- 相关推荐
初中数学 教案
作为一位杰出的教职工,总归要编写教案,教案有助于学生理解并掌握系统的知识。那么教案应该怎么写才合适呢?下面是小编整理的初中数学 教案 ,仅供参考,欢迎大家阅读。
初中数学 教案 1
教学目标:
利用数形结合的数学思想分析问题解决问题。
利用已有二次函数的知识经验,自主进行探究和合作学习,解决情境中的数学问题,初步形成数学建模能力,解决一些简单的实际问题。
在探索中体验数学来源于生活并运用于生活,感悟二次函数中数形结合的美,激发学生学习数学的兴趣,通过合作学习获得成功,树立自信心。
教学重点和难点:
运用数形结合的思想方法进行解二次函数,这是重点也是难点。
教学过程:
(一)引入:
分组复习旧知。
探索:从二次函数y=x2+4x+3在直角坐标系中的图象中,你能得到哪些信息?
可引导学生从几个方面进行讨论:
(1)如何画图
(2)顶点、图象与坐标轴的交点
(3)所形成的三角形以及四边形的面积
(4)对称轴
从上面的问题导入今天的课题二次函数中的.图象与性质。
(二)新授:
1、再探索:二次函数y=x2+4x+3图象上找一点,使形成的图形面积与已知图形面积有数量关系。例如:抛物线y=x2+4x+3的顶点为点A,且与x轴交于点B、C;在抛物线上求一点E使SBCE= SABC。
再探索:在抛物线y=x2+4x+3上找一点F,使BCE与BCD全等。
再探索:在抛物线y=x2+4x+3上找一点M,使BOM与ABC相似。
2、让同学讨论:从已知条件如何求二次函数的解析式。
例如:已知一抛物线的顶点坐标是C(2,1)且与x轴交于点A、点B,已知SABC=3,求抛物线的解析式。
(三)提高练习
根据我们学校人人皆知的船模特色项目设计了这样一个情境:
让班级中的上科院小院士来简要介绍学校船模组的情况以及在绘制船模图纸时也常用到抛物线的知识的情况,再出题:船身的龙骨是近似抛物线型,船身的最大长度为48cm,且高度为12cm。求此船龙骨的抛物线的解析式。
让学生在练习中体会二次函数的图象与性质在解题中的作用。
(四)让学生讨论小结(略)
(五)作业布置
1、在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k—5)x—(k+4)的图象交x轴于点A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。
(1)求二次函数的解析式;
(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求 POC的面积。
2、如图,一个二次函数的图象与直线y= x—1的交点A、B分别在x、y轴上,点C在二次函数图象上,且CBAB,CB=AB,求这个二次函数的解析式。
3、卢浦大桥拱形可以近似看作抛物线的一部分,在大桥截面1:11000的比例图上,跨度AB=5cm,拱高OC=0。9cm,线段DE表示大桥拱内桥长,DE∥AB,如图1,在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图2。
(1)求出图2上以这一部分抛物线为图象的函数解析式,写出函数定义域;
(2)如果DE与AB的距离OM=0。45cm,求卢浦大桥拱内实际桥长(备用数据: ,计算结果精确到1米)
初中数学 教案 2
【学习目标】
1.经历对具体问题进行估算的过程,能用四舍五入法.收尾法.去尾法对数据取近似值进行计算。体会估算的意义.
2.经历估算和调整的过程.
3.尝试从不同的角度,运用不同的估算方法进行合理的估算,培养估算意识,发展估算能力。
【重点难点】在实际问题中使学生明确何时取较大的近似值,何时取较小的近似值
【学习过程】
一、 知识回顾:
1、取近似值的方法有_________,___________,___________.
2、将2340保留2个有效数字得到的近似值为_______,误差为_________
二、情境导入:
李阿姨听说明天邦威的衣服打8折,于是她打算去购买前几天看到的价值199元的羊毛衫,那么李阿姨明天大约需要带多少钱?你是通过什么方法得到的(用哪种取近似值的方法得到的)?如果李阿姨带150元够吗?实际花费了多少钱?
三、合作探究
【组织活动一】(先独立完成,然后小组内讨论交流,经历估算和调整过程。) 妈妈在超市购买了如下物品
物品 价格
纯牛奶 43.20
白兰瓜 12.60
牙膏 16.80
清洁剂 18.20
酱油、食醋 10.70
1、你能帮妈妈估算买这些物品大约需要多少钱吗?请先对每个数据的十位数分别用三种取近似值的方法取近似值后,再求和:
(1)对每个数据, _,然后求和得:_____________
(2)对每个数据, ,然后求和得:_____________
(3)对每个数据,_____________,然后求和得:_____________
2、(1)请计算一下购买这些东西具体一共花了_________,上面三种估算的结果产生的误差分别是_____,_____,_____;其中_____(取近似值的方法)与实际支出的误差最小.
(2)采用去尾法与实际支出的误差较大,如果想进一步减小误差,在初步估计大约需用______元后,再对_______进行估算、调整: 经过调整后的估计值为___________元。
精讲点拨:先找出初步的估计值再加以调整,就可以取得更好的估计值。
【组织活动二】1.自主完成
例1 估算637 ×4
例2 小莹准备到新华书店为班级购买44本课外读物,如果每本定价为9.80元她带了450元人民币,请你估计她所带的钱是否够用?
2.小组交流
3.精讲点拨:估算时要根据实际情况取略大或略小的估计值。
四、有效训练:
1.一辆汽车2.1小时行驶了120千米。估算该汽车经3小时可行驶多少路程?
2.试就下列各种情况,判断在估算过程中,画有底线的数量应选择略大还是略小的数值替代.
(1)小莹有人民币200元,估算她可以购买单价为 19.2元的书的数量
(2)计算器每台售价148元,估算1500元试否能购买10台计算器
(3)一辆旅游大巴车最多可载客53人估算接载300 人共需多少量这种旅游大巴车。
(4)一条长5米的绳子,可剪出多少条长为0.4米的'短绳子
3.选用适当的方法,估算下列各式的值:
(1)5051×8 (2)319.29+510.24
4.天泉宾馆的电梯最大质量是500千克。现有7人在电梯门前等候,他们的体重分别是47千克、55千克、56千克、61千克、68千克、73千克和84千克。请估算他们一起进入电梯后是否超重。采用哪种取近似数的方法估算比较合理?
五、小结反思
这节课我学会了: ;
我的困惑: 。
六、当堂检测
1.小明有300元钱他可以买单价19.8元的书多少本?其最大估计值为( )
A、17 B、16 C、15 D、14
2.小亮、小营、大刚、小明四个同学估算24.37×39.71的值分别为800,960,
1000,1100,其中( )的误差最大。
3.选用适当的方法,估算下列的值。
⑴0.26×89 ⑵2×19.2+4×8.67
4.小亮估计他5岁的表弟已出生3000天,他的估计合理吗?为什么?
5.分别用收尾法和去尾法取下列各数的近似数 精确到个位
0.003≈ 0.003≈
8.98≈ 8.98≈
6.估算357.6+34.74-161.46-64.1
(1)把上式中的各数,分别用四舍五入法精确到个位。列出算式,求出估计值;
(2)把上式中的各数,分别用收尾法精确到个位。列出算式,求出估计值;
(3)把上式中的各数,分别用去尾法精确到个位。列出算式,求出估计值;
(4)用计算器计算上式的值,并与上述三种估算方法比较,你有什么发现?
七、自我评价
A B C D
掌握知识的情况。
参与活动的积极性。
给自己一句鼓励的话。
初中数学 教案 3
教学目标
本节在介绍不等式的基础上,介绍了不等式的解集并用数轴表示,介绍了解简单不等式的方法,让学生进一步体会数形结合的作用。
知识与能力
1.使学生掌握不等式的解集的概念,以及什么是解不等式。
2.使学生育能够借助数轴将不等式的解集直观地表示出来,初步理解数形结合的思想。
过程与方法
1.通过回忆给学生介绍不等式的解集的概念。
2.教会学生怎样在数轴上表示不等式的解集。
情感、态度与价值观
1.通过反复的训练使学生认识到数轴的重要性,培养其数形结合的思想。
2.通过观察、归纳、类比、推断而获得不等式的解集与数轴上的点之间的关系,体验数学活动充满探索性与创造性。
教学重、难点及教学突破
重点
1.认识不等式的解集的概念。
2.将不等式的解集表示在数轴上。
难点
学生对不等式的解是一个集合可能会不太理解。
教学突破
由于受方程思想的影响,学生对不等式的`解集的接受和理解可能会有一定的困难,建议教师能结合简单的不等式和实际问题让学生体会不等式的解可以是一个集合,并组织学生讨论举例,加深理解。
另外,应在本节的过程中让学生能理解在数轴上表示不等式的解集,让他们熟悉数形结合的思想。
教学步骤
一、新课导入
1.回顾提问:同学们,我们已经学习了不等式。现在我们一起回顾一下什么是不等式,以及有关数轴的知识。
学生用自己的语言描述不等式的定义,并基本说出数轴的三要素是:原点、正方向、单位长度。能将有理数在数轴上表示出来。
2.创设情景:我们现在知道了不等式的解不唯一,那么我们如何将不等式的解全部表示出来呢?这就是我们这节课要解决的问题。
二、不等式的解集
1.讲述不等式的解集的定义,引导学生观察不等式x+2>5,并说出-3 、-2 、 3.5 、 7中哪些是不等式的解,哪些不是?-3 、-2不是不等式x+2>5的解,3.5 、 7是不等式的解。
2.给出“解不等式”的概念,并就上述例题由不完全归纳法给出不等式x+2>5的解集是x>3 。
3.将x>3在数轴上表示出来,并以此图为例讲述在数轴上表示基本不等式的方法:(1)在数轴上找到3;(2)向右表示比3大的点;(3)空心点表示不含有3,所以有下图。
让学生自己动手画出x ≤ 3,并找学生上台板演。
4.就学生在黑板上的板演,指出画图应注意的事项,并让学生观察前后两图的区别。
通过对比两图的不同,发现区别是大于和小于导致图上所取的方向不同,有等号和没等号导致空心和实心的区别。
5.给出适当的例题,巩固本节内容。
本课总结
这节课主要学习了什么是不等式的解集,并教学生在数轴上表示不等式的解集,体会数形结合的思想。
教学探讨与反思
为了提高数学课的教学效果,教师必须使课堂教学过程符合学生的认知规律,并让学生参与到课堂教学活动中来,使他们真正成为课堂教学的主体。教师对课堂教学的设计,应着眼在为学生个性品质的优化创设最佳课堂教学环境。教师引导学生参与的是数学思维活动。
初中数学 教案 4
一.学生情况分析
学生已经学习了平行四边形的性质和判定,也学习了一种特殊的平行四边形菱形的性质和判定,对于类似的问题有一定的学习精力、经验和感受,这将更有利于学生对本节课的学习。
二.教学任务分析
教学目标:
知识目标:
1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。
2.掌握正方形的性质定理1和性质定理2。
3.正确运用正方形的性质解题。
能力目标:
1.通过四边形的从属关系渗透集合思想。
2.在直观操作活动和简单的说理过程中,发展学生初步的合情推理能力、主动探究习惯,逐步掌握说理的基本方法。
情感与价值观
1.通过理解四种四边形内在联系,培养学生辩证观点
教学重点:正方形的性质的应用.
教学难点:正方形的性质的应用.
三、教学过程设计
课前准备
教具准备: 一个活动的平行四边形木框、白纸、剪刀.
学生用具:白纸、剪刀
教学过程设计分成四分环节:
第一环节:巧设情境问题,引入课题
第二环节:讲授新课
第三环节:新课小结
第四环节:布置作业
第一环节 巧设情境问题,引入课题
进入正题,提出本节课的研究主题正方形
第二环节 讲授新课
主要环节
(1)呈现两种通过不同途径得到正方形的过程,给正方形下定义
(2)讨论正方形的性质
(3)通过练习加强对正方形性质的理解
(4)寻找平行四边形、矩形、菱形、正方形之间的相互关系。
(5)寻找正方形的判定方法
目的:
1. 正方形是特殊的平行四边形,也是特殊的矩形和菱形,因此想得到一个正方形,可以在矩形的基础上强化边的条件得到,也可以在菱形的基础上强化角的条件得到。于是在课上呈现这两种变化,为后面寻求平行四边形、矩形、菱形、正方形的关系打下基础。
2. 由于采用了两种正方形形成的方式,因此正方形的性质和判定方法都可以从中挖掘和发现。
大致教学过程
呈现一个平行四边形变成正方形的全过程.(演示)
由于平行四边形具有不稳定性,所以先把平行四边形木框的一个角变为直角,再移动一条短边,截成有一组邻边相等,此时平行四边形变成了一个正方形.
这个变化过程,可用如下图表示
由此可知:正方形是一组邻边相等的矩形.即:一组邻边相等的矩形叫做正方形.
这个平行四边形木框还可以这样变化:先移动一条短边,截成有一组邻边相等的平行四边形,再把一个角变成直角,此时的平行四边形也变成了正方形.
这个变化过程,也可用图表示
你能根据上面的变化过程,给正方形下定义吗?
一组邻边相等的平行四边形是菱形.正方形是一个角为直角的菱形,所以可以说:有一个角是直角的菱形叫做正方形.
由此可知:正方形是特殊的矩形,即是邻边相等的矩形,也是特殊的菱形,即是有一个角是直角的菱形.
因为正方形是平行四边形、菱形、矩形,所以它的性质是它们的综合,不仅有平行四边形的所有性质,也有矩形和菱形的特殊性质,即:正方形具有平行四边形、菱形、矩形的一切性质.
正方形的性质:
边:对边平行、四边相等
角:四个角都是直角
对角线:对角线相等,互相垂直平分,每条对角线平分一组对角.
正方形是轴对称图形吗?如是,它有几条对称轴?
正方形是轴对称图形,它有四条对称轴,即:两条对角线,两组对边的中垂线.
例题
[例1]如图,四边形ABCD是正方形,两条对角线相交于点O,求AOB,OAB的度数.
分析:本题是正方形的性质的直接应用.正方形的性质很多,要恰当运用,本题主要用到正方形的对角线的性质,即正方形的轴对称性.
解:正方形ABCD是菱形,对角线AC,BD一定互相垂直,所以AOB=90.正方形ABCD是矩形,又是菱形,所以:BAD=90且对角线AC平分BAD,因此:OAB=45
拿出准备好的'剪刀、白纸来做一做
将一张长方形纸对折两次,然后剪下一个角,打开,怎样剪才能剪出一个正方形?(学生动手折叠,想,剪切)
只要保证剪口线与折痕成45角即可.因为正方形的两条对角线把它分成四个全等的等腰直角三角形,把折痕作对角线,这时只需剪一个等腰直角三角形,打开即是正方形.
正方形是平行四边形、矩形、又是菱形,那么它们四者之间有何关系呢?
正方形、矩形、菱形及平行四边形四者之间有什么关系呢?
它们的包含关系如图:
此图给出了正方形的判别条件,即怎样判定一个平行四边形是正方形?
先判定一个四边形是平行四边形,再判定这个平行四边形是矩形,然后再判定这个矩形是菱形;或者先判定一个四边形是菱形,再判定这个菱形是矩形.
由于判定平行四边形、矩形、菱形的方法各异,所给出的条件不一样,所以判定一个四边形是不是正方形的具体条件相应可作变化,在应用时要仔细辨别后才可以作出判断.
第三环节 课堂练习
教材 随堂练习1,2
第四环节 课时小结
正方形的定义:一组邻边相等的矩形.
正方形的性质与平行四边形、矩形、菱形的性质可比较如下:(出示小黑板)
第五环节 课后作业
课本习题4.7 1,2,3.
四.教学设计反思
在教材中,并没有明确的给出正方形的判定定理。那么教师在课堂上应该帮助学生理清思路,使他们明确判定的方法。
为了实现这个目标,在本节课的开始,教师就采取了两种方式呈现正方形的形成过程,在直观上帮助学生认识了正方形与矩形、正方形与菱形之间的关系;在讲解正方形性质的过程中又再次强化了这种认识。通过层层铺垫,让学生明确矩形+邻边相等就是正方形,菱形+一个直角就是正方形,如何判定图形是矩形或是菱形,前面已经学习过,因此关于正方形的判定是需要一个条件一个条件“叠加”完成的。
初中数学 教案 5
教学目标
知识与技能:在具体情景中进一步理解概率的意义,掌握用列表法求简单事件概率的方法。
过程与方法:经历应用列表法解决概率实际问题的过程,渗透数学建模的思想方法,感知数学的应用价值。
情感态度与价值观:通过经历探究活动,培养学生有条理的思考并增强数学的应用意识。
教学重点与难点,
教学重点:掌握用列表法求简单事件概率的方法。
教学难点:概率实际问题模型化。
教学过程
(一)情景导入 回顾旧知
首先用多媒体演示《非常6+1》片段,并出示问题:如果剩下的八只蛋中的五只有金花,那么陆海鸥达成心愿的概率是多少?
引导学生回忆概率公式: 如果一个实验有n个等可能的结果,而事件A包含其中k个结果,则
P(A)= =
(二)探究新知 建构数模
秦皇岛是奥运足球比赛的分赛场,学校统一组织学生去观看足球比赛,但是因为名额有限,张明与王红只分得一张奥运足球票,到底谁去呢?王红出主意用手中的三张扑克牌来决定谁去,规则如下:
牌面分别为1、2、3的三张扑克牌,将牌洗匀后,随机摸出一张,记数放会混匀,再摸一张,将两次牌面数字求和。如果和为4,王红去,如果和为2则张明去,否则重抽。
张明认为规则不公平,而王红认为很公平。两人争论不休。
首先引导学生发现此引例为两步实验事件,再共同探究解题的方法列表法最后我再引领学生归纳,总结解决此概型的'一般步骤:
1、归型(两步实验)
2、列表
3、计算
(三)归型辨析 模型应用
对于此题组先依次出示问题:这是两步实验事件吗?每一次操作是什么?每一次操作的等可能结果是什么?在学生回答之后再让他们将解题过程独立写在练习本上,并展示学生的正确答案,以规范书写格式。在求解之后,我再引导学生反思自己的解题过程以巩固所得。
4、出示了教材164页习题第二题。
(四)巩固练习 拓展提高
(五)课堂反思 布置作业
1.课堂反思
在小节中我引导学生从知识获得途径、结论、应用等方面畅谈本节课内容。(①、这节课你遇到了哪些新的问题?②、你是如何解决它的?③、你还有哪些想研究的问题)
2.布置作业
初中数学 教案 6
教学实录
●教学活动一:情境引入
师:俗话说:“不以规矩不能成方圆”,它表达了什么意义?同学们知道吗?
生1:意思是说做人做事要讲规矩,不讲规矩是不行的。
生2:我想,它的意思是不用圆规画不出圆来,不用矩尺画不出方形来。
师:说得很好。你们见到过矩尺吗?
生1:没有见过,可能是我们用的三角板吧?
生2:我爸爸是木匠,我见过他用过的曲尺,可能这个曲尺就是矩尺吧?
师:是的,木匠用的曲尺就是这里所说的矩尺。这个矩尺是做什么用的呢?
老师拿出自制的矩尺,如图一:
生1:可以用它画直角。
生2:可以用它画长方形或正方形。
师:大家回答得都很好。现在,我们以矩尺为工具,演示平行四边形在矩尺内的变化情况(老师拿出一个平行四边形的活动框架)。将这个平行四边形框架放在这个矩尺的直角内(如图2),让平行四边形的一个顶点与矩尺的直角顶点重合,平行四边形的一边与矩尺的一边重合,我们可以让角α变化,当它变为直角时(如图3),这个平行四边形是什么图形?
生1:是长方形。
生2:是矩形。
师:说得对!这是我们小学学过的长方形。从这里可以看出,长方形与矩尺有关,所以我们又把它叫做矩形。即有一个角是直角的平行四边形叫做矩形。
(板书课题----矩形,并且板书矩形的定义)
(用俗语“不以规矩不能成方圆”引入新知,创设了问题情景。这个俗语不仅贴近学生生活,符合学生的认知基础,也突出了矩形的一个基本特征----四个角都是直角。一句俗语使学生对数学学习产生了浓厚的兴趣,激起了学生强烈的求知欲望和对所学内容的高度专注。)
●教学活动二:探究性质
师:你们从演示过程看,矩形与平行四边形有什么关系?
生:矩形是特殊的平行四边形。
师:那么它有什么性质呢?请同学们讨论后回答。
(分组讨论,气氛活跃)
生1:矩形两组对边分别平行且相等。
生2:矩形的两组对角分别相等。
生3:矩形的对角线互相平分。
师:大家说得都很正确。因为矩形是平行四边形,所以,它具有平行四边形的一切性质。同时,它又是特殊的平行四边形,那么,它还有那些特殊性质呢?
生:由矩形的定义可以知道,矩形的四个角都是直角。
师:请你结合图4,说说为什么?
生:□ABCD中,如果∠ABC=90°,那么,∠BAD=90°,
∠BCD=90°(平行四边形两邻角互补),∠ADC=90°(平行四边形对角相等)。
(教师板书:矩形的四个角都是直角)
师:请同学们拿出准备的.平行四边形活动框架或矩形纸片试一试,看它还有什么特殊性质。
(有的小组的学生拿出平行四边形活动框架,互相协作,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状,量对角线的长度;有的小组的学在叠矩形纸片。教师参与其中生。)
师:说说看,你们还发现了什么性质?
生1:随着平行四边形一个内角的变化,两条对角线的长度也在发生变化,当平行四边形变成矩形时,通过度量发现,两条对角线的长度相等。
生2:老师,我通过叠矩形纸片,发现了矩形的对角线不仅互相
平分而且相等。
(学生上台叠纸演示,图5是学生沿虚线折叠后展开的图形,其中OA=OB=OC=OD,即AC=BD。)
师:很好,大家通过度量、折叠纸片,用不同的方法得到了同样的结论,矩形的对角线相等。
(教师板书:矩形的对角线相等。)
生-1:由于矩形的对角线互相平分且相等,还可得到直角三角形斜边上的中线等于斜边的一半。
生2:老师,我还发现矩形的一条对角线把矩形分成两个全等的直角三角形;两条对角线把矩形分成两对全等的等腰三角形。
生3:老师,我还发现矩形沿着两对边中点所在的直线对折,能够互相重合,所以它是轴对称图形,有两条对称轴。
(这里,老师提出问题后,充分放手,让学生去探索,学生通过动手实验、度量、叠纸,采用合情推理得到矩形的性质。学生积极性高、参与度高,学生探索不止,余兴未尽。)
●教学活动三:识别矩形
师:刚才,我们探究了矩形的性质,有的同学好象还有新的发现,课后继续讨论吧。现在,请大家思考这样一个问题:反过来满足什么条件的图形是矩形呢?联系矩形的性质想一想,思考后回答。
生:有一个角是直角的平行四边形是矩形。
师:回答正确,这是矩形的定义。
生:四个角都是直角的四边形是矩形。
师:需要四个角都是直角吗?
生:只需要三个角是直角就可以了。因为三个角是直角,则两邻角互补,得出两组对边分别平行,这个四边形是平行四边形,由矩形定义就可以判别它是矩形。所以,三个角是直角的四边形是矩形。
(教师板书:三个角是直角的四边形是矩形)
师:请同学们动手画图:画△OAB,使OA=OB,反向延长OA至C,OB至D,使OC=OA,OD=OB,连结AD、DC、CB,你能从画图中发现什么结论吗?
生1:因为OC=OA,OD=OB,所以,四边形ABCD是平行四边形。
生2:因为OA=OB=OC=OD,所以,AC=BD。
生3:它是矩形,因为∠OBA=∠OAB,∠OAD=∠ODA,所以∠BAO+∠OAD=90°,可知,∠BAD=90°。即对角线相等的平行四边形是矩形。
(教师板书:对角线相等的平行四边形是矩形。)
(“对角线相等的平行四边形是矩形”这一判别方法是本节课的难点之一,老师通过引导学生画图,让学生从画图过程中得到启示,从而突破了教学难点。)
●教学活动四:解决问题
师:今天,同学们学得很开心,很愉快。我们研究了矩形的性质及什么样的图形是矩形。如何应用这些知识来解决问题呢?请同学们完成下面几道题(屏幕显示)。
1.如图6:在矩形ABCD中,两条对角线AC、BD相交于点O,AB=OA=4cm。求BD与AD的长。
(学生讨论后写解答过程,放在投影仪上显示,师生共评.)
2.怎样检验教室门框是不是矩形?
(此题让学生自己动手,用工具测量,说明测量方法和结果。)
3.以矩形和其他图形为基本图形,设计一个组合装饰图案。
(此题让学生课后完成,然后在小组内交流,各小组评出优秀作品,并在全班交流。)
(学生用所学知识解决问题,在解决问题的过程中加深对所学知识的理解,从而培养学生解决问题的能力,让学生获得成功的体验。)
反思:
本节课我在教学中力求做到了以下几点:一是“新”。利用学生熟知的俗语“不以规矩不能成方圆”,引入新课,创设问题情景。“矩尺”即“曲尺”是木匠常用的画图工具,由它激发学生强烈地求知欲望,从而调动学生学习数学的积极性。二是“活”。我注重引导学生自主探索与合作交流。通过设置问题,引导学生开展小组讨论,学生通过测、叠、画等动手实践活动进行探索,用不同的学习方式来理解矩形的性质和四边形是矩形的条件,为学生提供了参与活动与交流的空间。三是“实”。通过三个练习,让学生理解并会应用矩形知识来解决问题,把所学知识和运用知识结合起来,培养了学生的创新意识和实践能力。这节课若能运用现代信息技术,将有些内容做成课件进行演示,教学效果会更好。
点评:
《基础教育课程改革纲要》提倡学生主动参与、乐于探究、交流与合作的学习方式,要求教师在教学过程中与学生交往互动,共同发展。老师在这节课上力求落实课程改革目标,作了一些有益的尝试。概括起来主要有以下两方面的特点。
俗语----把学生引入求知的胜地。数学知识来源于生产和生活实践,又服务于生产和生活实践。“不以规矩不能成方圆”是人们所熟知的一句俗语,其中蕴含着数学知识,矩尺引起学生的回忆与联想。一个木匠师傅的小孩回答了矩尺和它的作用。矩尺和矩形有着内在的联系,用矩尺可以画出矩形,矩形的四个角都是直角。一句俗语引发学生的思考,激发了学生的求知欲,把学生带入求知的胜地。
活动----为学生创造参与机会。教学过程应该是师生交往互动的过程。这种交往互动是以教学活动为载体的,教学活动为师生互动搭起了平台。这节课中,老师有目的、有计划地设计了四个教学活动,即情景引入、探究性质、识别矩形、解决问题。在这四个活动活动内容含盖了《矩形》一节的全部知识,形式灵活多样。活动为不同性格、不同爱好、不同层次的学生创造了可以参与的机会。在教学活动的始终,教师都作为教学活动的组织者、参与者和引导者。教师成了学生式的教师,学生成了教师式的学生,师生真正成为了一个“学习的共同体”。
初中数学 教案 7
一、教学目标
【知识与技能】
了解运用公式法分解因式的意义,会用平方差分解因式;知道提公因式法分解因式是首先考虑的方法,再考虑用平方差分解因式。
【过程与方法】
通过对平方差特点的辨析,培养观察、分析能力,训练对平方差公式的应用能力。
【情感态度价值观】
在逆用乘法公式的过程中,培养逆向思维能力,在分解因式时了解换元的思想方法。
二、教学重难点
【教学重点】
运用平方差公式分解因式。
【教学难点】
灵活运用公式法或已经学过的提公因式法分解因式;正确判断因式分解的彻底性。
三、教学过程
(一)引入新课
我们学习了因式分解的定义,还学习了提公因式法分解因式。如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,大家知道因式分解与多项式乘法是互逆关系,能否利用这种关系找到新的因式分解的'方法呢?
大家先观察下列式子:
(1)(x+5)(x-5)=,(2)(3x+y)(3x-y)=,(3)(1+3a)(1-13a)=
他们有什么共同的特点?你可以得出什么结论?
(二)探索新知
学生独立思考或者与同桌讨论。
引导学生得出:①有两项组成,②两项的符号相反,③两项都可以写成数或式的平方的形式。
提问1:能否用语言以及数学公式将其特征表述出来?
初中数学 教案 8
教学 目标:
(1)理解通分的意义,理解最简公分母的意义;
(2)掌握分式的通分法则,能熟练掌握通分运算。
教学 重点:
分式通分的理解和掌握。
教学 难点:
分式通分中最简公分母的确定。
教学 工具:
投影仪
教学 方法:
启发式、讨论式
教学 过程 :
(一)引入
(1)如何计算:
由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。
(2)如何计算:
(3)何计算:
引导学生思考,猜想如何求解?
(二)新课
1、类比分数的通分得到分式的通分:
把几个异分母的分式分别化成与原来的分式相等的同分母的'分式,叫做分式的 通分 .
注意:通分保证
(1)各分式与原分式相等;
(2)各分式分母相等。
2.通分的依据:分式的基本性质.
3.通分的关键:确定几个分式的最简公分母.
通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做 最简公分母 .
根据分式通分和最简公分母的定义,将分式xx ,xx,xx 通分:
最简公分母为:xx ,然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为xx。通分如下:
通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的思路过程。
例1 通分:
(1)xx,xx,xx ;
分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。
解:∵ 最简公分母是12xy 2
小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数.
解:∵最简公分母是10a 2 b 2 c 2
由学生归纳最简公分母的思路。
分式通分中求最简公分母概括为:
(1)取各分母系数的最小公倍数;
(2)凡出现的字母为底的幂的因式都要取;
(3)相同字母的幂的因式取指数最大的。
取这些因式的积就是最简公分母。
初中数学 教案 9
教学目标
(一)教学知识点
1.经历探索弧长计算公式及扇形面积计算公式的过程;
2.了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题.
(二)能力训练要求
1.经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力.
2.了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用能力.
(三)情感与价值观要求
1.经历探索弧长及扇形面积计算公式,让学生体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.
2.通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力.
教学重点
1.经历探索弧长及扇形面积计算公式的过程.
2.了解弧长及扇形面积计算公式.
3.会用公式解决问题.
教学难点
1.探索弧长及扇形面积计算公式.
2.用公式解决实际问题.
教学方法
学生互相交流探索法
教具准备
2.投影片四张
第一张:(记作A)
第二张:(记作B)
第三张:(记作C)
第四张:(记作D)
教学过程
Ⅰ.创设问题情境,引入新课
[师]在小学我们已经学习过有关圆的周长和面积公式,弧是圆周的一部分,扇形是圆的一部分,那么弧长与扇形面积应怎样计算?它们与圆的周长、圆的面积之间有怎样的关系呢?本节课我们将进行探索.
Ⅱ.新课讲解
一、复习
1.圆的周长如何计算?
2.圆的面积如何计算?
3.圆的圆心角是多少度?
[生]若圆的半径为r,则周长l=2r,面积S=r2,圆的圆心角是360.
二、探索弧长的计算公式
投影片(A)
如图,某传送带的一个转动轮的半径为10cm.
(1)转动轮转一周,传送带上的物品A被传送多少厘米?
(2)转动轮转1,传送带上的物品A被传送多少厘米?
(3)转动轮转n,传送带上的物品A被传送多少厘米?
[师]分析:转动轮转一周,传送带上的物品应被传送一个圆的周长;因为圆的周长对应360的圆心角,所以转动轮转1,传送带上的物品A被传送圆周长的 ;转动轮转n,传送带上的物品A被传送转1时传送距离的n倍.
[生]解:(1)转动轮转一周,传送带上的物品A被传送210=20cm;
(2)转动轮转1,传送带上的物品A被传送 cm;
(3)转动轮转n,传送带上的物品A被传送n =cm.
[师]根据上面的计算,你能猜想出在半径为R的圆中,n的圆心角所对的弧长的计算公式吗?请大家互相交流.
[生]根据刚才的讨论可知,360的圆心角对应圆周长2R,那么1的圆心角对应的弧长为 ,n的圆心角对应的弧长应为1的圆心角对应的弧长的n倍,即n .
[师]表述得非常棒.
在半径为R的圆中,n的圆心角所对的弧长(arclength)的计算公式为:
l= .
下面我们看弧长公式的运用.
三、例题讲解
投影片(B)
制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算下图中管道的展直长度,即 的长(结果精确到0.1mm).
分析:要求管道的展直长度,即求 的长,根根弧长公式l= 可求得 的长,其中n为圆心角,R为半径.
解:R=40mm,n=110.
的长= R= 4076.8mm.
因此,管道的展直长度约为76.8mm.
四、想一想
投影片(C)
在一块空旷的草地上有一根柱子,柱子上拴着一条长3m的绳子,绳子的另一端拴着一只狗.
(1)这只狗的最大活动区域有多大?
(2)如果这只狗只能绕柱子转过n角,那么它的最大活动区域有多大?
[师]请大家互相交流.
[生](1)如图(1),这只狗的最大活动区域是圆的面积,即9;
(2)如图(2),狗的活动区域是扇形,扇形是圆的一部分,360的圆心角对应的圆面积,1的圆心角对应圆面积的. ,即 = ,n的圆心角对应的圆面积为n = .
[师]请大家根据刚才的例题归纳总结扇形的面积公式.
[生]如果圆的半径为R,则圆的面积为R2,1的圆心角对应的扇形面积为 ,n的圆心角对应的扇形面积为n .因此扇形面积的计算公式为S扇形= R2,其中R为扇形的半径,n为圆心角.
五、弧长与扇形面积的关系
[师]我们探讨了弧长和扇形面积的公式,在半径为R的圆中,n的圆心角所对的弧长的计算公式为l= R,n的圆心角的扇形面积公式为S扇形= R2,在这两个公式中,弧长和扇形面积都和圆心角n.半径R有关系,因此l和S之间也有一定的关系,你能猜得出吗?请大家互相交流.
[生]∵l= R,S扇形= R2,
R2= RR.S扇形= lR.
六、扇形面积的应用
投影片(D)
扇形AOB的半径为12cm,AOB=120,求 的长(结果精确到0.1cm)和扇形AOB的面积(结果精确到0.1cm2)
分析:要求弧长和扇形面积,根据公式需要知道半径R和圆心角n即可,本题中这些条件已经告诉了,因此这个问题就解决了.
解: 的长= 1225.1cm.
S扇形= 122150.7cm2.
因此, 的长约为25.1cm,扇形AOB的面积约为150.7cm2.
Ⅲ.课堂练习
随堂练习
Ⅳ.课时小结
本节课学习了如下内容:
1.探索弧长的计算公式l= R,并运用公式进行计算;
2.探索扇形的面积公式S= R2,并运用公式进行计算;
3.探索弧长l及扇形的面积S之间的关系,并能已知一方求另一方.
Ⅴ.课后作业
习题节选
Ⅵ.活动与探究
如图,两个同心圆被两条半径截得的 的长为6 cm, 的长为10 cm,又AC=12cm,求阴影部分ABDC的面积.
分析:要求阴影部分的面积,需求扇形COD的面积与扇形AOB的面积之差.根据扇形面积S= lR,l已知,则需要求两个半径OC与OA,因为OC=OA+AC,AC已知,所以只要能求出OA即可.
解:设OA=R,OC=R+12,O=n,根据已知条件有:
得 .
3(R+12)=5R,R=18.
OC=18+12=30.
S=S扇形COD-S扇形AOB= 1030- 18=96 cm2.
所以阴影部分的面积为96 cm2.
板书设计
27.4弧长及扇形的面积
一、1.复习圆的周长和面积计算公式;
2.探索弧长的计算公式;
3.例题讲解;
4.想一想;
5.弧长及扇形面积的关系;
6.扇形面积的应用.
二、课堂练习
三、课时小结
四、课后作业
初中数学 教案 10
教学目标:
1、会用分解因式法(提公因式,公式法)解某些简单的数字系数的一元二次方程。
2、能根据具体的一元一次方程的特征灵活选择方法,体会解决问题方法的多样性。
教学程序:
一、复习:
1、一元二次方程的求根公式:x=(b2-4ac≥0)
2、分别用配方法、公式法解方程:x2-3x+2=0
3、分解因式:(1)5 x2-4x (2)x-2-x(x-2) (3) (x+1)2-25
二、新授:
1、分析小颖、小明、小亮的解法:
小颖:用公式法解正确;
小明:两边约去x,是非同解变形,结果丢掉一根,错误。
小亮:利用“如果ab=0,那么a=0或b=0”来求解,正确。
2、分解因式法:
利用分解因式来解一元二次方程的.方法叫分解因式法。
3、例题讲析:
例:解下列方程:
(1) 5x2=4x (2) x-2=x(x-2)
解:(1)原方程可变形为:
5x2-4x=0
x(5x-4)=0
x=0或5x=4=0
∴x1=0或x2=
(2)原方程可变形为
x-2-x(x-2)=0
(x-2)(1-x)=0
x-2=0或1-x=0
∴x1=2,x2=1
4、想一想
你能用分解因式法简单方程 x2-4=0
(x+1)2-25=0吗?
解:x2-4=0 (x+1)2-25=0
x2-22=0 (x+1)2-52=0
(x+2)(x-2)=0 (x+1+5)(x+1-5)=0
x+2=0或x-2=0 x+6=0或x-4=0
∴x1=-2, x2=2 ∴x1=-6 , x2=4
三、巩固:
练习:P62 随堂练习 1、2
四、小结:
(1)在一元二次方程的一边为0,而另一边易于分解成两个一次因式时,就可用分解因式法来解。
(2)分解因式时,用公式法提公式因式法
五、作业:
P62 习题2。7 1、2
六、教学后记:
初中数学 教案 11
教学目标
1.使学生掌握分组后能运用提公因式和公式法把多项式分解因式;
2.通过因式分解的综合题的教学,提高学生综合运用知识的能力.
教学重点和难点
重点:在分组分解法中,提公因式法和分式法的综合运用.
难点:灵活运用已学过的因式分解的各种方法.
教学过程设计
一、复习
把下列各式分解因式,并说明运用了分组分解法中的什么方法.
(1)a 2-ab+3b-3a;(2)x 2-6xy+9y 2-1;
(3)am-an-m 2 +n 2;(4)2ab-a 2-b 2 +c 2 .
解(1) a 2-ab+3b-3a
=(a 2-ab)-(3a-3b)
=a(a-b)-3(a-b)
=(a-b)(a-3);
(2)x 2-6xy+9y 2-1
=(x-3y) 2-1
=(x-3y+1)(x-3y-1);
(3)am-an-m 2 +n 2
=(am-an)-(m 2-n 2 )
=a(m-n)-(m+n)(m-n)
=(m-n)(a-m-n);
(4)2ab-a 2-b 2 +c 2
=c 2-(a2+b2-2ab)
=c 2-(a-b) 2
=(c+a-b)(c-a+b).
第(1)题分组后,两组各提取公因式,两组之间继续提取公因式.
第(2)题把前三项分为一组,利用完全平方公式分解因式,再与第四项运用平方差公式
继续分解因式.
第(3)题把前两项分为一组,提取公因式,后两项分为一组,用平方差公式分解因式,然后两组之间再提取公因式.
第(4)题把第一、二、三项分为一组,提出一个“-”号,利用完全平方公式分解因式
,第四项与这一组再运用平方差公式分解因式.
把含有四项的多项式进行因式分解时,先根据所给的多项式的特点恰当分解,再运
用提公因式或分式法进行因式分解.在添括号时,要注意符号的变化.
这节课我们就来讨论应用所学过的各种因式分解的方法把一个多项式分解因式.
二、新课
例1把分解因式.
问:根据这个多项式的特点怎样分组才能达到因式分解的目的?
答:这个多项式共有四项,可以把其中的两项分为一组,所以有两种分解因式的方法.
解方法一
方法二
;
例2把分解因式.
问:观察这个多项式有什么特点?是否可以直接运用分组法进行因式分解?
答:这个多项式的各项都有公式因ab,可以先提取这个公因式,再设法运用分组法继续分解因式.
解:
=
=
=
=
例3把45m2-20ax2+20axy-5ay2分解因式.
分析:这个多项式的各项有公因式5a,先提取公因式,再观察余下的因式,可以按:一、三”分组原则进行分组,然后运用公式法分解因式.
解45m2-20ax2+20axy-5ay2=5a(9m2-4x2+4xy-y2)
=5a[9m2-(4x2-4xy+y2)]
=5a[(3m2)-(2x-y) 2]
=5a(3m+2x-y)(3m-2x+y).
例4把2(a2-3mn)+a(4m-3n)分解因式.
分析:如果去掉多项式的括号,再恰当分组,就可用分组分解法分解因式了.
解2(a2-3mn)+a(4m-3n)=2a2-6mn+4am-3an
=(2a2-3an)+(4am-6mn)
=a(2a-3n)+2m(2a-3n)
=(2a-3n)(a+2m).
指出:如果给出的多项式中有因式乘积,这时可先进行乘法运算,把变形后的多项式按照分组原则,用分组分解法分解因式.
三、课堂练习
把下列各式分解因式:
(1)a2+2ab+b2-ac-bc;(2)a2-2ab+b2-m2-2mn-n2;
(3)4a2+4a-4a2b+b+1;(4)ax2+16ay2-a-8axy;
(5)a(a2-a-1)+1;(6)ab(m2+n2)+mn(a2+b2);
答案:
(1)(a+b)(a+b-c);(2)(a-b+m+m)(a-b-m-n);
(3)(2a+1)(2a+1-2ab+b);(4)a(x-4y+1)(x-4y-1);
(5)(a-1) 2 (a+1);? (6)(bm+an)(am+bn).
四、小结
1.把一个多项式因式分解时,如果多项式的各项有公因式,就先提出公因式,把原多项式变为这个公因式与另一个因式积的形式.如果另一个因式是四项(或四项以上)的多项式,再考虑用分组分解法因式分解.
2.如果已知多项式中含有因式乘积的项与其他项之和(或差)时(如例3),先去掉括号,把多项式变形后,再重新分组.
五、作业
1.把下列各式分解因式:
(1)x3y-xy3;(2)a4b-ab4;
(3)4x2-y2+2x-y;(4)a4+a3+a+1;
(5)x4y+2x3y2-x2y-2xy2;(6)x3-8y3-x2-2xy-4y2;
(7)x2+x-(y2+y);(8)ab(x2-y2)+xy(a2-b2).
2.已知x-2y=-2b=-4098,求2bx2-8bxy+8by2-8b的值.
答案:
1.(1)xy(x+y)(x-y);(2)ab(a-b)(a2+ab+b2);
(3)(2x-y)(2x+y+1);(4)(a+1) 2 (a2-a+1);
(5)xy(x+2y)(x+1)(x-1);(6)(x2+2xy+4y2)(x-2y-1);
(7)(x-y)(x+y+1);(8)(ax-by)(bx+ay).
2.原式=2b(x-2y+2)(x-2y-2)当x-2y=-2,b=-4098时,原式的值=0.
课堂教学设计说明
1.突出“通法”的作用.
对于含四项的多项式,可以根据所给的多项式的特点,常采取“二、二”分组或“一、三”分组的方法进行因式分解,这是运用分组法把多项式分解因式的通法,是带有规律性和程序性的解题思路,学生应切实掌握.安排例1的目的是:引导学生运用分组的通法把一个含有六项的多项式分解因式,促使学生能举一反三,触类旁通.
2.加强各种方法的纵横联系.
把分组分解法与提公因式法和公式法之间结合为一体,进行纵横联系,综合运用,考察学生掌握因式分解的方法和技能的状况是这节课教学设计的目标.通过讨论例3,引导学生综合应用三种方法把多项式分解因式,以开发学生解题思路的变通性和灵性活,对于启迪学生的思维和开阔学生的视野起到重要作用.
3.打通相反的思维过程.
因式分解与整式乘法是相反的变形,也是相反的思维过程,学生在学习多项式的'因式分解时,也应当适当联系整式的乘法.安排例4,目的是引导学生认识到,在把多项式因式分解时,如果给出的多项式出现了有因式乘积的项,但又不能提取公因式,这时就需要进行乘法运算,把变形后的多项式重新分组,再分解因式,从而启发学生在学习 数学时,应善于对数学知识和方法融汇贯通习惯于正向和逆向思维.
探究活动
系数为1的型的二次三项式同学们已经会分解因式了,那么二次项系数不是1的二次三项式怎么分解呢?如:
1.;2. .
有兴趣的同学可以模仿型式子的因式分解试着把上面两式分解因式,你能总结出规律吗?
答案:
1. ; 2. .
规律:二次项系数不是1的二次三项式分解因式时,若满足下列条件,则可将其分解为:
可分解为,即
可分解为,即
,,,满足,即
按斜线十字交叉相乘的积之和若与一次项系数相等,则可分解因式,
第一个因式由第一行的两个数组成
第二个因式由第二行的两个数组成
分解结果为:
初中数学 教案 12
一、教学目标:
1.通过探究教学,使学生掌握“同一底上两底角相等的梯形是等腰梯形”这个判定方法,及其此判定方法的证明.
2.能够运用等腰梯形的性质和判定方法进行有关的论证和计算,体会转化的思想,数学建模的思想,会用分析法寻求证明题思路,从而进一步培养学生的分析能力和计算能力.
3.通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想.
二、重点、难点
1.重点:掌握等腰梯形的判定方法并能运用.
2.难点:等腰梯形判定方法的运用.
三、例题的意图分析
本节课安排的例题与练习较多,可供老师们选用.
例1是教材P119的例2,这是一道计算题,讲解时要让学生注意,已知中并没有给出等腰梯形的条件,它需要先判定梯形ABCD为等腰梯形,然后再用其性质得出结论.
例2、例3、例4都是补充的题目.其中例2是一道文字题,这道题在进行证明时,可采用“平移对角线”或“作高”两种不同的方法,通过讲解例2,可以再次给学生介绍解决梯形问题时辅助线的添加方法.
例3是一道证明等腰梯形的`题,它需要先证明其四边形是梯形,即先证出EG∥AB,此时还要由AE,BG延长交于O,说明EG≠AB,才能得出四边形ABGE是梯形.然后再利用同底上的两角相等得出这个梯形是等腰梯形.选讲此题的目的是为了让学生了解和掌握证明一个四边形是等腰梯形的步骤与方法.
例4是一道作图题,新教材P119的练习4就是一道画梯形图的题,此例4与练习4相同.通过此题的讲解与练习,就是要加强学生对梯形概念的理解,并了解梯形作图的一般方法.让学生知道梯形的画图题,也常常是通过分析,找出需要添加的辅助线,先画出三角形或四边形,再根据它们之间的联系画出所要求的梯形.
四、课堂引入
1.复习提问:(1)什么样的四边形叫梯形,什么样的梯形是直角梯形、等腰梯形?
(2)等腰梯形有哪些性质?它的性质定理是怎样证明的?
(3)在研究解决梯形问题时的基本思想和方法是什么?常用的辅助线有哪几种?
我们已经掌握了等腰梯形的性质,那么又如何来判定一个梯形是否是等腰梯形呢?今天我们就共同来研究这个问题.
2.【提出问题】:前面所学的特殊四边形的判定基本上是性质的逆命题.等腰梯形同一底上两个角相等的逆命题是什么?
命题:同一底上的两个角相等的梯形是等腰梯形
问:这个命题是否成立?能否加以证明,引导学生写出已知、求证.
启发:能否转化为特殊四边形或三角形,鼓励学生大胆猜想,和求证.
已知:如图,在梯形ABCD中,AD∥BC,∠B=∠C.
求证:AB=CD.
分析:我们学过“如果一个三角形中有两个角相等,那么它们所对的边相等.”因此,我们只要能将等腰梯形同一底上的两个角转化为等腰三角形的两个底角,命题就容易证明了.
证明方法1:过点D作DE∥AB交BC于点F,得到△DEC.
∵AB∥DE, ∴∠B=∠1,
∵∠B=∠C, ∴∠1=∠C. ∴DE=DC.
又∵AD∥BC, ∴DE=AB=DC.
证明时,可以仿照性质证明时的分析,来启发学生添加辅助线DE.
证明方法二:用常见的梯形辅助线方法:过点A作AE⊥BC, 过D作DF⊥BC,垂足分别为E、F(见图一).
证明方法三: 延长BA、CD相交于点E(见图二). 图一 图二
通过证明:验证了命题的正确性,从而得到:等腰梯形判定方法
等腰梯形判定方法 在同一底上的两个角相等的梯形是等腰梯形.
几何表达式:梯形ABCD中,若∠B=∠C,则AB=DC.
【注意】等腰梯形的判定方法:①先判定它是梯形,②再用“两腰相等”“或同一底上的两个角相等”来判定它是等腰梯形.
五、例、习题分析
例1(教材P119的例2)
例2(补充) 证明:对角线相等的梯形是等腰梯形.
已知:如图,梯形ABCD中,对角线AC=BD.
求证:梯形ABCD是等腰梯形.
分析:证明本题的关键是如何利用对角线相等的条件来构造等腰三角形.在ΔABC和ΔDCB中,已有两边对应相等,要能证∠1=∠2,就可通过证ΔABC ≌ΔDCB得到AB=DC.
证明:过点D作DE∥AC,交BC的延长线于点E,
又 AD∥BC,∴ 四边形ACED为平行四边形, ∴ DE=AC .
∵ AC=BD , ∴ DE=BD ∴ ∠1=∠E
∵ ∠2=∠E , ∴ ∠1=∠2
又 AC=DB,BC=CE, ∴ ΔABC≌ΔDCB. ∴ AB=CD.
∴ 梯形ABCD是等腰梯形.
说明:如果AC、BD交于点O,那么由∠1=∠2可得OB=OC,OA=OD ,即等腰梯形对角线相交,可以得到以交点为顶点的两个等腰三角形,这个结论虽不能直接引用,但可以为以后解题提供思路.
问:能否有其他证法,引导学生作出常见辅助线,如图,作AE⊥BC,DF⊥BC,可证 RtΔABC≌RtΔCAE,得∠1=∠2.
例3(补充) 已知:如图,点E在正方形ABCD的对角线AC上,CF⊥BE交BD于G,F是垂足.求证:四边形ABGE是等腰梯形.
分析:先证明OE=OG,从而说明∠OEG=45°,得出EG∥AB,由AE,BG延长交于O,显然EG≠AB.得出四边形ABGE是梯形,再利用同底上的两角相等得出它为等腰梯形.
例4 (补充)画一等腰梯形,使它上、下底长分别4cm、12cm,高为3cm,并计算这个等腰梯形的周长和面积.
分析:梯形的画图题常常通过分析,找出需添加的辅助线,归结为三角形或平行四边形的作图,然后,再根据它们之间的联系,画出所要求的梯形.
如图,先算出AB长,可画等腰三角形ABE,然后完成 AECD的画图.
画法:①画ΔABE,使BE=12—4=8cm.
.
②延长BE到C使EC=4cm.
③分别过A、C作AD∥BC ,CD∥AE,AD、CD交于点D.
四边形ABCD就是所求的等腰梯形.
解:梯形ABCD周长=4+12+5×2=26cm .
答:梯形周长为26cm,面积为24 .
六、随堂练习
1.下列说法中正确的是( ).
(A)等腰梯形两底角相等
(B)等腰梯形的一组对边相等且平行
(C)等腰梯形同一底上的两个角都等于90度
(D)等腰梯形的四个内角中不可能有直角
2.已知等腰梯形的周长25cm,上、下底分别为7cm、8cm,则腰长为_______cm.
3.已知等腰梯形中的腰和上底相等,且一条对角线和一腰垂直,求这个梯形的各个角的度数.
4.已知,如图,在四边形ABCD中,AB>DC,∠1=∠2,AC=BD,求证:四边形ABCD是等腰梯形.
(略证 ,AD=BC, ,∴ AB∥DC)
5.已知,如图,E、F分别是梯形ABCD的两底AD、BC的中点,且EF⊥BC,求证:梯形ABCD是等腰梯形.
七、课后练习
1.等腰梯形一底角 ,上、下底分别为8,18,则它的腰长为______,高为______,面积是_________.
2.梯形两条对角线分别为15,20,高为12,则此梯形面积为_________.
3.已知:如图,在四边形ABCD中,∠B=∠C,AB与CD不平行,且AB=CD.求证:四边形ABCD是等腰梯形.
4.如图4.9-9,梯形ABCD中,AB∥CD,AD=BC,CE⊥AB于E,若AC⊥BD于G.求证:CE= (AB+CD).
初中数学 教案 13
一、导入新课
上节课我们学习了用坐标表示地理位置,体现了直角坐标系在实际中的应用,本节课我们研究直角坐标系的另一个应用——用坐标表示平移..
二、图形的平移与图形上点的变化规律
首先我们研究点的平移规律.
(1)将点A(-2,-3)向右平移5个单位长度,得到点A1,在图上标出它的坐标,点A的坐标发生了什么变化?把点A向上平移4个单位长度呢?
将点A向右平移5个单位长度,横坐标增加了5个单位长度,纵坐标不变;将点A向上平移4个单位长度,纵坐标增加了4个单位长度,横坐标不变.
(2)把点A向左或向下平移4个单位长度,点A的坐标发生了什么变化?
将点A向左平移4个单位长度,横坐标减少了4个单位长度,纵坐标不变;将点A向下平移4个单位长度,纵坐标减少了4个单位长度,横坐标不变.
从点A的平移变化中,你知道在什么情况下,坐标不变吗?在什么情况下,坐标增加或减少吗?
将点向左右平移纵坐标不变,向上下平移横坐标不变;将点向右或向上平移几个单位长度,横坐标或纵坐标就增加几个单位长度;向左或向下平移几个单位长度,横坐标或纵坐标就减少几个单位长度.
再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化?
三、图形上点的变化与图形平移的规律
对一个图形进行平移,就是对这个图形上所有点的`平移,因而这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.
例:如图(1),三角形ABC三个顶点坐标分别是A(4,3),B(3,1),C(1,2).
(1)将三角形ABC三个顶点的横坐标都减去6,纵坐标不变,分别得到点A1、B1、C1,依次连接A1、B1、C1各点,所得三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系?
(2)将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2、B2、C2,依次连接A2、B2、C2各点,所得三角形A2B2C2与三角形ABC的大小、形状和位置上有什么关系?
解:如图(2),所得三角形A1B1C1与三角形ABC的大小、形状完全相同,三角形A1B1C1可以看作将三角形ABC向左平移6个单位长度得到.类似地,三角形A2B2C2与三角形ABC的大小、形状完全相同,它可以看作将三角形ABC向下平移5个单位长度得到.
思考:
(1)如果将这个问题中的“横坐标都减去6”“纵坐标都减去5”相应的变为“横坐标都加3”“纵坐标都加2”,分别能得出什么结论?画出得到的图形.
(2)如果将三角形ABC三个顶点的横坐标都减去6,同时纵坐标都减去5,能得到什么结论?画出得到的图形.
归纳上面的作图与分析,你能得到什么结论?
在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,得到的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,得到的新图形就是把原图形向
初中数学 教案 14
教学目的 知识技能 观察估计方程解的大致范围,用试值的方法,得到方程的近似解.
数学思考 建立初步的数感和符号感,发展抽象思维
解决问题 综合运用所学到的知识和技能解决问题,发展应用意识
情感态度 培养学生对数学的好奇心和求知欲
教学难点 通过观察估计方程解的大致范围
知识重点 用试值的方法得到方程的近似解
教学过程
问题一:
小明的爸爸投资购买某种债券,第一年初购买了1万元,第二年初有购买了2万元,到第二年底本利和为3.35万元.设这种债券的年利润率不变,你能估计出年利润率的近似值吗?
师生活动:共同审题,设未知数,建立方程
设年利润率为r,
一起探究
根据题目的实际意义,总投入3万元,而本利和为3.35万元,所以r>0.
年利润r可能超过0.1吗?可能比0.06小吗?
方程的左边可化为
当r=0.1时,方程的左边=1.13.1 =3.41>3.35
0< r <0.1
当r=0.06时,方程的左边=1.063. 06=3.3.2436 <3.35
0.06< r <0.1
课堂练习
一架长为10m的梯子斜靠在墙上,梯子的顶端A除到地面的距离为8m.如果梯子的顶端沿墙面下滑1m,那么梯子的底端在地面上滑动的距离也是1m吗?请列出方程,并估计方程解的大致范围(误差不超过0.1m).
问题二:估计方程 x3-9=0 的解.
解:将方程化成 x3=9
由于23=8<9,33=27>9
通过试值,得到方程的.解在2和3之间,并且接近2.
取x=2.1进行试值,2.13=9.261>9
2< x <2.1
再取x=2.08, x=2.09继续试值,
2.08< x <2.09
在实践探索交流中解决问题,逐步领悟解决问题的正确方法,克服畏难情绪。同时调动学生的思维积极性,提高动手能力和活用数学的意识.
通过观察,估计方程解的范围.
用试值的方法得到方程的近似解
通过估计方程的近似解,解决实际问题.
对高次方程进行估算,求其近似解.
小结与作业
课堂小结 学生讨论总结,本节课的所得和估算要点
本课作业 课本第48页 习题1、2、3
课后随笔(课堂设计理念,实际教学效果及改进设想)
初中数学 教案 15
教材分析
1.本节在引言中的方程基础上,首先通过两个实际问题,进一步引出一元二次方程的具体例子,然后引导学生观察出它们的共同点,得出一元二次方程的定义。
2.书中的定义是以未知数的个数和次数为标准,用文字的形式给出的。一元二次方程都可以整理为ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。
3、本节始终都有列方程的内容,这样安排一方面是分散列方程这一教学难点,化整为零地培养由实际问题抽象出方程模型的能力;另一方面是为由一些具体的方程归纳出一元二次方程的概念。
学情分析
1、通过课堂练习,大部分学生对概念基本理解,能够找出各项系数,但有少数学困生对于系数符号没有掌握。
2、部分学生由于基础较薄弱,用一元二次方程解决实际问题有一定的难度,解决这问题要以多练为主。
3、学生认知障碍点:一元二次方程与不等式和整式的综合运用能力有待提高。
教学目标
1、从实际问题引出一元二次方程,使学生进一步体会方程是刻画现实世界中数量关系的一个有效数学模型,培养学生分析问题和解决问题的能力及用数学的.意识。
2、使学生正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
3、通过概念教学,培养学生的观察、类比、归纳能力,同时通过变式练习,使学生对概念理解具备完整性和深刻性。
教学重点和难点
1、重点:概念的形成及一般形式。
2、难点:从实际问题引出一元二次方程;正确识别一般形式中的“项”及“系数”。