汇报:保留两位小数,就要算出三位小数,再按“四舍五入”法省略百分位后面的尾数;保留一位小数,就要算出两位小数,再按“四舍五入”法省略十分位后面的尾数。

  让学生自己用竖式计算:19.4÷12。教师根据学生汇报,板书

  2.提问:说一说如何求商的近似数?

  让学生独立思考后,在小组内交流、讨论。引导学生小结:求商的近似数时,只需要比需要保留的小数位数多除出一位,然后再用“四舍五入”法就可以取近似数了。或者除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。同时,求商的近似数的时,不需要算出商的准确值之后再进行取舍。

  3.引导学生比较求商的近似值和求积的近似值的异同点。

  小组讨论后发言:相同点:都是用“四舍五入”法求近似数。

  不同点:积的近似数要求出准确数之后再求近似数;商的近似数不需要求出准确数,只需比需要保留的小数位数多除出一位就可以求近似数。

  师小结:求商的近似数非常重要,有时按照要求取近似数,有时按照实际取,在取商的近似数的时候,要明白应该除到哪位就可以不用再除了。

  三、巩固拓展

  1.完成教材第32页“做一做”。学生独立完成。订正时让学生说一说它们的近似值分别是怎么取的。有些题保留指定小数位数后,近似数的末尾有0,要让学生说说是如何处理的。如第2小题1.55÷3.9,保留两位小数是0.40。

  四、课堂小结。同学们,这节课你学了什么知识?有哪些收获?

  引导学生归纳

  1.求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。

  2.求商的近似数的时候不需要算出商的准确值之后再进行取舍。除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。

【商的近似数教案】相关文章:

近似数教案02-27

《近似数》教案03-12

《积的近似数》教案10-02

《求小数的近似数》教案03-18

《求近似数、四舍五入》教案03-04

七年级数学教案近似数与有效数字12-28

积的近似值教案03-23

数100以内的数教案12-09

数的整除教案02-25