- 相关推荐
长方体和正方体教案
作为一名教职工,常常需要准备教案,教案是备课向课堂教学转化的关节点。我们应该怎么写教案呢?下面是小编为大家收集的长方体和正方体教案,欢迎阅读,希望大家能够喜欢。
长方体和正方体教案1
教学目标
使学生直观认识长方体和正方体,能够辨认这些图形.
教学重点和难点
重点:直观认识长方体和正方体,知道图形的名称.
难点:辨认这些图形.能够区别长方形与长方体,正方形与正方体.
教学过程设计
(一)复习准备
下图中有多少个长方形?多少个正方形?多少个三角形?多少个圆?(投影片)
(二)学习新课
1.初步认识长方体.
(1)出示长方体实物(装墨水瓶的纸盒、火柴盒)
师:同学们看这个纸盒和火柴盒,谁知道它们是什么
形状?学生能回答可由学生回答,不能回答老师告诉学
生,并板书:长方体.
(2)看一看、摸一摸.
让学生拿出一个长方体实物,看一看它的形状,摸一摸每个面.
师:长方体有几个面?怎样正确地数出?(长方体有上、下两个面,前、后两个面,左、右两个面,一共有六个面)
师:长方体每个面是什么形状的?相对的面一样吗?(长方体每个面都是长方形,相对的面完全一样)
教师再出示一个长方体实物.(其中有两个面是正方形的)
师:这也是一个长方体.它有几个面?每个面是什么形?相对的面一样吗?(这个长方体有六个面,有四个面是长方形,有两个面是正方形,相对的面一样)
(3)举例.
日常生活中,你还见到过哪些东西的形状是长方体?
(4)小结.
师:通过看一看、摸一摸,我们知道长方体有6个面,相对着的两个面的形状相同,有的长方体的6个面都是长方形的,有的长方体有两个面是正方形,其余4个面是长方形.
板书:6个面长方形(也可能有两个面是正方形)
教师出示长方体实物,变换摆放方向,让学生从不同角度观察、认识长方体.如下图:
2.初步认识正方体.
(1)出示正方体实物(魔方玩具、方积木块)
师:谁知道它们是什么形状的?边说边在黑板上板书:正方体.
师:正方体有几个面?每个面都是什么形?
让学生拿出事先准备好的正方体数一数有几个面,再拿一个正方形的纸放在正方体的每个面上比一比.师生共同得出正方体有6个面,每个面都是正方形.
板书:6个面 正方形
3.认识长方体图和正方体图.
师:现在我把长方体和正方体画成图,你们认识吗?
教师出示已画好的长方体图和正方体图,让学生说出它们各自的名称,并贴在板书长方体和正方体的左面.
4.辨认长方体和正方体.
(1)请同学们闭上眼睛想一想:长方体是什么样子的?正方体是什么样子的?
(2)选图形(投影片)
(三)巩固反馈
1.教科书 p.23做一做.
先让学生说一说中间一行的每一个图形的名称,再让学生把是长方体或正方体的实物和它所对应的几何图形用线连起来.然后集体订正.
2.在长方体下面画√.
3.在正方体下面画√.
4.数一数.
长方体有( )个 正方体有( )个
长方形有( )个 正方形有( )个
5.动手摆.
教科书练习七第2,3题.
课堂教学设计说明
这节课的教学任务是使学生对长方体和正方体有一些感性认识,知道它们的`名称,能够辨认就可以了.由于是初步认识,因此不要对学生提更高的要求.
首先通过实物对长方体有感性认识,在此基础上通过看一看、摸一摸,知道长方体有几个面?各是什么形?继而概括出长方体的特征.然后教师通过变换长方体的摆放方向,从直观上加深对长方体的认识.最后教师再出出示长方体图,让学生抽象的认识长方体.体现了对学生思维深刻性的培养.
通过选图形、数一数、摆一摆三个层次的练习,充分发挥学生的主观能动性,把已学过的长方体、正方体的特征进行概括、迁移,在比较中识别长方体和正方体,辨认长方形和长方体、正方形和正方体.学生的思维始终处于高度的发散状态,达到培养学生思维灵活性的目的.
长方体和正方体教案2
设计说明
1.加强动手操作,促进学生的思维发展。
因为数学知识具有抽象性,所以要多引导学生在操作中思考,培养学生掌握技能技巧,促进学生的思维发展。本节课的教学设计在让学生理解长方体、正方体表面积的意义时,先让学生动手操作,“解剖”长方体和正方体,展示出长方体和正方体各自的6个面。然后通过比较分析,深刻地体会长方体或正方体各自6个面的面积之和就是这个长方体或正方体的表面积。
2.合作探究,实现自主发现。
合作探究是学生学习数学的主要方式之一,它能促进学生对抽象的数学知识的理解。在学生感知了表面积的意义之后,放手让学生在小组内合作交流,自主探究长方体表面积的不同计算方法,然后根据正方体的特征归纳出正方体表面积的计算方法,培养学生的优化思维和求异思维。
课前准备
教师准备PPT课件长方体纸盒
学生准备长方体牙膏盒教学过程
教学过程
⊙猜测质疑,引入新课
师:长方体和正方体在我们的生活中应用得非常广泛,老师也收集到这样两个纸盒(出示两个大小比较接近的长方体纸盒),怎样才能比较出这两个长方体纸盒,谁用的纸板比较多呢?(学生讨论后汇报)
设计意图:通过比较谁用的纸板比较多,使学生产生拆开纸盒研究长方体表面积的想法,从而主动探究体与面的.关系,同时引发学生的争论,使其主动思考,寻求解决问题的方法。
⊙演示操作,形成表象,建立概念
1.感受表面积的意义。
(1)把长方体牙膏盒沿棱剪开并展开,分别用“上”“下”“前”“后”“左”“右”标明6个面,并让学生观察后回答:
①长方体哪几组面的面积相等?
②长方体每个面的长和宽与长方体的长、宽、高有什么关系?
(学生观察后汇报)
师明确:长方体上、下两个面的面积相等,每个面的长和宽就是长方体的长和宽;前、后两个面的面积相等,每个面的长和宽就是长方体的长和高;左、右两个面的面积相等,每个面的长和宽就是长方体的宽和高。
(2)什么叫长方体的表面积?
(板书:长方体6个面的总面积,叫做它的表面积)
设计意图:通过亲自动手操作剪开并展开长方体实物,让学生真正参与获取知识的过程。在实际观察中让学生充分感知并建立表面积的表象,从而发现并归纳出表面积的意义。
2.探究求长方体表面积的计算方法。
(1)回忆。
师:同学们,你们还记得长方形的面积计算公式吗?
预设
生:长方形的面积=长×宽。
(2)议一议。
长方体上、下面的面积=()×();
长方体前、后面的面积=()×();
长方体左、右面的面积=()×()。
(3)总结长方体表面积的计算方法。
方法一长方体的表面积=长×宽×2+长×高×2+宽×高×2,用字母表示为S=2ab+2ah+2bh。
方法二长方体的表面积=(长×宽+长×高+宽×高)×2,用字母表示为S=(ab+ah+bh)×2。
长方体和正方体教案3
第三单元
长方体和正方体体积
第一课时:
教学目标:
1、使同学理解体积的意义,认识常用的体积单位:立方米、立方分米、立方厘米,培养初步的空间观念。
2、使同学知道计量一个物体的体积有多大,要看它包括多少个体积单位。
教学重点:
1、建立体积概念。
2、认识体积单位。
教学难点:
建立体积概念。
教学用具:学具袋。
教学过程:
一、导入:你们都听说过乌鸦喝水的故事吧,聪明的乌鸦是怎么喝到水的?这其中有什么道理?
二、新授:
1、体积的意义。
(1)、准备:我们也来做一个实验,取两个同样大小的玻璃杯。先往一个杯子里倒满水;取一块鹅卵石放入另一个杯子,再把第一个杯子里的水倒到第二个杯子里,会出现什么情况?为什么?这说明了什么?(鹅卵石占了一定的空间。)
(2)、每一个物体都占有一定的空间。下面的电视机、影碟机和手机,哪个所占的空间大?
〔3〕、启发同学概括:物体所占空间的大小叫做物体的体积。(板书)
上面三个物体,哪个体积最大?哪个体积最小?
(4)、比较:用同学手中的文具比。谁的体积大?谁的体积小?
师:教室是一个较大的空间,课桌、讲台、同学、老师等占教室空间的一局部。整个学校是一个大空间,教师、办公室、操场、花池、领操台、旗座等都占有一定的空间,既有自身的体积。而整个宇宙是一个大空间,地球只是宇宙空间的一局部,而地球上的山、川、河流、一切建筑物、人等占地球的一局部。
2、体积单位:
(1)、讲:丈量长度要用长度单位,丈量面积要用面积单位,丈量体积要用体积单位。(板书)
认识体积单位:
常用的体积单位有:立方米、立方分米、立方厘米。可以分别写成
( 2)、认识立方厘米:
出示:棱长是1厘米的正方体,量一量它的棱长是多少?
说明:它的体积是1立方厘米。
谁的体积近似的接近1立方厘米?(色子或一个手指尖的体积大约是1立方厘米)
(3)、认识立方分米: (方法同立方厘米)
粉笔盒的体积接近于1立方分米。
(4)、认识立方米:
①出示1立方米的棱长的教具。观察后总结:边长是1米的正方体的体积是1立方米。
②认识1立方米的空间大小。
1立方米水约可以装满500个暖瓶。1立方米的'木材约可以做课桌50张。
小结:
常用的体积单位有哪些?哪个体积单位大?哪个体积单位小?
体积单位的用途是什么?
(5)、练一练:选择恰当的单位:
橡皮的体积用(
),火车的体积用(
),书包的体积用(
)。
(6)、比一比:
到现在为止,我们都了学哪些丈量单位?(板书)
长度、面积、体积三种单位的区别:
(7)、练习:
①说一说:丈量篮球场的大小用(
)单位。
丈量学校旗杆的高度用(
)单位
丈量一只木箱的体积要用(
)单位。
②、 一个正方体的棱长是1(
),外表积是(
),体积是(
)。(你想怎样填?)
③、判断:一只长方体纸箱,外表积是52平方分米,体积是24立方分米,它的外表积大。(
)
3、体积初步认识:
①决定体积大小,是看它含有体积单位的个数。
A 、演示:用棱长1厘米的4个正方体,拼一个长方体,说出它的体积是多少?
B、说出下面物体的体积(3个体积单位,4个体积单位,)
C 、摆一摆:请你也摆出一个体积是3立方厘米的物体。摆出体积是4立方厘米的物体。
D、小结:怎样知道一个长方体的体积是多少?
同一个体积数,可以摆出不同的形状。
②动手摆一摆:
请大家用手中的小正方体拼一个体积是8 立方厘米的长方体(或正方体)。(想一想你拼的物体体积是多少?)可以怎么摆?
三、总结:
这节课我们学习了体积的意义和体积单位。你有什么收获?
四、作业:
课后小结:
长方体和正方体教案4
认识形体
长方体、正方体的面、棱、顶点,结构与特征。(例 1、例2)
长方体、正方体表面的展开图(例3)
表面积
表面积的意义和计算方法(例4)
表面积的实际应用(例5)
体积
体积的意义、容积的意义(例6、例7)
常用的体积单位和容积单位(例8)
长方体、正方体的体积计算公式(例9、例10)
体积单位的进率及简单换算(例11)
整理与练习实践活动
第一, 有一条合理的编排线索。先教学长方体、正方体的特征,再教学它们的表面积,然后教学体积,是一条符合知识间的发展关系,有利于学生认知的线索。把形体的特征安排为第一块内容,能为后面的表面积、体积的教学打下扎实的基础。如果不理解长方体的6个面都是长方形,且相对的面完全相同,就不可能形成长方体表面积的计算方法。如果不建立长方体的长、宽、高的概念,体积公式就是无本之木、无源之水。把表面积安排在体积之前教学,是因为学生已经有了面积的概念,掌握了常用的面积单位,会计算长方形、正方形的面积,教学表面积的条件比体积充分。而且通过表面积的教学,更深一层掌握长方体、正方体的特征,对教学体积是有益的。在体积这部分知识里,先教学体积的意义和常用单位,这些都是重要的基础知识。建立了体积概念和体积单位概念,才能探索体积计算公式。把体积单位的进率安排在体积公式之后教学,就能通过计算获得进率。这样,体积单位的进率就是意义建构的,而不是机械接受的。
第二,加强了空间观念。教学长方体和正方体,历来都很重视发展空间观念。本单元不仅在传统的基础知识的教学时加强培养,还充实了长方体、正方体表面展开的内容。过去教材里讲长方体的表面展开是为了教学它的表面积及计算,现在教学表面的展开,更是为了发展空间的观念。《数学课程标准(实验稿)》把几何体与其展开图之间的转化作为空间观念的一个内容,把能进行这些转化作为空间观念的一种表现。教材一方面把正方体、长方体纸盒展开,在展开图里找到原来形体的每个面;另一方面又提供一些图形,把它们折叠围成立体,感受图形的各部分在立体上的位置,让学生的空间观念在这些活动中实实在在地获得发展。另外,设计的五道思考题和实践活动《表面积的变化》,加大了空间想像的力度,都以发展空间观念为主要目的。
第三,注重知识的实际应用。本单元教学的知识与学生的日常生活有密切的联系。在现实的问题情境中能发现和认识数学知识,习得的概念和方法能应用于解决实际问题。教材尽力从数学的角度提出问题、解释问题,引导学生综合应用数学知识、技能解决问题,处处能看到数学与生活的有机结合。如认识长方体、正方体的特征以后,收集这样的实物并量出长、宽、高或棱长;在做纸盒和鱼缸的实际问题中教学表面积的计算和应用;用初步建立的体积(容积)概念比较物体的大小;用学到的体积单位计量常见物体的体积、常见容器的容量;灵活应用体积公式计算沙坑里沙的厚度、塑胶跑道的用料问题
一、 观察、整理认识长方体、正方体的特征。
例1教学长方体和正方体的特征,把主要精力放在长方体上。这是由于长方体比正方体复杂,发现长方体的特征需要开展许多活动。而且,研究长方体的学习活动经验可以迁移到认识正方体中去。例题呈现一些图片,如长方体或正方体包装盒、家用电器等,在图片的启发下说说生活中哪些物体的形状是长方体,哪些物体的形状是正方体。在现实的情境中引出本单元的研究对象。
观察实物,整理特点是认识长方体、正方体的主要教学活动。例1的教学过程安排成三步。
1. 观察物体,理解直观图,认识面、棱和顶点。
三年级(上册)通过观察长方体和正方体,已经知道在不同位置看到的面的个数不同。有时只能看到一个面,有时能同时看到两个面,最多能同时看到三个面。例题以这些经验为教学起点,在观察物体的基础上理解长方体、正方体的直观图,认识它们的面、棱和顶点。
把立体的样子画在纸上,从长方体、正方体实物到它们的直观图,是空间观念的一次发展。在实物上只能看到一部分面,在直观图上实线围出了能看到的面,用虚线勾画不能直接看到的面。把立体与其直观图有机联系,感受直观图真实表达了立体的形状,并在看到直观图时,能想到相应的立体,这是空间观念的表现。直观图是教学难点,从有利于学生理解出发,可以分两步出现。先画出能够看到的面,再勾出不能看到的面。
面、棱和顶点是长方体、正方体结构的要素,是三个最基本的概念,还是研究长方体、正方体特征的出发点。按面棱顶点的次序教学,有利于建构它们的意义。物体有面是已有认识,只要在立体上摸摸面,在直观图上指出面,就体会了长方体、正方体的面,不必作过多的解释。两个面相交的线叫做棱,是对棱的数学解释。要通过观察和在实物上的演示,直观感受两个面相交的含义,清楚地看到相交处是线。要强调这条线不能叫做长方体、正方体的边,应称作棱。三条棱相交的点叫做顶点,要通过在实物上摸一摸、在直观图上指一指等活动,看到每一个顶点都是三条棱的交点,这是认识顶点的关键。
2. 观察物体,由量到质认识长方体的特征。
第11页认识长方体的特征,鼓励主动探索,重视合作交流,遵循逐渐认识的规律。首先数出长方体、正方体有几个面、几条棱和几个顶点,并把结果填在教材预设的表格里,从量的角度认识长方体、正方体的特征。填表能起三个作用:一是及时记录获得的信息,防止流失,有利于特征的整体性;二是通过写出有关的数量,加深印象,有利于记忆;三是显示出长方体、正方体都有6个面、12条棱和8个顶点,有利于感受长方体与正方体的联系。接着深入研究长方体的特征,教材提示了可进行的活动是看、量、比;研究的对象是长方体面的形状与大小,棱的长度与相互关系;研究的目的是发现长方体的特征。在学生充分活动的基础上组织交流,概括出长方体的特征。教学时要注意四点:① 学生对长方体特征的认识很难一步到位,总是由表及里、由浅入深地发展的。认识长方体的特征既让学生自主探索,又要教师引导点拨。如发现6个面都是长方形比较容易,而相对的面完全相同往往需要教师引导学生去关注、去比较。至于长方体的3组棱及每组4条棱长度相等,可能更需要教师给予点拨。再如学生的发现往往是局部的、点滴的,表达往往是不严密的,这就需要教师汇集生成的资源,提升语言水平,帮助抽象概括。② 例题里观察的是一般的长方体,目的是紧扣长方体的本质特征教学。把较特殊的长方体安排在练习三第1、2题里出现,学生不会因为它有两个面是正方形,对它是长方体产生怀疑。这样安排也符合正方体从属于长方体的关系。③ 学生间的学习方式总是多样的,部分学生喜欢探索发现,也有部分学生需要有意义的接受,合作交流能满足学生的不同需要。要让独立探索有困难的学生共享成果,在听懂同伴发言的基础上,给他们亲自验证、亲身感受的机会。④ 教学长、宽、高是继续认识长方体,要在顶点与棱的概念的基础上进行。必须清楚相交于一个顶点的三条棱分别是长方体三组棱中的一条,把它们分别叫做长方体的长、宽、高。不但要在立体上指出,还要在直观图上看出。如果适量地把长方体横放、竖放、侧放,根据不同的摆放位置,让学生说说它的长、宽、高,可以防止死记硬背,发展空间观念。
3. 观察物体,独立发现正方体的特征。
由于正方体比长方体简单,又有认识长方体特征的经验,所以正方体特征的教学会比较轻松。教材先提出正方体的面和棱各有什么特征这个研究课题,让学生在独立探索以后,小组交流自己的发现。尽管正方体的特征比较简单、容易得出,教学也不能过于仓促。仍要让学生指指相对的面、相对的棱,说说得出结论的过程与方法,想想6个面是完全相同的正方形与12条棱长度相等之间有什么必然联系使形象思维与抽象思维,以及数学活动的能力都得到发展。
二、 展、折,想像认识长方体、正方体的展开图。
第12页教学正方体、长方体的展开图,这部分内容的教育价值和教学要求,在前面介绍本单元教材编排特点时已经阐述,不再重复。这里主要分析教材,提出教学建议。
1. 初步知道展开图的含义,加强对正方体的认识。
例3先教学正方体的展开图,原因仍然是正方体的特征比较简单。例题详细展示了把正方体纸盒展开的步骤,用红线标出每步剪开的棱,最后还把剪开后的纸盒摊平。引导学生首次经历立体到展开图的转化过程,从中明白展开图是平面图形,清楚地看到展开图由6个相同的正方形组成。教学这道例题要注意反思,即得到正方体展开图以后,要回忆是怎样展开的,思考为什么展开图里有6个同样的正方形,正方形的边与正方体的棱有什么联系通过反思,既加强对展开图的认识,又加强对正方体特征的认识,更通过立体与展开图关系的思辨发展空间观念。
除了依照例题设计的剪法展开,还可以沿其他的棱剪。大象卡通提出的要求,是让学生再次进行展开正方体的活动,体会沿着不同位置的棱剪,得到的展开图形状不同。但是,展开图由6个相同的正方形组成,每个正方形的边都是正方体的棱是相同的。从而理解正方体展开图既有多样性,又有确定性。多样性是剪法不同的结果,确定性是正方体的特点决定的。
2. 自主研究长方体的展开图,加强对长方体的认识。
长方体的展开图安排在试一试里让学生剪纸盒得到,学习正方体展开图的经验和体会能支持他们主动地操作、交流。沿着哪几条棱剪?在教材里没有规定,可以自主选择。因此,得到的展开图也是多样的,在每个展开图里都可以看到6个长方形,从而体验了长方体展开图形状的多样性和组成的确定性。卡通提出的从展开图中找到3组相对的面是富有思维含量的问题,能引发学生细致地研究展开图,并把展开图与立体联系起来思考。要鼓励学生进行展开图长方体展开图长方体的折、展活动,反复地看展开图里的每一个长方形,想它在长方体的位置;看长方体的面,想它在展开图里的位置。在体验立体与展开图相互转化的过程中发展空间观念。
另外,在展开图上想长方体的长、宽、高,并把长、宽、高转换成展开图中各个长方形的长与宽,也有益于空间观念的发展,还能为表面积的教学作铺垫。
3. 判断哪些图形折叠后能围成正方体或长方体,加强对体的认识。
第12页练一练第2题提供的每个图形都由6个相同的正方形组成,判断这些图形中哪些折叠后能围成正方体。第14页第5题的每个图形都由6个长方形组成,判断哪几个图形能折叠后围成长方体。其中部分图形围不成正方体或长方体的原因是,折叠的时候部分正方形或长方形重叠,构不成有6个面的立体。因此,这两道题一方面加强了展开图与立体的转化,另一方面加强了对长方体、正方体都有6个面的认识。
学生进行这些判断会有困难,为此提出两点教学建议: 第一,在例3和试一试里要把沿不同的棱剪纸盒得到的各个展开图充分进行展示和交流。先认识图中所示的标准状态的展开图,再体会展开图还有其他形状,并在各个展开图上指出立体的相对的面。第二,允许学生灵活地先想后围或者先围后想。如果看到的图形是标准的或接近标准状态的,可以先判断它能否围成立体,想想围成的立体是什么样子,然后折叠验证判断和想像。如果看到的图形不是标准状态的,能不能围成立体难以判断,可以先动手操作,从中体会为什么能围成或围不成立体。
三、 分解,组合有意义地建构表面积的知识。
教学表面积知识编排的两道例题都是关于长方体的,正方体的表面积通过试一试在练习中教学,这是因为长方体表面积的概念和计算方法能迁移到正方体上去。表面积的教学分两步进行,先是例4与试一试,把表面积的意义和算法结合在一起。然后是例5,着重于表面积知识的应用,灵活地解决与长方体、正方体表面积有关的实际问题。
1. 联系已有知识经验,探索表面积的知识。
例4的问题情境是做一个长方体纸盒至少要用多少硬纸板,在掌握长方体特征的基础上,学生会想到这个问题与长方体各个面的面积有关,并出现不同的计算方法。猴子卡通和兔子卡通的算法是比较典型的两种方法,它们有相同的思路:求出纸盒各个面面积的总和,但算法不同: 把3组相对的面的面积相加,把每组相对面中各个面的面积和乘2。前一种算法得益于第13页第3题的铺垫,后一种算法受到了(长+宽)2=长方形面积的启发。两种算法都是计算长方体表面积的较好方法,相同的思路和乘法分配律沟通了两种算法的内在联系,教材鼓励学生选用自己喜欢的方法算出结果。
学生求至少要用多少硬纸板所想到的各种算法,都应用了分解组合的思想方法,即先把一个较复杂的新颖问题分解成若干个简单问题,再把这些简单问题组合起来。反思并体验这种思想方法,就能很好地理解表面积的意义,也不需要机械地记忆表面积的算法。学生对正方体有完全相同的6个正方形已经有深刻的认识,试一试求做正方体纸盒至少用多少硬纸板,一般都会把一面的面积乘6。得出的长方体(或正方体)6个面的总面积,叫做它的表面积,既形成了表面积的概念,也总结了计算表面积的方法。
2. 联系生活经验,灵活解决实际问题。
例5制作上面没有玻璃的鱼缸,利用长方体表面积的知识解决实际问题。通过实物图帮助理解这个实际问题的特点,让学生明白所用玻璃的面积是长方体5个面的面积和,从而主动想出算法。小鸟卡通和兔子卡通仍然应用了分解组合的思想方法,把实际问题抽象成求前、后、左、右和下面5个面的面积和的数学问题,或者抽象成从表面积(6个面的总面积)里去掉一个面的面积的数学问题。两条思路各有特点,前一条突出的是空间想像,要找准并正确计算有关的各个面的面积。后一条的思路负荷轻、思考难度小,能减少错误的发生。还有其他方法吗主要反映在按小鸟卡通的思路,可以列出5个面的面积连加的式子,也可以列出前、后两个面的面积加左、右两个面的面积,再加下面面积的式子。要注意的是,这道例题鼓励解决问题的策略与方法多样,并不要求学生能够一题多解。教材仍然让学生选择一种算法。
练一练和练习四里还有只计算长方体的前、后、左、右4个面面积和的实际问题,缺少左侧面的长方体的问题等。教材为部分习题配了示意图,便于学生直观感受实际问题是求哪些面的面积之和。部分习题没有配置实物图,可以在现实的生活空间里思考。如粉刷平顶教室的顶面和四周墙壁,只要看看自己的教室,就能把题目里的长、宽、高落到实处。又如台阶的问题,可以找个台阶看看,理解什么是它的占地面积以及地砖铺在哪些面上。计算长方体火柴盒的内盒和外盒所有的材料,综合应用了长方体特征和表面积知识,再次体验实际问题是多变的,要灵活应用知识才能正确解答。
四、 实验、领悟初步建立体积概念。
例6和例7分别教学体积的意义和容积的意义,容积的意义要建立在体积概念上,因而例6是这部分教材的重点。学生形成体积概念也是教学的难点,这两道例题的教学只能初步感受体积的含义,在后面教学常用的体积单位,以及长方体、正方体的体积计算时,还要通过测量和描述,进一步理解体积的意义。
1. 在有限的空间里领悟体积。
物体所占空间的大小叫做体积。空间物体占有空间所占空间的大小都是体积概念的内涵,是建立体积概念必须解决的子概念。例6利用杯子的空间,把感悟体积的过程设计成三步。第一步是初步体会空间和物体占空间。两个同样的玻璃杯,左边的盛满水,右边的放一个桃,把左边杯里的水倒向右杯,会剩下一些水。杯中有一部分空间被桃占去了这句话解释了现象、回答了原因,引出了空间这个词,让学生在现实的背景下感知空间的含义。这一步要把生活常识引向数学认识,看着放了桃的杯子,仔细领悟杯中有一部分空间被桃占去了的意思,是十分重要的教学活动。若有需要,还可以在一只透明空杯的上口放一本书,让学生看着杯子的里面体会杯子的空间。再把桃放入杯里,仍然用书盖住上口,看着杯里的桃,体会它占有杯子的一部分空间。第二步是感受不同的物体占的空间有大、有小。两个同样的杯子,一个杯里放1个桃,另一个杯里放1个荔枝,桃比荔枝大,分别往两个杯里倒水,显然前一个杯里可以倒入的水比后一个杯少。让学生回答为什么,不能简单地用桃大荔枝小来解释。要像兔子卡通那样想和说,用桃占的空间大,荔枝占的空间小来回答问题。理解桃大是指它占的空间大,荔枝小是指它占的空间小,从而获得不同物体占的空间大小不同的体验。第三步继续体会每个物体都占有一定的空间。观察图片里的番茄、荔枝和桃,先思考哪一个占的空间大,再想想这三个水果分别放在三个杯里,往杯中倒水,哪个杯里水占的空间大。这是两个连续的关于物体占有空间的问题,可从前一问题的答案推理得出后一问题的答案。由于苹果占的空间大,杯子盛水的空间就小;番茄占的空间小,杯子盛水的空间就大,这就感受了每个物体都占有一定大小的空间,由此得出体积的意义:物体所占空间的大小叫做物体的体积。
举例比比两个物体体积的大小是为了巩固体积概念,应该对学生提出两点要求:一是用好体积这个词,二是联系实物解释什么是它的体积。如电冰箱的体积是它占有空间的大小,电冰箱的体积比电视机的体积大。
练习五第1、3题进一步领悟体积的意义。把同样的盒装饼干堆成3堆,各堆的形状不同、体积相同。理解体积是物体占有空间的大小,与物体的形状无关。用小正方体摆出较大的正方体或长方体,理解体积大的物体占的空间大,体积相等的物体占的空间大小相等。
2. 从体积引出容积,初步建立容积概念。
容积与体积是两个既有联系,又有区别的概念,教学容积能进一步理解体积。
例7教学容积的意义,以体积概念为生长点。图画里有两盒书,一盒是《四大名著》,另一盒是《成语故事》。先在直观情境里比较哪盒书的体积大些,再从左边盒子里书的体积大引出左边盒子的容积大。书的体积是旧知,盒的容积是新知,教学既要以旧引新,也要体现容积与体积的不同意义。教材中比较书的体积,是看着两盒书进行的。而容积是指着两个书盒子讲的,从而凸现容积的属性,以及它与体积的区别。
为了有利于建立容积概念,教学时应该补充一些实例,让学生懂得容器,体会每个容器能容纳的体积是有限的、确定的。在充分感知的基础上,得出容器所能容纳物体的体积,叫做这个容器的容积。
试一试的教学要注意两点: 一是让学生解释玻璃杯容积的含义,理解每个杯的容积是指它能容纳多少水;二是通过实验比出哪个杯的容积大。如在一个杯里装满水,再往另一个杯里倒,看能不能装满另一个杯子,会不会有剩下的水。学生应该是实验设计、操作和结论得出的主体。
练一练第2题两个盒子里装的杯子的数量不同,练习五第4题两个盒子外面同样大,里面装的仪器数量不等,这些直观情境能帮助学生正确理解容积的意义,体会容器的体积与容积是不同的概念。
五、 认识,应用初步掌握常用的体积单位。
本单元教学的体积单位有立方厘米、立方分米、立方米。有了体积单位,就能测量、表达物体的体积,也能进一步体会体积的意义。
1. 认识体积单位包括两方面内容。
例8教学常用的体积单位,首先是测量、计量体积需要体积单位,然后是各个体积单位的具体含义。
观察图中的长方体和正方体,很难直接判断哪一个体积大。把它们切成同样大的正方体,就能比出体积的大小。这段教材让学生明白,有了体积单位就能准确计量物体的体积。图中的长方体是9个小正方体那么大,大正方体是8个小正方体那么大,长方体的体积比正方体大。还要让学生感受用于测量物体体积的单位,应该是确定的小正方体,由此导出常用的三个体积单位。把长方体和正方体切成同样的小正方体,最好是学生自主想到的方法。如果有困难,也可以看书或由教师告诉他们。但是,必须理解这个方法,体会其合理性,激发学习体积单位的愿望。
教学体积单位的具体含义,要准确地表达1立方厘米、1立方分米、1立方米各是多大的`正方体。教材在文字描述这些体积单位的意义的同时,还选择一些辅助方法,让学生体会体积单位。棱长1厘米的正方体,体积是1立方厘米。教材里画出了1立方厘米的示意图,配合语言描述,让学生了解1立方厘米。受版面限制,教材里画出1立方分米、1立方米的直观图有困难。因此,在1立方分米的示意图的旁边,画一个体积接近1立方分米的粉笔盒,利用熟悉的物体,感知1立方分米是多大。用3根1米长的木条,在墙角搭一个1立方米的空间,在现实情境中体会1立方米。
寻找体积接近1立方厘米、1立方分米的物体,是带着体积单位的初步表象观察周围的事物,进一步体验这些单位。教材举的手指头的体积大约1立方厘米这个实例,能引起观察手指头的兴趣,加强1立方厘米的表象,再通过自主寻找实例,对1立方厘米的认识就深刻了。
2. 掌握体积单位有两方面的要求。
掌握体积单位,要能应用体积单位计量物体的体积。在这部分教材里,一是说出由1立方厘米小正方体摆成的物体的体积,二是为常见的物体选择合适的体积单位。
第21页说出用4个或6个棱长1厘米的正方体摆成的长方体的体积,第一次量化描述物体的体积。两个长方体的结构都很直观,分别说出它们的体积非常容易。教学不能满足于答案,要让学生说出怎样想的,进一步理解体积的意义和体积单位的用途。第24页第6题里的三个物体都是1立方厘米的正方体摆成的,其中两个物体的结构不是很直观。说出它们的体积,要数出各是几个正方体摆成的,尤其是想到那些不能直接看到的正方体,能发展空间观念。第8题根据三视图摆出物体,说出体积。摆出物体是解决问题的关键,是发展空间观念的机会。这个物体不复杂,多数学生能够摆出来。教学时不必补充这样的练习,更不要增加摆出物体的难度。
第24页第7题为物体选择合适的体积单位。能不能填出合适的单位,一般决定于三个因素:一是对物体的熟悉程度,二是具有体积单位的表象,三是能开展正确而有效的思考。如学生都熟悉西瓜,知道1个西瓜大致是多大,如果体积是8立方厘米或8立方米,显然都不符合实际。反之,为不熟悉的物体选择体积单位,只能是脱离实际地乱猜,这是毫无意义的。教材里的橡皮、集装箱、水桶等都是多数学生比较熟悉的物体。教学时如果补充类似的练习,一定要注意这点。
3. 进一步教学升与毫升。
四年级(下册)曾经教学升与毫升,初步知道它们都是计量液体的单位,也是容器的容量单位。对1升、1毫升液体是多少有了初步的认识。现在教学升和毫升,主要有两个内容: 第一,升和毫升都是体积单位,用于计量液体的体积,也用于计量容器的容积。把升与毫升纳入体积单位的范畴,建立新的知识结构,是已有认识的深化和提高。第二,1升等于1立方分米,1毫升等于1立方厘米,利用1立方分米、1立方厘米的表象理解1升与1毫升的实际大小,使原有认识更清晰、更牢固。
六、 操作,发现探索长方体、正方体的体积公式。
例9和例10教学长方体的体积计算公式,并推导出正方体体积计算公式。在初步掌握两个体积公式以后,还把它们统一起来。
1. 让学生探索求积公式。
长方体、正方体体积公式的教育价值,不能局限于知道公式和应用公式。况且,记忆和照公式列式计算的思维含量较低。得出体积公式能加强对体积意义、体积单位的理解;能发展解决问题的策略,积累数学活动经验;能培养创新精神和实践能力,有利于形成积极的情感态度。因此,教材十分重视探索体积公式的过程,设计、安排了认知线索和主要的探索活动。
例9和例10是两个层次的活动,不仅操作内容、要求有区别,而且思维程度有差异。例9用1立方厘米的正方体摆出4个不同的长方体,从已有的知识和能力开始教学新知识。没有规定长方体的大小,学生可以按自己的意愿去摆,既调动积极性,又为合作学习营造了氛围。在教材预设的表格里填写每个长方体的长、宽、高,所用正方体个数以及体积,可以获得两点感受:一是沿着长、宽、高各摆几个正方体,长方体的长、宽、高就分别是几厘米;二是长方体里有多少个正方体,体积就是多少立方厘米,体积应该与长、宽、高有关。这两点感受能使学生明白:探索长方体的体积计算公式,要研究体积与长、宽、高的关系。教学例9不要急于得出体积公式,而要在摆长方体与填表的基础上,着力引导学生获得上述两点感受,形成继续研究的心向。即使有学生从例9已经看出了体积公式,也要引导他们通过例10进一步验证公式,理解体积与长、宽、高之间的必然联系,感受数学的严谨及结论的确定性。
例10根据图示的长、宽、高,用1立方厘米的正方体摆出三个长方体。活动的本质是用体积单位测量物体的体积。对学习的要求是先想怎样摆、需要几个正方体,再按想法摆,验证想的是否可行、是否正确。三个长方体是精心设计的。左起第一个长方体的宽与高都是1厘米,只要把4个正方体摆成一行,能够体会长方体长的数量与沿着长摆的体积单位个数之间有必然联系。第二个长方体的高1厘米,只要把正方体摆成一层。体会长方体宽的数量是几,沿着宽应该摆出几行体积单位。而长与宽的乘积,就是一层里体积单位的个数。第三个长方体高2厘米,要把正方体摆成2层,体会长方体高的数量与摆的体积单位的层数是一致的。教材在各个长方体里预设的教学内涵,规划了各次实物操作时的思维重点,有助于学生逐渐建构数学认识。摆各个长方体获得的体会,就是对长方体的体积与它的长、宽、高关系的理解。教材让学生说说在两道例题中的发现,是引导他们回顾、反思例题的学习,进一步清楚这些体会,并把这些体会有条理地组织起来,得出长方体的体积公式。
抓住正方体12条棱长度相等的特点,能从长方体的体积公式推导出正方体的体积公式。教材要求学生主动经历推导过程,在独立思考之后小组交流。推导的思维方法是多样的,从正方体具有长方体的所有特征出发,演绎推理能完成推导,从再现测量体积活动出发,
类比推理能完成推导: 用体积单位测量正方体的体积,每行摆的个数、摆的行数、摆的层数都与正方体的棱长相等。因此,正方体的体积=棱长棱长棱长。
写正方体体积的字母公式时,根据字母表示数的书写规则,如果把乘号简写为,那么V=aaa;如果乘号省去不写,要写成V=a3。一般采用后一种写法,a3以及它表示的意思都是新知识。第26页练一练第2题,算几个整数或小数的立方的得数,巩固对立方的认识。解决正方体体积的实际问题,经常会列出和计算这样的算式。其中13、103和0.13要提醒学生特别注意,防止算错。
2. 深入理解体积公式。
长方体与正方体的体积公式,除了有一般与特殊的关系(正方体是特殊的长方体,正方体的体积公式是长方体体积公式的特例),还有相同的内容。认识它们的相同,能简化知识结构。第27页教学这个内容,分三步进行: 第一步认识长方体和正方体的底面。教材在长方体、正方体的直观图上,用涂颜色和文字标注等办法呈现它们的底面,让学生看到底面一般指长方体、正方体的下面(认识长方体时曾指过上、下、前、后、左、右三组相对的面)。第二步认识底面积。长方体或正方体的底面,都是表面的一部分。教材指出,长方体和正方体底面的面积,叫做它们的底面积,帮助学生建立底面积的概念,要求学生研究计算底面积的方法,联系求表面积的经验,得出长方体的底面积=长宽,正方体的底面积=棱长棱长,进一步加强对底面的认识。第三步演变原来的体积公式。在长方体的体积=长宽高里,如果把长宽看成先算底面积,那么体积公式可以演变成底面积高。在正方体的体积=棱长棱长棱长里,如果把棱长棱长看作先算底面积,那么体积公式也演变成底面积高。由于长方体、正方体的体积公式都能演变成底面积高,因而获得了统一。
把长方体和正方体的体积公式统一成底面积高,有两点教学意义: 第一是深入理解原有的两个体积公式。长、宽、高或棱长都是立体的棱的长度,决定立体的大小。长宽或棱长棱长得到长方体或正方体的底面积,底面积高得到的是体积。这里面蕴含了长度、面积、体积之间的联系。第二是重组知识结构。把两个体积公式合并成一个公式,其本身是一次认知简化。而且,底面积高还是计算所有直柱体体积的方法。无论底面是直线图形的柱体,还是曲线图形的柱体,体积公式都是V=Sh。前一点意义,在现在的教学中就能实现;后一点意义,在以后的教学中会逐渐体现出来。
练习六第5题已知一根长方体木料的长与横截面的边长,横截面是第一次出现的概念,教材利用示意图帮助学生理解横截面的含义。先算出横截面的面积,再算木料的体积,有两点意图:一是通过计算横截面的面积,进一步认识这个面;二是体会长方体、正方体的体积公式还能演变成长横截面面积、横截面面积棱长,从而对体积公式有更充实、更丰富的体验。
七、 计算,迁移理解体积单位的进率。
在初步掌握长方体、正方体的体积公式以后,教学体积单位的进率,采用让学生经过计算发现和理解的教学方法。教材第30~32页,先教学相邻体积单位间的进率,再教学简单的换算。
1. 求两个同样大小的正方体的体积,发现和理解进率。
例11的图里有两个正方体,一个棱长1分米,另一个棱长10厘米。从1分米=10厘米,知道两个正方体的棱长相等,进而判断它们的体积相等。这两个正方体的体积分别是1立方分米与1000立方厘米,从它们体积相等,推理得出1立方分米=1000立方厘米,这就是立方分米与立方厘米的进率。
用同样的方法,通过棱长1米和棱长10分米的正方体,可以得到立方米和立方分米间的进率。
在教学进率的过程中,作出两个正方体体积相等的判断是关键。因为1立方分米=1000立方厘米、1立方米=1000立方分米,首先表达的是两个棱长相等的正方体的体积相等,然后才本质地表达出相邻两个体积单位的进率。后者是这部分教材的重点所在。
练习七第1题的表格里已经填了米、分米、厘米三个长度单位以及一个面积单位与一个体积单位,要求学生继续写出其他面积单位和体积单位,还要写出表格里相邻的长度、面积、体积单位的进率。这道题对长度、面积、体积三类计量单位从名称和进率两个方面进行初步的整理。填表能引起学生对这些单位概念的回忆,如边长1米的正方形面积是1平方米,棱长1米的正方体体积是1立方米。从而体验米、平方米、立方米是不同的概念,也是有对应关系的单位。有了这些体验,在测量或计量长度、面积、体积时,就能正确应用单位名称。通过填表能发现规律,如米、分米、厘米这三个长度单位,相邻单位间的进率是10;平方米、平方分米、平方厘米这三个面积单位,相邻单位间的进率是100(1010);立方米、立方分米、立方厘米这三个体积单位,相邻单位间的进率是1000(101010)。理解这些规律,有助于记忆进率。
2. 应用进率进行简单的换算。
对使用不同单位的体积进行换算,是应用进率的活动。本单元里的单位换算是比较简单的,只在两个相邻单位间进行,而且都是单名数的换算。
练一练是体积单位的换算,先把较大单位的数量换算成较小单位的数量,再把较小单位的数量换算成较大单位的数量。类似的这些换算在长度单位、面积单位、质量单位里都进行过,学生有换算的经验,知道可以利用小数点向右或向左移动位置的办法解决。完成这里的练一练,可以把已有经验迁移过来,着重思考把小数点向哪边移动几位,并对这样做的原因作出解释。
练习七第2题把面积单位的换算与体积单位的换算对比着进行,目的是体会它们在换算时的相同与不同。无论哪类计量单位,只要是较大单位的数量换算成较小单位,都把小数点向右移动;只要是较小单位的数量换算成较大单位,都把小数点向左移动,这是规律,是共性。而小数点移动的位数是由进率决定的,进率分别是10、100、1000,小数点分别移动一位、两位、三位。获得这些体会的价值,已经远远超出知识与技能的范畴,更是数学思考、解决问题方面的发展。第4题里升与毫升的换算,四年级(下册)教材里曾经进行过。现在进行这些换算,不限于整数范围内实施,对问题及其解决方法的理解也比过去深刻。把升为单位的数量改写成立方分米为单位,把毫升为单位的数量改写成立方厘米为单位,能加强1升等于1立方分米、1毫升等于1立方厘米的认识,更好地把体积单位组织起来,便于记忆和应用。
八、 拼拼,想想体验表面积的变化。
实践活动《表面积的变化》专题研究几个相同的正方体(或长方体)拼起来,得到的立体与原来几个正方体(长方体)表面积之和的关系,发现并理解其中的变化规律,发展空间观念。
拼拼算算这个栏目,先研究用正方体拼的情况,再研究用长方体拼的情况,后一类情况比前一类复杂。研究正方体拼成长方体,从两个正方体开始。选用体积1立方厘米的正方体,它的每个面的面积都是1平方厘米,有利于体会到表面积的变化。
用两个相同的正方体拼出长方体,可以上、下两个面拼,也可以左、右两个面拼,还可以前、后两个面拼。从现象看,似乎拼法不同。其实,各种拼法没有实质性的差别。首先是拼成的长方体的体积是2个正方体体积的和,每个正方体的体积是1立方厘米,长方体的体积是2立方厘米。其次是每种拼法都减少原来的2个面,这是正方体拼成长方体时发生的变化,也是这次实践活动的研究内容。在两个正方体拼成长方体的图示中,可以体会减少的2个面分别在两个正方体上。拼的时候,这两个面相重叠。
用3个、4个甚至更多个相同的正方体摆成一行,拼成长方体,表面积比原来减少几个正方形面的面积?教材让学生边操作、边观察,边思考、边填表。发现的规律要帮助学生分两个层次归纳和交流:一是关于拼的步骤。2个正方体一步就能拼成长方体,3个正方体要分两步拼,4个正方体要分三步拼二是关于减少的面积。2个正方体拼,比原来减少2个(一对)正方形面的面积;3个正方体拼,比原来减少4个(两对)正方形面的面积;4个正方体拼,比原来减少6个(三对)正方形面的面积
用两个相同的长方体拼,情况比较复杂。由于长方体三组面的形状、大小不同,只有把完全相同的两个面重叠,才能拼出较大的长方体。因此,一般有三种不同的拼法。教材让学生通过操作,了解三种拼法。再看着各种拼法的示意图,思考每种拼法减少的面积。在体会三种拼法减少的面积不同之后,找出拼成的大长方体中,哪个表面积最大,哪个最小。
第37页的示意图中,左边拼法的两个长方体把54的面重叠,拼成的大长方体的表面积比原来减少两个54;中间拼法的两个长方体把53的面重叠,表面积减少2个53;右边拼法的表面积减少2个43。这些都是学生在操作与看图中能够理解的,也是交流的主要内容。指出表面积最大和最小的大长方体,要进行这样的推理:拼的时候减少的面积最少,拼成的大长方体的表面积最大。反之,减少的面积最多,拼成的大长方体的表面积最小。只要教师稍加引领或点拨,学生都能像这样想。而且计算三个大长方体的表面积比原来减少多少,都有捷径可走。
拼拼说说栏目里变化了拼法,不但把正方体拼成一行,还拼成两行。仔细地体会拼的活动和研究教材里的示意图,左图可看作有7次正方体的两两相拼(如图),每次减少面积2平方厘米,大长方体的表面积比原来减少7个2平方厘米。右图中可看作有5次正方体的两两相拼(如图),大长方体的表面积比原来减少5个2平方厘米。所以,右边的长方体表面积比左边长方体大4平方厘米。
为10盒火柴设计一个最节省的包装方案,是应用前面拼正方体或长方体的经验:重叠的面越大,表面积减少越多;两两相拼的次数多,减少的面积也多。这两条经验要灵活地、综合地应用,才能得到理想的方案。这对空间观念和思维能力是很好的锻炼。
长方体和正方体教案5
一、操作引疑:
师:土豆块是不是长方体?同学们,你们已预习过课本,现在把你们手中的土豆块切成一个长方体。想一想:①切一刀,摸一摸,有什么感觉?
生1:平的,叫做“面”。
师:②再切一刀呢?
生2:两个面相交的边,叫做“棱”。
师:③再切一刀呢?
生3:出现三个面,三条棱,三条棱相交的点,叫做“顶点”。
师:再把土豆切成一个长方体,比一比谁切得最像。
二、研究长方体究竟有什么特征:
学习小组合作研究:
出示的研究题1-----3题,并把研究的数据填入表格中。
研究题1:
长方体和正方体的面、棱、顶点各有多少?每个面分别是什么形状?
集体交流:
师:你是怎样数“面”、“棱”的?哪种数法比较好?
生:
面:前后、左右、上下(2+2+2或2×3)
棱:有三组不同方向“棱”(4+4+4或4×3)
师:观察本组同学的长方体土豆块,每个面都是长方形,有特殊情况吗?
生:我们小组土豆块,有两个相对面是正方形。
最后教师总结,并引导学生体验有序思考的优点。
研究题2:
你觉得长方体的棱和面还有什么特征?用尺子量一量,看看自己的想法是否正确,并填入表格中。
学生动手操作,小组讨论交流,共同探究。
师:请每个小组把研究结果汇报,或有什么问题要质疑?
生1:我们小组发现相对的两个面形状一样,面积相等。
生2:请问你们小组是怎样知道?
生3:我们小组是动手量相邻两条边知道的。
生4:我们小组是动手算出它的面积知道的。
生5:我们小组是动手剪开比一比知道的。
师:每个小组都能想出好办法,如果老师想做这个(实物演示)长方体框架共需要多少长的铁丝?大家有什么方法来解决吗?
生6:只要量出一个顶点引出三条不同的方向棱的长度。再乘以4,就得铁丝长。
生7:量出红颜色棱的长度,再乘以4;接着量蓝颜色的棱长,再乘以4;最后量黄颜色的棱长,再乘以4;把三次积加起来就是铁丝长。
研究题3:
正方体有什么特征?为什么说正方体是特殊长方体?把数据填入表格中。
师:长方体和正方体有什么相同点和不同点?
生1:我们小组研究认为正方体和长方体的面、棱和顶点的数目是一样。
生2:我们小组研究发现正方体每条棱长都相等这点与长方体不同。
生3:我们小组归纳出:把正方体说成是长、宽、高都相等的长方体,所以它是一种特殊长方体。
三、实践应用:
1、请同学们用橡皮泥和小棒制作一个长方体(或正方体)框架。老师为大家准备了不同长度的小棒(出示数据),请小组成员先交流,商量需要哪种长度的小棒,各多少根?再派成员上来领取。
小组同学动手操作,并展示、交流。
师:同学们的“作品”真漂亮!老师想请教一下,你们小组刚才用了几根小棒?使用小棒拼成框架什么特别的要求?另外用橡皮泥捏了几个点呢?
2、你们能像教师这样,给长方体框架穿上“衣服”吗(出示一个用纸做面,包好了的长方体)想想看,应用剪刀剪出怎样的纸片?再比较它们每个面的异同。
小组同学操作、汇报、交流。
[评析]
通过这节课的教学活动给我的启发和反思是:
1、让学生主动参与,亲身实践,合作探究,实现学习方式变革。
充分利用学生已有的生活经验,从观察实物------土豆,来丰富表象,再让学生动手操作------切成长方体,来提高感性认识,最后通过交流、反思等活动中逐步让学生体会数学知识的产生形成和发展过程,学生在观察中理解,在操作中感知,不仅拓宽了思路,获取了新知识,而且沟通了知识的内涵,领悟了学习方法,转变学习方式,激活学习热情,达到全员主动参与“学数学”目的',培养了学生的学习能力。
2、让学生经历“学数学”过程,要发挥好教师的“主导”作用。
本案例教学中,教师始终把学生置于主体地位,积极引导学生通过看、摸、想、议、切、说等学习过程,让学生亲身经历数学知识的“再发现”、“再创造”过程,调动学生的学习主动性和积极性,在学知识过程中既发展了空间观念,又培养了能力;既培养独立思考能力,又培养了合作交流的能力,让学生感受到成功的喜悦。教师起着组织者、指导者、帮助者和促进者的作用。
3、让学生经历“学数学”的过程,其核心问题是“学会思考”
让学生学会数学地思考,是数学课程的重要目标之一,而积极有效的思考依赖于合适的、富有挑战性的问题。依据知识自身的重点和学生已有的知识经验,改呈现知识为呈现问题,能吸引学生充分参与数学学习过程,自觉调动已有的知识经验和心智技能,从而促使数学学习活动有效地展开并不断深入。
苏霍姆林斯基说过,在人的内心深处都有一种根深蒂固的需要这就是希望自己是一个发现者、研究者、探索者,在儿童精神世界中,这种需要特别强烈。因此,数学教学要努力创建有利于学生主动探索的数学教学环境,关注学生的自主探索和合作学习,使学生在获取作为一个现代公民所必需的数学知识和技能的同时。在情感、态度和价值等方面得到充分发展,立生积极的情感体验,进而创造性地解决问题
用《数学课程标准》来教学,必须让孩子们体会到数学的价值,学会运用数学的思维方式去观察、分析现实社会,解决日常生活中的问题,形成勇于探索、勇于创新的精神。总之,数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。真正体现新的课程理念,让学生“学数学”是一个生动活泼的、主动的富有个性的过程。
长方体和正方体教案6
【复习导入】
1.如果告诉了长方体的长、宽、高,怎样求它的表面积?
2. 如果要求正方体的表面积,需要知道什么?怎样求?
3. 一个长4分米、宽3分米、高2分米的长方体,它占地面积最大是多少平方米?表面积是多少平方米?
4.一只无盖的长方形鱼缸,长0.4米,宽0.25米,深0.3米,做这只鱼缸至少要用玻璃多少平方米?
【课堂作业】
完成教材第26页第11~13题。
1.第11题
(1)分析题目的已知条件和问题。
(2)粉刷教室要粉刷几个面?哪一个面不要粉刷?还要注意什么?
(3)列式解答:
4×[8×6+(8×3+6×3)×2-11.4]
=4×[48+42×2-11.4]
=4×120.6=482.4(元)
答:粉刷这个教室需要花费482.4元。
2.第12题
这是一道计算组合图形的表面积的题,提醒学生:两个图形重叠部分的面积不能算在表面积里。
分析:前后面的面积是相等的,就是把3个长方体前面的面相加即可。
左右两面也相等,实际上就是求中间这个长方体左右的两个面即可。
解:涂黄油漆[40×(65-10)+40×65+40×40]×2
=(2200+2600+1600)×2=12800(c2)
涂红油漆40×65×2+40×40×3=5200+4800=10000(c2)
答:涂黄油漆的总面积为12800c2,涂红油漆的面积为10000c2。
3.第13题
提示:把一个长方体从中间截断,就可以分成两个正方体。
让学生分别计算出长方体的表面积和切后的两个正方体的表面积和,再比较它们的表面积,看有没有发生变化。
小结:截完后,增加了两个截面。所以,两个正方体的表面积大于原来长方体的表面积。
【课堂小结】
通过这节课的学习,你有什么收获?还有什么问题?
【课后作业】
完成练习册中本课时练习。
板书设计第5课时长方体和正方体的表面积(3)
长方体的表面积≡(长×宽+长×高+宽×高) ×2
正方体的表面积≡边长×边长×6
教学反思
第6课时 体积和体积单位
学习内容体积和体积单位(教材第27、28页的内容、第28页的“做一做”,及第32页练习七的第1~5题)。第 6 课时课型新授
学习目标1.使学生理解体积的概念,了解常用的体积单位,形成表象。
2.培养学生比较、观察的能力。
3.通过学生的动手实践,加强学生空间概念的发展。
教学重点常用体积单位。
教学难点常用体积单位。
教具运用 “乌鸦喝水”,玻璃杯、水、沙子、木条……
教学过程二次备课
【复习导入】
口答:1米、1分米、1厘米是什么计量单位?
1平方米、1平米分米、1平方厘米又是什么计量单位?
【新课讲授】
1.认识体积的概念。
(1)故事导入 :多媒体演示乌鸦喝水的故事。看完后,老师提问:乌鸦是怎么喝到水的?为什么把石头放进瓶子里,瓶子里的水就升上来了。
引导学生说出石头占了水的空间,所以水就升上来了。
(2)实验证明老师:石头真的占了水的空间吗?我们再来做个实验验证一下。取两个同样大小的玻璃杯,先往一个杯子里倒满水,取一块鹅卵石放入另一个杯子里,再把第一个杯子里的水倒入第二个杯子,让学生观察会出现什么情况。
学生通过观察会发现:第二个杯子装不下第一个杯子的水,因为第二个杯子里放了一块石头,石头占了一部分空间,所以装不下了。
(3)观察比较
观察:电视机,影碟和手机,哪个所占的空间大?教师:不同的物体所占空间的.大小不同。
(4)体积概念的引入
教师:物体所占空间的大小叫做物体的体积。
提问:体积与表面积的概念相同吗?为什么?
2.体积单位的认识。(1)出示两个长方体。
提问:怎样比较这两个长方体体积的大小呢?(要比较这两个长方体体积的大小就要用统一的体积单位来测量)
(2)根据常用的长度单位和面积单位,想一想常用的体积单位有哪些?
教师:计量体积要用体积单位,常用的体积单位有立方厘米、立方分米、立方米,可以分别写成c3,d3和3。
(3)认识体积单位。
老师:请你猜一猜1c3,1d3,13是多大的正方体。
学生讨论后回答:棱长是1c的正方体,体积是1c3;棱长是1d的正方体,体积是1d3;棱长是1的正方体,体积是13。教师请学生看教材,证实同学们的回答是正确的。
(4)再次感受体积单位实际的大小。
①一粒蚕豆的大小是1c3,请同学们估出身边体积是1c3的物体。
②一个粉笔盒的大小是1d3,请同学们用手捧出1d3大小的物体。
③用3根1长的木条做成一个互成直角的架子,把它放在墙角,看看13有多大,估计一下,大约能容纳几个同学?
教师:立方厘米,立方分米,立方米是常用的体积单位,要计算一个物体的体积,就要看这个物体中含有多少个体积单位,请同学们用4个1c3的小正方体摆成一个长方体,你知道这个长方体的体积是多少吗?(4c3)为什么?(因为它是由4个体积是1c3的小正方体摆成的)
(5)练习:完成课本第28页“做一做”第1、2题。
【课堂作业】教材第32页练习七1~5题。
【课堂小结】教师:同学们,今天我们认识了体积和体积单位。它们在我们的生活中应用非常广泛。通过今天的学习,大家又有什么收获呢?
【课后作业】完成练习册中本课时练习。
板书设计1.体积和体积单位
物体所占空间的大小叫做物体的体积。常用的体积单位有立方厘米,立方分米,立方米。可分别写成c3,d3,3。
第 7 课时 长方体和正方体的体积(1)
学习内容长方体、正方体的体积计算(课本第29~31页的内容,课本第30页的例1及第32页练习七的第5~6题)。第 7 课时课型新授
学习目标1.通过讲授,引导学生找出规律,总结出体积的公式。
2.指导学生运用公式正确计算长方体、正方体的体积。
3.培养学生积极思考、探索新知的思维品质。
教学重点长方体、正方体体积计算。
教学难点 长方体、正方体体积计算
教具运用 正方体木块若干。
教学过程二次备课
【复习导入】
1.什么叫体积?计量物体的体积常用的单位有哪些?
2.怎样计算一个物体的体积呢?
【新课讲授】
1.长方体体积的计算。
教师出示一块长方体积木,一块盖房用的大型砖板。
(1)提问:它们的体积是多少?你是怎样想的?
引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1c3或1d3去量就比较麻烦。
教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。
(2)观察操作,探究长方体的体积公式。
小组合作,用准备好的24块1c3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。
学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。
说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?
学生独立思考,然后小组内讨论交流,得出结论。
小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。
板书:长方体的体积=长×宽×高
讲述:如果用字母V表示长方体的体积公式可以写成:V=abh
(3)质疑:求长方体的体积公式需要知道什么条件?
2.探究正方体的体积公式。
(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。
(2)引导学生明确。正方体的体积=棱长×棱长×棱长(板书)用字母表示:V=aaa=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)
3.运用长方体的体积公式解决问题。
(1)出示教材第30页的例1。
(2)学生看图,理解题意。
(3)说出题中所给信息,和所求问题。
(4)指名说出长方体的体积公式。
(5)指名学生上台板演过程,其他同学判断。
(6)老师订正书写。V=abh=7×4×3=84(c3)
(7)看图,学生独立在练习本上完成。
(8)指名板演,集体订正。
【课堂作业】
完成课本第31页“做一做”第1、2题。
【课堂小结】
1.这节课,你有什么收获?
2.在计算长方体和正方体的体积时,要注意哪些问题?
【课后作业】
完成练习册中本课时练习。
板书设计2.长方体和正方体的体积(1)
长方体的体积=长×宽×高
V=abh
正方体体积=棱长×棱长×棱长
V=aaa=a3
教学反思
长方体和正方体教案7
教学内容:
教学目标:
1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。
2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。
教学重点:
正方体和长方体体积的计算方法。
教学难点:
理解长方体的体积计算公式。
教具:
长、正方体模型、课件、长、正方体形状的纸盒等
教学过程:
创设情境,导入新课
出示长方体模型,您能告诉大家这个长方体体积是多少?并说一说是怎样想的吗?
教师演示,学生感知这个长方体模型的体积(每层有4个,共3层,一共是12个),这个长方体的体积就是12立方厘米。
揭示课题:对一些不可以分割的长方体,我们有没有办法计算的他体积呢?(板书:长方体和正方体的体积)
操作探究,发现规律
学生按照要求用正方体搭出四个不同的长方体并编号。
让学生观察,并作小组交流。
这些长方体的长宽高各是多少?
用了几个小正方体?不数,你怎样计算小正方体的个数?
长方体的'体积是多少?和计算小正方体的个数的方法比一比。
根据所搭的长方体填表:(表格略)
根据表格,引导分析,发现规律。
比较每一个长方体的体积,和计算小正方体个数的方法,你能得出什么结论?
引导学生猜想:长方体的体积和他的长宽高有什么关系?
再次探索,验证猜想
出示例题10,让学生摆一摆,再数一数,看看一共用多少个小正方体。
课件演示,组织交流,摆出的长方体长宽高分别是多少?体积是多少立方厘米?这个结果与你刚才的猜想是否一致?
如果让你摆一个长5厘米,宽4厘米,高3厘米的长方体,你能说出要用几个1立方厘米的小正方体吗?学生思考后回答。
引导概括,得出公式
提问:通过刚才的操作,你发现了长方体的体积与它的长宽高有什么关系吗?如何求长方体的体积?
交流的出结论:
长方体的体积=长×宽×高
如果用V表示长方体的体积,用abh分别表示长宽高,你能用字母表示长方体的体积公式吗?
V=abh
启发引导。
正方体是特殊的长方体,你能根据长方体的体积公式写出正方体的体积公式吗?
让学生尝试,再交流得出结论:
正方体的体积=棱长×棱长×棱长
学生阅读教材第26页,说说正方体体积的字母公式。
应用拓展,巩固练习
做“试一试”
先指名说出长方体的长宽高分别是多少?正方体的棱长是多少,再独立计算。交流时先说说公式,再说说怎样列式。
做“练一练”第1题。
观察题中的图形,说出每个图形的长宽高或棱长,在独立完成。
做“练一练”第2题。
先让学生选择几个式子说说其表示的意思,再口算。
课堂作业:做练习四第2题。
课后作业:
完成练习四第1、3题。
长方体和正方体教案8
目标
在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。
教学及训练
重点
理解底面积。
仪器
教具
投影仪
教学内容和过程
教学札记
一、创设情境
1、指出下图中长方体的长、宽、高和正方体的`棱长。(投影显示)
2、填空。
(1)长、正方体的体积大小是由确定的。
(2)长方体的体积=。
(3)正方体的体积=。
二、探索研究
1.观察。
(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)
结论:长方体的体积=底面积×高
正方体的体积=底面积×棱长
2.思考。
(1)这条棱长实际上是特殊的什么?
(2)正方体的体积公式又可以写成什么?
结论:长方体(或正方体)的体积=底面积×高,用字母表示:V=sh
三、巩固练习
1.做第20页的“练一练”。学生独立做后,学生讲评。
2.补充:一段长方体方铜,长1.2米,横截面是一个边长1厘米的正方形。这段方铜的体积是多少立方厘米?
首先帮助学生理解:什么是横截面?再让学生做后学生讲评。
3.做练习三的第9、10题,学生独立解答,老师个别辅导,集体订正。
四、课堂
学生今天学习的内容
五、课后练习
做练习三的第11、12、13题。
长方体和正方体统一的体积公式
长方体的体积=底面积×高
正方体的体积=底面积×棱长
长(正)方体的体积=底面积×高,
用字母表示:V=sh
长方体和正方体教案9
[教材简析]
本节内容是在学生已经探索并掌握长方形、正方形以及其他一些常见多边形的特征,并直观认识长方体和正方体的基础上,进一步探索长方体和正方体的特征。通过学习长方体和正方体,可以使学生更好地以数学的眼光观察、了解周围的世界,形成初步的空间观念;同时也为进一步学习其他立体图形打好基础。
例1教材一共安排了三个层次学习活动,让学生由浅入深,由表及里地探索长方体的特征。第一层次结合实物(或图片)从整体上感知长方体,第二层次通过对长方体的进一步观察,认识长方体的直观图及其面、棱和顶点,第三层次探索发现长方体面和棱的特征。在此基础上,介绍长方体长、宽、高的含义。例2着重引导学生利用认识长方体的已有经验,自主探索并归纳正方体面、棱、顶点的特征,体会正方体和长方体的联系与区别。
[教学目标]
1、学生通过观察、操作等活动认识长方体、正方体,知道长方体和正方体的面、棱、顶点以及长、宽、高(或棱长)的含义,掌握长方体和正方体的基本特征。
2、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。
3、学生进一步体会图形学习与实际生活的联系,感受图形学习的价值,提高数学学习的兴趣和学好数学的自信心。
[教学重点]
认识长方体、正方体的面、棱、顶点以及长宽高(棱长)的含义,掌握长方体和正方体的特征。
[教具准备]
长方体、正方体教具、CAI课件
[教学过程]
一、观察与操作,认识长方体的特征
1、教学例1
出示画面:有一些长方体的实物和正方体的实物。(如电冰箱、饼干盒、魔方等)
谈话:同学们,这些是我们生活中常见的一些物体,你能说说哪些物体的形状是长方体,哪些物体的形状是正方体?
学生回答,并举例再说说生活中还有哪些物体的`形状是长方体和正方体。
出示长方体模型,谈话:长方体有几个面?从不同的角度观察一个长方体,你觉得最多能同时看到几个面?
学生说一说自己的猜想。
分组操作,进行验证。学生分组从不同角度观察一个长方体,看一看最多能同时看到几个面。
学生汇报、演示观察结果,并说一说从某一个角度进行观察,能同时看到的是哪几个面,看不到的是哪几个面。
提问:那么,从不同的角度观察一个正方体,最多能同时看到几个面?
说明:从不同的角度观察一个长方体或正方体,最多能同时看到三个面。
谈话:依据同学们的观察结果,我们画出长方体和正方体的直观图。
出示长方体和正方体的直观图。(标出面)
谈话:直观图中线和点都有各自的名称,请同学们自学课本。
学生看书,理解棱和顶点的含义。
指名说一说什么叫做棱,什么叫做顶点?
(两个面相交的线叫做棱,三条棱相交的点叫做顶点。)
(演示)在直观图中闪烁棱和顶点,指名说一说(指一指)这条棱是由哪些面相交得到的,这个顶点是由哪些棱相交得到的?
提问:直观图是用实线和虚线两种线画成,你知道它们表示什么吗?
说明:直观图中的实线表示从某个角度能看到的棱,而虚线则表示从某个角度看不到的棱。
提问:长方体有几条棱和几个顶点?自己数一数。
指名演示数一数长方体面、棱和顶点的个数。集体交流数法。(适当进行指导,让学生能体会到面可以一对一对地数,棱可以一组一组地数,顶点可以4个4个或2个2个地数。)
得出:长方体有6个面,12条棱和8个顶点。
提问:长方体的面和棱有什么特点?
学生观察长方体,说一说自己的猜想和判断。
谈话:同学们观察有了一些直观的感受,下面我们通过量一量、比一比实际操作进行验证。
学生分组活动,利用长方体模型进行操作活动,并在小组中交流。
组织学生在班级中进行交流。
学生1:长方体6个面都是长方形。
学生2:长方体的上面和下面的2个面完全相同,前面和后面的2个面完全相同,左面和右面的2个面完全相同。
学生3:长方体的棱有3组,每组的4条棱长度相等。
可以让学生演示操作,证明得到的结论。
谈话:长方体的上面和下面完全相同,前面和后面完全相同,左面和右面完全相同,我们可以用一个词来表示。学生或教师说出(相对的面)
引导学生理解长方体相对的面完全相同是指的哪两个面;相对的棱长度相等是指的哪四条棱。
出示有两个面是正方形的长方体。
提问:这是长方体吗?这个长方体和刚才同学们观察的长方体有什么不同?
学生:这个长方体有2个相对的面是正方形的,4个面是长方形的。前面观察的长方体的6个面都是长方形的。
小结:长方体有6个面,有的6个面都是长方形,有时6个面中,会有两个相对的面是正方形。长方体相对的面完全相同,相对的棱长度相等。
演示闪动长方体相交于同一顶点的三条棱。
提问:这三条棱的长度相等吗?你知道这三条棱分别叫做什么?(长、宽、高)
说明:相交于同一个顶点的三条棱中,通常把水平方向的两条棱分别叫做长和宽,把竖直方向的一条棱叫做高。
[设计意图:学生对长方体和正方体有一些直观的认识,教学中让学生通过观察、操作、测量、比较等活动,在学生充分感知的基础上,由浅入深、由表及里地探索长方体的特征,并通过交流,对有关发现加以适当的整理和概括。]
2、练一练
说明操作要求:同座两人一组,选择一个长方体实物,先指出它的面、棱和顶点,再量出它的长、宽、高。
学生操作活动,互相说一说。
二、探索与发现,认识正方体的特征
1、教学例2
出示正方体的直观图。
谈话:我们对长方体的特征有了一定的认识,想一想正方体有几个面、几条棱和几个顶点?正方体的面和棱有各有什么特征?看一看,量一量,比一比,并在小组里交流。
学生自主探索,并在小组中交流。
指名在班级中说一说。
学生1:正方体有6个面,12条棱和8个顶点。
学生2:正方体的6个面都是正方形,并且完全相同。
学生3:正方体的12条棱的长度相等。
学生演示操作,验证得到的结论。
提问:长方体和正方体有哪些相同点?有哪些不同点?
出示比较的表格,让学生填一填,再在小组中交流。
名称
长方体
正方体
相同点
不同点
学生在班级中交流比较结果。
得出:长方体和正方体都有6个面、8个顶点和12条棱。不同的是长方体6个面是长方形或其中有2个面是正方形,相对的面完全相同,正方体6个面都是完全相同的正方形;长方体相对的棱长度相等,正方体12条棱都相等。长方体相交于同一顶点的三条棱的长度分别叫做长、宽、高,正方体都叫为棱长。
2、练一练
选择一个正方体实物,量出它的棱长。
学生在小组中操作,在班级中汇报测量结果。
[设计意图:学生利用认识长方体的已有经验,自主探索并归纳正方体面、棱和顶点的特征,体会正方体和长方体的联系与区别,帮助学生能比较完整地把握长方体和正方体的特征。]
三、巩固与拓展,感受变化,加深理解
1、练习三第1题
学生独立看题,和同座同学说一说。
指名在班级中说一说,集体交流。
提问:这三个长方体有什么不同之处吗?(发现第2个和第3个长方体的长比宽要短,第三个长方体的长和高一样长,说明有两个面是正方形的。)
2、练习三第2题
第2题中的4个问题学生先独立解答,在图中标注出数据,然后在组内进行交流。
指名口答,并说一说想法。说明各个面是什么图形及相应的长和宽的长度是多少。
(第4个问题,教师可以换一种提问:还有哪些面和同学们刚才观察的几个面完全相同?)
3、练习三第3题
出示图。
提问:观察这两个直观图,从图中你能知道些什么?
学生看图,并说一说自己观察的结果。
学生:一个是长方体,一个是正方体。
学生:长方体的长、宽、高分别是5厘米、4厘米和5厘米。正方体的棱长是5厘米。
谈话:继续观察,它们的面各有什么特征?
学生观察可以发现长方体前后有2个面是正方形的,其余的四个面都是长方形,并且完全相同。正方体的6个面完全相同。
4、练习三第4题
说明题意,并指名说一说摆成的是长方体还是正方体。
学生独立标出各个几何体的长、宽、高,再在小组中指一指,说一说。
指名在班级中说一说各个几何体的长、宽、高(或棱长)的位置和长度。
5、练习三第5题
出示题,学生读题,理解题意。
独立做一做,做好指名说一说计算过程和想法,集体交流做法。
提问:怎样算长方体的底面的面积?正方体呢?
(学生可以发现,长方体的底面面积就是长乘宽,正方体的底面面积就是棱长乘棱长。)
[设计意图:在巩固练习中,不仅帮助学生加深对长方体和正方体基本特征的认识,也让学生在观察和交流中进一步拓展认识,感受长方体和正方体的变式。并为后面学习长方体和正方体的体积公式做好准备。]
长方体和正方体教案10
教学目标
(一)理解并掌握长方体和正方体体积的计算方法。
(二)能运用长、正方体的体积计算解决一些简单的实际问题。
(三)培养学生归纳推理,抽象概括的能力。
教学重点和难点
长方体和正方体体积的计算方法,以及其体积公式的推导。
教学用具
教具:投影片,长、正方体,1厘米3的立方体24块,1分米3的立方体一块,电脑动画软件(或活动投影片)。
学具:1厘米3的立方体20块。
教学过程设计
(一)复习准备
1.提问:什么是体积?
2.请每位同学拿出4个1厘米3的立方体,把它们拼在一起,摆成一排。
教师:拼成了一个什么形体?这个长方体的体积是多少?你是怎样知道的?(因为这个长方体由 4个 1厘米3的正方体拼成,所以它的体积是 4厘米3。)
教师:如果再拼上一个1厘米3的正方体呢?
教师:要计量一个物体的体积,就要看这个物体含有多少个体积单位。(出示长方体和正方体教具)今天我们来学习怎样计算长方体和正方体的体积。板书课题:长方体和正方体的体积。
(二)学习新课
1.长方体的体积。
(1)教师:请同学取出12个1厘米3的小正方体。问:它们的体积一共是多少?
教师:请同学们四人为一组,用这12个小正方体来拼摆长方体,并分别记下摆出的长方体的长、宽、高。
同学分小组活动,教师巡视。然后分别请摆成不同形状的长方体的同学回答,教师板书:
教师:这些长方体有什么共同点?不同点?
问:为什么这些长方体的长、宽、高不同,即形状不相同而体积相同呢?
(因为它们都含有同样多的体积单位——12个1厘米3。)
教师:请观察自己摆出的长方体,长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?
学生讨论后,师生共同归纳:
表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1厘米3的正方体。
同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层。
(2)请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积。
学生说出摆法和体积后。请看电脑动画图像:
一排摆出4个1厘米3的正方体→一共摆了三排→摆两层。
教师板书:
同上要求摆出长3厘米,宽3厘米,高2厘米的长方体。
学生操作,看电脑动画图像。教师板书:
3(厘米) 3(厘米) 2(厘米) 18(厘米3)
教师:想一想,如果要摆一个长5厘米,宽4厘米,高3厘米的长方体,该如何摆?体积是多少?
学生口答后,老师用电脑图演示。然后板书:
5(厘米) 4(厘米) 3(厘米) 60(厘米3)
教师:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长方体的体积有没有关系?是什么关系?
学生讨论后回答:长方体的体积正好等于它的.长、宽、高的乘积。
教师板书:长方体的体积=长×宽×高
教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:
板书:V=abh。
出示投影图:
(3)例1(投影片)一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?学生口答,教师板书:7×4×3=84(厘米3)。
答:它的体积是84厘米3。
练习:(投影出题,学生口答。)
一块水泥板,长5分米,宽3分米,厚2分米,这块水泥板的体积是多少分米3?(5×3×2=30(分米3)。)
2.正方体体积。(1)请学生看电脑动画录像:
长4厘米,宽3厘米,高3厘米的长方体,长缩短一厘米(图上从右边去掉一排)。教师:此时的长,宽,高各是多少?变成了什么图形?
问:这个正方体的体积可以求出来吗?
学生口答,老师板书: 3×3×3=27(厘米3)。
投影出一个正方体图。(可以用翻页变换它的棱长。)
问:①棱长为2分米,求它的体积?②棱长为4厘米,求它的体积?
学生口答,老师板书: 2×2×2=8(分米3),4×4×4=64(厘米3)。教师:我们已经会计算具体的正方体的体积了,能说出正方体体积计算的方法吗?学生口答,老师板书:正方体体积=棱长×棱长×棱长。
用V表体积,a表示棱长,公式可写成:V=a·a·a或者V=a3。
(2)例2(投影)光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?
学生口答,老师板书:53=5×5×5=125(分米3)。
答:体积是125分米3。
做一做:课本34页1,2题,请4位同学用投影片写,其余同学写本上。集体订正。(3)说一说长方体和正方体的体积计算方法和字母公式。
教师:请讨论长方体和正方体的体积计算方法相同还是不相同。
学生讨论后归纳:因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中b,h都变为a。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。
(三)巩固反馈
1.口答填空。课本P35练习七:2,3。
2.口答填表:
3.判断正误并说明理由。
①0.23= 0.2×0.2×0.2; ( )
②5x2=10x; ( )
③一个正方体棱长4分米,它的体积是:43=12(分米3); ( )
④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米3。( )
(四)课堂总结及课后作业
1.长方体的体积计算方法及公式。
正方体的体积计算方法及公式。
2.作业:课本P35练习七:4,6。
长方体和正方体教案11
教学目标
1.理解长方体和正方体表面积的意义.
2.理解并掌握长方体和正方体表面积的计算方法.
3.培养和发展学生的空间观念.
教学重点
1.长方体、正方体表面积的意义和计算方法.
2.确定长方体每一个面的长和宽.
教学难点
1.长方体、正方体表面积的意义和计算方法.
2.确定长方体每一个面的长和宽.
教学用具
教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件.
学具:长方体、正方体纸盒、剪刀.
教学过程
一、复习准备.
(一)口答填空.
1.长方体有个面,一般都是,相对的面的相等;
2.正方体有个面,它们都是,正方形各面的相等;
3.这是一个,它的长厘米,宽厘米,高厘米,它的棱长之和是厘米;
4.这是一个,它的棱长是厘米,它的棱长之和是厘米.
(二)说一说长方体和正方体的区别?
教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小.(板书课题:)
二、学习新课.
(一)长方体和正方体表面积的意义.
1.教师提问:什么叫做面积?
长方体有几个面? 正方体有几个面?
(用手按前、后,上、下,左、右的顺序摸一遍)
2.教师明确:这六个面的总面积叫做它的表面积.
3.学生两人一组相互说一说什么是长方体的表面积,什么是正方体的表面积.
4.教师板书:长方体或正方体6个面的总面积,叫做它的表面积.
(二)长方体表面积的计算方法【演示课件长方体的表面积】
1.学生归纳:
上下两个面大小相等,它是由长方体的长和宽作为长和宽的;
前后两个面大小相等,它是由长方体的长和高作为长和宽的;
左右两个面大小相等,它是由长方体的高和宽作为长和宽的.
2.教师提问:想一想,长方体的表面积如何计算?(学生讨论)
老师板书:
上下面:长宽2
前后面:长高2
左右面:高宽2
3.练习解答例1.
例1.做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?
4.巩固练习.
一个长方体长4米,宽3米,高2.5米.它的表面积是多少平方米?
教师:如此题改为同样尺寸的无盖塑料盒求表面积如何办?
学生:应该少算上边的一面.
列式:43+42.52+32.52
(三)正方体表面积的计算方法【演示课件正方体的表面积】
1.教师提问:正方体的表面积如何求吗?
学生:棱长棱长6
2.试解例2.
一个正方体纸盒,棱长3厘米,求它的表面积.
=96
=54(平方厘米)
答:它的表面积是54平方厘米.
教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?
学生:少一个面.列式:
教师明确:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,
审题时要分清求的是哪几个面的和.
3.巩固练习:一个正方体的面积是1.2分米,求它的表面积.
三、巩固反馈.
1.一个长方体的长是6厘米,宽是4厘米,高是5厘米,这个长方体的表面积是多少平方厘米?
2.一个正方体的.棱长是5厘米,它的表面积是多少平方厘米?
3.判断正误,并说明理由.
(1)长方体的三条棱分别叫它的长、宽、高.
(2)一个棱长4分米的正方体,它的表面积是: =48(平方分米)
(3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个正方体表面积的和小.
四、课堂总结.
什么是长、正方体的表面积?长、正方体的表面积如何计算?
五、课后作业 .
1.一个长方体的形状大小如下图:
它上、下两个面的面积分别是多少平方分米?
它前、后两个面的面积分别是多少平方分米?
它左、右两个面的面积分别是多少平方分米?
这个长方体的表面积是多少平方分米?
2.一个长方体铁盒,长18厘米,宽5厘米,高12厘米.做这个铁盒至少要用多少平方厘米铁皮?
六、板书设计
长方体和正方体教案12
一、说教材
1. 教材简析:“长方体和正方体体积计算”是六年制五年级小学教学第十册第二单元的内容。这节课是学生全面系统地学习体积计算问题的开始,是学生的空间观念从二维向三维的一次飞跃,是学生形成体积的概念和掌握体积的计量单位的基础,也为今后学习圆柱体体积计算作了铺垫。
2. 教学目标:根据教材以及小学数学教学大纲的要求:我拟定本节课的教学目标是:(1)知识与技能目标:理解和掌握长方体和正方体体积的计算方法,并能用所学知识解决一些简单实际问题。(2)过程与方法目标:学会通过实践、观察、比析、综合、概括去获得知识的方法。(3)情感态度与价值观:培养学生积极探究的科学态度和与人合作的能力,养成良好的学习习惯。
3 . 教学重难点:体积对学生来说,是一个新概念,由认识平面图形到认识立体图形,是学生空间观念的一次发展。学生对怎样计量物体的体积不易理解,为此,我认为本节课的.教学重点是:理解和掌握长方体和正方体体积的计算方法。那么,怎么找到计算长方体喝正方体体积的计算方法,学生有一定的难度。因此,我把“体积公式的推导过程”定为本节课的难点。
二、说教法、学法
这节课我首先运用设疑导入法引入新课;其次,运用实验探究法、尝试教学法,让学生在操作中感知----探究中学知----在练习中用知,从直观教学入手,培养学生由形象思维到抽象思维的过渡,让学生自始至终在知识形成的过程之中,真正发挥学生的主体作用。
三、说教学过程
(一)设疑导入,揭示课题,明确任务
理想的新课导入,能唤起学生的记忆思维,激发他们求知欲望,能诱导他们全身心地投入学习。上课一开始,我就拿出一个长方体和一个正方体的木块,问大家:“你们能算出这两个物体的体积吗?想不想找到一个计算体积的方法?这节课请大家自己动手、动脑推导出长方体和正方体体积计算公式。”并由此揭示课题,让学生明确学习任务,兴趣盎然地进入最佳学习状态。
(二)操作感知,探究规律,巩固深化
小学生的思维特点是以形象思维为点逐步向抽象思维过渡。根据这一特点,先利用直观教具和学具,师生一起进行操作活动,引导学生观察、思考、比较,把学生的具体操作思维与语言表达紧密结合起来,发展学生的空间观念。新知识分三步进行:
第一步,做-----操作感知
先让学生用学具(体积是1立方厘米的方木块)摆一摆,坐下面3个实验并作实验记录:
实验1:每排摆4个方木块,摆3排,方木块的总数是( )个。
实验2:摆这样的2层,公用方木块( )个。
实验3:要摆成一个长5厘米,宽4厘米,高3厘米的长方格,应怎样摆?共要方块( )个。
小组汇报实验结果,并填入表中:
长方体和正方体教案13
自学预设:
自学内容自学P43内容
指导方法自学P43
思考:
1、底面积是什么?
2、长方体和正方体的底面积是怎么求的?
1、长方体和正方体的体积的统一计算公式怎样?
尝试练习试着完成P43的做一做的第2题
教学内容:长方体和正方体体积的计算公式的统一。(完成P43内容及P45第8题)
教学目标:
1.使学生掌握长方体和正方体体积的统一计算公式,并会灵活地应用公式进行体积计算。
2.提高学生综合运用知识的能力,培养学生的抽象概括能力。
教学重难点:运用公式进行计算。
教学过程:
一、创设情境
1、出下图中长方体的长、宽、高和正方体的棱长。
2、填空。
(1)长、正方体的体积大小是由确定的`。
(2)长方体的体积=。
(3)正方体的体积=。
二、探索研究
1.认识长方体和正方体的底面。
通过预习你观察到到了什么?
生:图中画阴影部分的那一面我们把它叫做长方体或正方体的底面。师强调:这个面是由摆放的方式决定的。
2.长方体和正方体的底面面积。
(1)长方体和正方体的底面的面积叫做底面积
(2)怎样求长方体的底面积?(长方体的底面积=长×宽,即S=ab)怎样求正方体的底面积?(正方体的底面积=棱长×棱长,即S=)
(3)长方体和正方体体积计算公式的统一
思考:我们能不能把长方体和正方体的体积公式统一成一个公式呢?
长方体的体积=长×宽×高=底面积×高
正方体的体积=棱长×棱长×棱长=底面积×棱长
结论:长方体或正方体的体积=底面积×高
用字母表示:V=sh
3.练习:
完成P43“做一做”第2题。讲解:“横截面”通过实物直观演示,让学生理解他的实际意义,懂得一个物体平放,立体图形的左面和右面就叫做横截面,如果竖起来,横截面就成了底面。所以
三、巩固练习:完成P45题8。
四、练习拓展:
1.计算:
2.一根长方体木料,它的横截面的面积是0.15,长2m。5根这样的木料体积一共是多少?新课标第一
3.有100块底面积是42,高6cm的立方体石块。这些石块的体积一共是多少?
4.一个正方体的棱长的和是48cm,这个正方体的体积是多少?
长方体和正方体教案14
教材分析
“长方体和正方体的认识”这部分内容是在学生过去初步认识长方体和正方体的基础上,进一步教学的。这是学生比较深入地研究立体几何图形的开始。由研究平面图形扩展到研究立体图形,是学生发展空间观念的一次飞跃。长方体和正方体是最基本的立体几何图形。通过学习长方体和正方体,可以使学生对自己周围的空间和空间中的物体形成初步的空间观念,是进一步学习其他立体几何图形的基础。
为了使学生较好地掌握长方体和正方体的特征,逐步形成空间观念,教材强调要学生自己多动手。除了让学生通过看一看,摸一摸,数一数,量一量,来认识长方体和正方体的特征以外,还要求学生动手用硬纸板做一长方体和正方体,这样既巩固了所学的知识,也为后面学习长方体和正方体的表面积和体积做了准备。
学情分析
学生通过以前的学习,已经能识别长方体和正方体,本节课是在此基础上进一步认识它们的特征。立体图形的具体研究,学生是第一次,所以首先要让学生了解立体图形与平面图形的`区别;然后再引导学生通过感受、观察、比较,认识到长方体和正方体的特征、以及它们二者的关系。平面图上的立体图形,学生接受比较困难,在教案设计中,安排实物观察、动画图像的生动演示,来加深学生对图上虚实线画法的理解,这样能更好地帮助学生初步形成立体图形的空间观念,提高学生看立体图的能力。
教学目标
情感、态度目标:
1.在合作中发现长方体的特征,使学生感受到学习的乐趣。
2.通过寻找生活中的长方体,使学生感受到数学来源于生活,并应用于生活中。
知识、技能目标:
1.使学生知道长方体的面、棱、顶点的含义。
2.通过观察、操作等活动掌握长方体、正方体的特征,知道它们之间的关系,认识长方体的长、宽、高(正方体的棱长)。
过程、方法目标:
1.培养学生动手操作、观察、抽象概括的能力和初步的空间观念。
2.渗透子集思想,并进行辩证唯物主义的启蒙教育。
教学重点和难点
探索、发现长、正方体的特征及长、正方体的关系,认识长方体的长、宽、高(正方体的棱长)。
教学过程
长方体和正方体教案15
活动准备:
1、长方体、正方体的礼盒若干。
2、正方体、长方体平面图。
3、作业纸若干。
长方体和正方体教案活动过程:
一、引起兴趣。
以新年快要到了,老师给小朋友带来了许多的礼物,激发幼儿的兴趣。
二、幼儿辨别长方体、正方体。
1、教师根据礼盒讲解长方体、正方体的特征。
2、请幼儿重申长方体、正方体的特征,进行巩固。
三、让幼儿学会数。
1、出示摆好的'长方体和长方体礼盒。
2、教师和幼儿共同数一数是几个。
3、重新摆好再让幼儿数(连续进行几次)。
四、让幼儿自己摆一摆,数一数。
五、出示平面图数一数。
1、教师幼儿共同数一数。
2、幼儿自己数一数。
六、学会记录。
1、让幼儿把自己所数的个数记录到作业纸上。
2、教师点评,共同数一数。
长方体和正方体教案活动目标效果:
1、根据长方体和正方体的特征,会辨别长方体和正方体。
2、学会抽象的数和记录长方体和正方体个数。
【长方体和正方体教案】相关文章:
长方体和正方体的教案12-30
长方体和正方体的认识教案03-01
《长方体和正方体的体积》教案03-03
《长方体和正方体的认识》教案03-04
长方体和正方体表面积教案01-25
长方体和正方体的表面积教案04-01
认识长方体正方体的教案03-09
数学长方体正方体教案12-14
幼儿园《认识长方体、正方体》教案07-08