范文资料网>反思报告>教案大全>《小学数学分数除法教案

小学数学分数除法教案

时间:2023-02-14 19:14:48 教案大全 我要投稿
  • 相关推荐

小学数学分数除法教案

  作为一位无私奉献的人民教师,编写教案是必不可少的,教案是教学活动的总的组织纲领和行动方案。怎样写教案才更能起到其作用呢?下面是小编为大家收集的小学数学分数除法教案,仅供参考,大家一起来看看吧。

小学数学分数除法教案

小学数学分数除法教案1

  教学目标

  1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。教学重点:弄清单位“1”的量,会分析题中的数量关系。教学:难点:分数除法应用题的特点及解题思路和解题方法。

  教学重难点

  教学重点:弄清单位“1”的量,会分析题中的数量关系。

  教学:难点:分数除法应用题的特点及解题思路和解题方法。

  教学过程

  一、复习

  出示复习题:

  1、下面各题中应该把哪个量看作单位“1”?

  2、用方程解下列各题。

  3、根据测定,成人体内的水分约占体重的2/3,而儿童体内的水分约占体重的4/5,六年级学生小明的体重为35千克,他体内的水分有多少千克?

  让学生观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。

  选择解决问题所需的`条件,确定出单位“1”,并引导学生说出数量关系式。

  小明的体重×4/5=体内水分的重量。

  4、指名口头列式计算。课件出示。

  二、新授

  1、教学例1

  根据测定,成人体内的水分约占体重的2/3,而儿童

  体内的水分约占体重的4/5,小明体内有28千克水分,

  他的体重是爸爸体重的7/15,小明的体重是多少千克?

  爸爸的体重是多少千克?

  例1的第一个问题:小明的体重是多少千克?

  (1)读题、理解题意,并画出线段图来表示题意:

  (2)引导学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。小明的体重×4/5=体内水分的重量

  (3)这道题与复习题相比有什么相同点和不同点?

  (相同点是它们的数量关系是一样的;不同点是水分28千克,水分占体重的4/5。体重?千克水分28千克已知条件和问题变了)

  (4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,列方程来解决问题)

  (5)启发学生应用算术解来解答应用题。

  先在小组内独立解答。

  课件演示计算的算式。

  (根据数量关系式:小明的体重×4/5=体内水分的重量,

  反过来,体内水分的重量÷4/5=小明的体重)。

  2、解决第二个问题:小明的体重是爸爸的7/15,爸爸的体重是多少千克?

  (1)启发学生找到分率句,确定单位“1”。

  (2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。

  (3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(课件出示线段图)

  爸爸:

  小明:

  根据数量关系式:爸爸的体重×7/15=小明的体重

  小明的体重÷7/15=爸爸的体重

  ①解方程:解:设爸爸的体重是χ千克。

  7/15χ=35

  χ=35÷7/15

  χ=75

  ②算术解:35÷7/15=75(千克)

  课件演示计算的算式。

  3、用方程解应用题应注意哪些问题

  首先要弄清题里有哪些数量,它们之间有什么样的关系,然后找出题中数量间

  的等量关系,再确定设哪个量为χ,并列出方程.

  4、巩固练习:P38“做一做”课件出示:

  学校有科普读物320本,占全部图书的2/5,科普读物相当于故事书的4/3,图书馆共有多少本书?图书馆有多少本故事书?(学生先独立审题完成,然后全班再一起分析题意、评讲)

  三、巩固应用

  1、小明看一本课外读物,周末看了35页,正好是这本书的5/7,这本课外读物一共有多少页?

  (先分析数量关系式,然后确定单位“1”,最后再进行解答。)

  2、一杯约250ml的鲜牛奶大约含有3/10g的钙质,占一个成年人一天所需钙质的3/8。一个成年人一天大约需要多少钙质?

  (注意引导学生发现250ml的鲜牛奶是多余条件)

  3、人造地球卫星的速度是8千米/秒,相当于宇宙飞船的40/57,宇宙飞船的速度是多少?

  (引导学生先分析数量关系式,然后确定单位“1”,再根据数量关系式进行计算)

  4、小军家爸爸每月工资是1500元,妈妈每月工资是1000元,家里每月开支大约要占爸爸妈妈两人工资的3/5,小军家每月开支大约是多少元?

  独立完成后订正。

  四、课堂总结

  这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果分率句中的单位“1”是未知的话,可以用方程或除法进行解答。

小学数学分数除法教案2

  教学目标

  1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。

  2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商

  3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。

  教学重难点

  教学重点:

  掌握分数与除法的关系,会用分数表示两个数相除的商。

  教学工具

  多媒体课件,圆形纸片,剪刀

  教学过程

  一、创设情境,导入新课,

  师:同学们过生日都要吃生日蛋糕,喜欢吃吗?(生:喜欢)

  1.师:今天老师就带来了8个小蛋糕把8个小蛋糕平均分给4个人吃,每人分得多少个?

  怎么列式?生:8÷4=2(个)

  2.师:把8个小蛋糕变成1个大蛋糕把1个大蛋糕平均分给4个人吃,每人分得多少个?

  怎么列式?生:1÷4=

  二、动手操作,探索新知

  1、探索一个物体平均分,体会分数与除法的关系。

  (1)师:每人分得多少个?请同学们利用这张白色的圆形纸片,折一折,分一分,看看到底是多少个?生动手折纸,思考

  生:把1个蛋糕看作单位“1”,把它平均分给4个人,也就是平均分成4份,每人分得其中的一份,也就是这1个蛋糕的1/4,就是1/4个蛋糕

  (2)师:把1个蛋糕平均分给3个人,每人分得多少多少个?怎么列式?

  生独立思考并回答。

  全班交流,明确:求每人分得多少个,要把1个蛋糕平均分成3份,用除法计算;而把“1”平均分成3份,表示这样一份的数,可以用分数()来表示。所以1÷3=()(个)

  2、探索多个物体平均分,体会分数与除法的关系。

  师:把3个蛋糕平均分给4个人,每人分得多少个?

  师:怎样分公平?每人分得多少个?下面,利用你手中的学具3张圆形纸片,小组合作,分一分,剪一剪。

  (1)充分交流、展示学生的想法与做法(可能出现以下几种情况)。

  方法一:一张一张分,把每个蛋糕分别平均分成4份,共12份,每人分到3份,3个(1/4)张拼在一起得到(3/4)个。

  方法二:三个蛋糕摞在一起,平均分成4份,每人分到1份,1份中有3个(1/4)个,拼在一起得到(3/4)个。

  (2)演示:(突出方法二中3个的1/4就是1个的`3/4,深化3/4的意义)无论哪一种方法我们都得到:3个蛋糕平均分给4个人,每人分到的就是3/4个蛋糕。即:3÷4=()(个)(板书)

  (3)在这里,3/4就有两层含义:既表示1个的蛋糕的3/4,又表示3个蛋糕的1/4

  (4)师:同学们真了不起,老师还想考考你们:如果把5个蛋糕平均分给7个人,每人分得多少个呢?你能想象一下分的过程吗?好好想一想,并和同学交流一下。

  学生汇报,明确:5个蛋糕的1/7就是1个蛋糕的5/7,即:5÷7=5/7(个)(板书)(5)师:刚才我们是分的蛋糕,现在我们来分分绳子。把3根绳子平均分成5份,每份是多少根?怎么列式?学生思考后回答:3÷5=3/5(根)(课件演示)

  3、总结概括分数与除法之间的关系。

  1÷4=(个)3÷4=(个)

  5÷7=(个)3÷5=(个)

  师:观察黑板上的这些算式,你发现了什么?

  三、观察算式,概括分数与除法的关系。

  (1)请同学们观察这两组算式,你发现分数与除法有什么关系?请观察思考一下,并把你的发现和同学交流一下。

  (2)生汇报:我发现除法算式中的被除数相当于分数的分子,除法算式中的除数相当于分数的分母,除法算式的除号相当于分数的分数线。师补充:除法算式的商相当于分数的分数值。

  师强调:相当于

  (3)师:请每个同学看着这些算式说一说分数与除法的关系。

  (师板书):被除数÷除数=被除数/除数

  提问:我们能不能反过来说,分数的分子相当于什么?谁来说一说?

  生:分数的分子相当于除法算式中的被除数,分数的分母相当于除数,分数线相当于除号。

  (4)师:如果用a表示被除数,b表示除数,二者的关系可以用字母表示成:a÷b=a/b

  讨论:用字母表示分数与除法的关系,b是否可以是任何数?为什么?补充板书(b≠0)师板书:a÷b=a/b(b≠0)提问:为什么b≠0?(因为除数不能为0,所以b不能为0。)

  师:分数与除法有着如此紧密的联系,那么它们之间有没有区别呢?(学生说不出可以引导)

  小组议一议再全班交流,明确:分数是一种数,也可以表示两数相除;而除法是一种运算。

  三、练习巩固应用

  1、你能很快说出这些算式的商吗?3÷8=5÷9=7÷13=4÷7=40÷56=12÷61=

  2、把1千克葡萄干平均装在2个袋子里,每袋重多少千克?怎么列式?

  把1千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?

  把2千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?

  四、全课小结今天这堂课你有什么收获?还有什么问题吗?

小学数学分数除法教案3

  教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生

  动手操作的能力和抽象,概括,归纳的能力.

  教学重点:分数的数感培养,以及与除法的联系.

  教学难点:抽象思维的培养.

  教学过程:

  一,铺垫复习,导入新知 [课件1]

  1,提问:A,7/8是什么数 它表示什么

  B,7÷8是什么运算 它又表示什么

  C,你发现7/8和7÷8之间有联系吗

  2,揭示课题.

  述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系".

  板书课题:分数与除法的关系

  二,探索新知,发展智能

  1,教学P90 .例2:把1米长的钢管平均截成3段,每段长多少

  提问:A,试一试,你有办法解决这个问题吗

  板书:用除法计算:1÷3=0.333……(米)

  用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就

  是1/3米.

  B,这两种解法有什么联系吗

  (从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)

  板书: 1÷3= 1/3

  C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来

  表示 也就是说整数除法的商也可以用谁来表示

  2,教学P90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]

  (1)分析:A,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式

  B,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢

  板书: 3÷4= 3/4

  (2)操作检验(分组进行)

  ① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼

  ② 反馈分法.

  提问:A,请介绍一下你们是怎么分的

  (第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)

  (第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)

  B,比较这两种分法,哪种简便些

  ※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.

  3,小结提问:A,观察上面的学习,你获得了哪些知识

  板书: 被除数 ÷ 除数 = 除数 / 被除数

  B,你能举几个用分数表示整数除法的商的例子吗

  C,能不能用一个含有字母算式来表示所有的例子

  板书: a÷b=b/a (b≠0)

  D,b为什么不能等于0

  4, 看书P91 深化.

  反馈:说一说分数和除法之间和什么联系 又有什么区别

  板书:分数是一个数,除法是一种运算.

  三,巩固练习 [课件5]

  1,用分数表示下面各式的商.

  5÷8 24÷25 16÷49 7÷13 9÷9 c÷d

  2,口算.

  7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )

  3, 7/10表示把单位"1"平均分成( )份,表示这样的.( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.

  四,全课小结

  当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.

  在整数除法中零不能作除数,那么,分数的分母也不能是零.

  五,家作

  P93 .1,2,3

  板书设计: 分数与除法的关系

  例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4

  被除数 ÷ 除数 = 除数 / 被除数

  a÷b=b/a (b≠0)

  分数是一个数,除法是一种运算

小学数学分数除法教案4

  教学内容:

  49~50页的内容及练习十二1~12题。

  教学目标:

  1.知识与能力:并会用分数表示两个数相除的商,明确可以用分数表示两个数相除的商。

  2.过程与方法:通过观察、探究,理解分数与除法的关系,经历分数与除法的关系的探究过程

  3.情感、态度与价值观:通过观察、探究,渗透辩证思想,激发学生学习兴趣。

  教学重点:

  掌握分数与除法的关系,会用分数表示两个数相除的商。

  教学难点:

  理解可以用分数表示两个数相除的`商。

  教具准备:

  课件

  教学过程:

  一、复习导入

  1. 表示什么意思?它的分数单位是什么?它有几个这样的分数单位?

  2.把一根铁丝平均截成3段,每段的长度是这根铁丝的几分之几,把谁看作单位1?

  3.引入:5除以9,商是多少?板书:59

  如果商不用小数表示,还有其他方法吗?学习了分数与除法的关系后,就能解决这个问题了。板书课题:分数与除法。

  二、新课讲授

  1.教学例1:出示题目

  (1)列出算式。(板书:13=)

  (2)讨论:1除以3结果是多少?你是怎样想的?

  (3)教师画出示意图。把一个蛋糕平均分成3份,其中一份应是这个蛋糕的 ,就是 个1。

  板书:13= 1/3(个)

  2.教学例2:出示题目

  (1)动手操作。拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。

  (2)口述方法及每份分得的结果,教师总结几种不同的分法。

  (3)归纳:从上面的操作可以看出,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的 ,即3个 块,把3个 块饼合起来就是1个饼的 ,即 块,因此,34=3/4 (块)。

  由此可见, 不仅可以理解为把1块饼(单位1)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位1)平均分成4份,表示这样1份的数。

  学生相互说说 表示的意义。

  3.教学分数与除法的关系。

小学数学分数除法教案5

  教学内容:

  教材第29~30页“分数除法(三)”。

  教学目标:

  1.能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题的重要模型。

  2.在解方程中,巩固分数除法的.计算方法。

  教学重难点:

  1.能够体会方程是解决实际问题的重要模型。

  2.能够用方程解决实际问题。

  教学过程:

  一、创设情景激趣揭题

  1.出示课外活动情况图问:从图中,你们能获得哪些数学信息呢?

  2.引入并板书课题。

  二、扶放结合探究新知

  1.根据这些数学信息,你能提出哪些数学问题?

  2.引导学生逐一解答提出的问题。

  3.重点引导:跳绳的有6人,是操场上参加总人数的2/9,操场上有多少人?该怎样解答?

  4.引导观察,找出有什么相同点和不同点?

  三、反馈矫正落实双基

  1.指导完成P29的试一试的1,2题。

  2.你能根据方程

  X×1/5=30

  编一道应用题吗?

  3.请你想一个问题情景,遍一道分数应用题。

  四、小结评价布置预习

  1.引导小结

  通过本节课的学习你有哪些收获?

  2.布置预习

  整理前面所学知识。

  板书设计:

  分数除法(三)

  跳绳的小朋友有6人,是操场上参加活动总人数的2/9,操场上有多少人参加活动?

  参加活动总人数×2/9=跳绳的人数

  解:设操场有X人参加活动。

小学数学分数除法教案6

  教学目标:

  1、使学生掌握分数乘加、乘减除加、除减混合运算的顺序,能正确地进行计算。

  2、在学习的过程中培养学生的合作意识及认真、仔细的良好学习习惯。

  3、运用分数乘除法的相关定律解决实际问题。

  教学重点:熟练掌握运算定律,灵活、准确地进行简便计算,运用分数乘除法解决实际问题。

  教学难点:运用分数乘除法的相关定律解决实际问题。

  温故案

  一、知识要点:分数乘除法、倒数、比。

  1、分数乘法的意义:(1)分数乘整数,就是求几个相同 的 的 运算。

  (2)一个数(整数或分数)乘分数,就是求 的 是多少。

  2、分数除法的意义:分数除法的意义与整数除法的意义 ,就是已知两个因数的 和其中一个 ,求另一个 的运算。

  3、分数乘法的计算(分数和整数相乘、分数乘分数)。

  因为整数都可以看成分母是1的分数,所以分数乘法的计算方法是用 相乘的积作 ,用

  相乘的积作 ,能约分的要先 ,然后再计算。

  4、分数除法的计算(分数除以整数、一个数除以分数)。

  在分数除法中,除以一个不等于0的数,等于乘以这个数的 。

  5、运用乘法运算定律进行分数的简便运算:分数乘法中进行分数的简便运算时经常要用到的运算定律有 。

  6、分数四则混合运算:(1)乘除混合运算的.,遇到除以一个数,就转化成 这个数的

  然后采用一次约分的方法计算。(2)四则混合运算的,按先 后 的运算顺序进行计算,有括号的,先算 ,再算 。

  7、倒数的意义和求倒数的方法: 互为倒数;求一个数(0除外)的倒数,只要把这个数的分子和分母 。注意:1的倒数是 ,0有倒数吗?

  8、比的意义和基本性质:两个数 又叫做两个数的比。在两个数的比中,比号前面的数叫做比的 ,比号后面的数叫做比的 ,两者相除多得的商叫做 。比的前项和后项同时 或 相同的数, 不变,这叫做比的基本性质。

  9、比和分数、除法的关系。

  比前项比号后项比值

  除法

  分数

  巩固案

  二、跟踪练习

  (一)填空题:

  1、40分=( )小时 3/5千米=( )米 23×( )=1 1.5和( )互为倒数。

  2、 ( )∶8=1.2∶( )=0.75=( )÷6=( )折=( )成

  3、把一根4米长的绳子平均分成5段,每段长( )米,每段占全长的( )。

  4、把盐和水按1∶19的比例配成盐水,盐占盐水的( )(填分数)

  5、一根钢材长6米,若用去1/2米,还剩( )米;若用去它的1/2,还剩( )米。

  6、甲数是乙数的1.6倍,那么甲数和乙数的比是( )∶( )。

  7、从甲地到乙地,客车要行4小时,货车要行5小时,客车和货车的速度比是( )∶( )。

  8、一个数的2/3是24,这个数的5/6是( )。

  (二)判断题:

  1、1米的1/2 和3米的1/2 一样长。( )

  2、两个分数相除,商一定大于被除数。( )

  3、如果a÷b=4 ,b就是a的4倍.( )

  4、把10克糖放入100克水中,糖占糖水的10%。( )

  5、王芳看一本200页的童话书,第一天看了全书的1/5,第二天应从40页看起。( )

  (三)计算:

  2×3/4= 3/8×6= 3/10×2/3= 7/25×15/14= 6/13÷4= 5/7÷5/2=

  30-1.6÷4/15= 3/5×1/2+3/5÷1/2= 1/5÷6/25-7/2×2/8= (0.75-3/16) ÷(2/9+1/3)=

  (四)列式计算:

  1、8的2/7与5/7的8倍的和是多少? 2、18的5/27减去3/7是多少?

  3、2/3与5/12的和的6/7是多少? 4、42的6/7与21的1/3的和是多少?

  (五)简单应用:

  1、有一个长方形的花坛,长是3/4米,宽是长的2/3,这个花坛的宽是多少米?面积是多少?

  2、李叔叔录入论文,3小时录了这篇论文的1/3,照这样的速度工作8小时,可以录入这篇论文的几分之几?

  3、一共有240千克水果糖,每袋装1/4千克,才装完了3/4,他们已经装完了多少袋?

  知新案

  1、某鞋店进来皮鞋600双。第一周卖出总数的 15 ,第二周卖出总数的 38 。

  ⑴两周一共卖出总数的几分之几?⑵两周一共卖出多少双?⑶还剩多少双?

  2、六年级同学给灾区的小朋友捐款。六一班捐了500元,六二班捐的是六一班的45 ,六三班捐的是六二班的 98 。六三班捐款多少元?

  3、一件西服原价180元,现在的价格比原来降低了15 ,现在的价格是多少元?

  4、希望小学三年级有学生216人,四年级的人数比三年级多 29 ,四年级有学生多少人?

小学数学分数除法教案7

  分数乘、除法及比是本册教材的重点内容,为突出知识间的内在联系,帮助学生形成知识网络,本节复习课在教学设计上主要关注以下几个方面:

  1.重视对分数乘、除法之间的关系及分数乘、除法计算方法的复习。

  教学中,结合教材内容,进一步强调分数乘、除法之间的关系,加强计算方法的指导,使学生在进一步理解并掌握分数除法是分数乘法的逆运算的同时,计算能力得到提高。

  2.重视对相关概念、性质及某些知识间相互关系的复习。

  教学中,把比的相关概念、倒数的.相关概念、比的性质以及比与分数、除法的关系等作为重要的复习内容,结合教材相关习题进行全面、系统地复习,使学生加深对概念的理解,同时将比与分数、除法联系起来。

  3.重视对学生解决问题能力的培养。

  教学中,把用分数乘、除法解决问题和用比解决实际问题作为重要的复习内容之一,结合教材习题,重点分析题中的数量关系,使学生通过对比练习,更好地掌握解决分数乘、除法问题以及比的有关问题的思路,提高学生分析问题、解决问题的能力。

  相同点:题中的数量关系相同,解题思路相同。

  不同点:①题表示单位“1”的量已知,用乘法计算。

  ②题表示单位“1”的量未知,列方程解答或用除法计算。

  (3)总结解决分数乘、除法问题的方法和解题关键。

  ①方法:表示单位“1”的量已知,求单位“1”的几分之几是多少,用乘法计算;表示单位“1”的量未知,已知一个数的几分之几是多少,求这个数,列方程解答或用除法计算。

  ②关键:找准表示单位“1”的量。

  设计意图:结合教材习题,复习画线段图分析问题的方法,在对比中使学生进一步理解并掌握解决分数乘、除法问题的方法和解题关键,提高学生解决问题的能力。

  ⊙巩固练习

  1.完成教材115页6题。

  地球上海洋面积是36000万平方千米,占地球总面积的。地球总面积是多少万平方千米?

  2.完成教材116页8题。

  (1)五年级同学收集了165个易拉罐,六年级同学比五年级多收集了。六年级收集了多少个易拉罐?

  (2)四年级比六年级少收集了,四年级收集了多少个易拉罐?

  3.完成教材116页10题。

  一列火车的速度是180千米/时。一辆小汽车的速度是这列火车的,是一架喷气式飞机的。这架喷气式飞机的速度是多少?

  4.完成教材116页11题。

  (1)用84 cm长的铁丝围成一个长方形,这个长方形的长与宽的比是2∶1。这个长方形的长与宽分别是多少厘米?

  84÷2=42(cm) 长:42×=28(cm)

  宽:42×=14(cm)

  (2)用84 cm长的铁丝围成一个三角形,这个三角形三条边长度的比是3∶4∶5。三条边各是多少厘米?

  [84÷(3+4+5)=7(cm) 7×3=21(cm)

  7×4=28(cm) 7×5=35(cm)]

  ⊙课堂总结

  通过本节课的复习,你有什么收获?

小学数学分数除法教案8

  教材分析

  理解并掌握分数除法的计算方法,会进行分数除法计算;理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质;能够正确地化简比和求比值。这为以后学习运用比的知识解决有关的实际问题打下基础。学习本节课学生能理解并掌握分数除法的计算方法,会进行分数除法计算。

  学情分析

  分数除法是本单元的第一课,也是非常要的一课,这节课的学习效果将直接影响到后面解决问题的学习。由于学生普遍基础较差,必须在理解分数除法的意义的基础上开始学习。学生分析问题解决问题的能力较差,因此,要培养学生在探索除分数以整数计算方法的过程中,进一步体会分数除法的意义,体会数学知识间的内在联系,发展分析、比较、抽象、概括的能力。

  教学目标

  1.通过具体的问题情境,探索并理解分数除法的计算方法。

  2.能正确地进行分数除法的计算。

  3.培养学生分析、推理能力。

  教学重点和难点

  教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。

  教学难点:分数除以整数计算法则的推导过程。

  教学过程

  一、创设情景,教学分数除法的.意义

  1.以3盒水果糖的重量为问题为切入点,请你们列出算式并计算,看谁算的又快又好!

  (1)每盒水果糖重100g,那么3盒有多重?

  100×3=300(g)

  (2)3盒水果糖重300g,那么每盒有多重?

  300÷3=100(g)

  (3)300g水果糖,每盒重100g,可以装几盒?

  300÷ 100=3(盒)

  2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

  讨论:分数除法的意义和整数除法的意义一样吗?

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  二、探究分数除法的计算方法

  (1)引导参与,探究新知

  师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

  出示问题1。

  请大家拿出一张操作纸,涂色表示出这张纸的4/5。

  师:把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?

  4/5÷2

  请同学们通过涂一涂,算一算的方式来研究4/5÷2怎样计算。小组合作,汇报交流。

  方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。

  4/5÷2=4÷2/5=2/5

  方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。

  4/5÷2=4/5×1/2=2/5

  (2)质疑问难,理解新知

  ①师小结:有的是用分子除以整数,分母不变的方法算出结果2/5,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

  ②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/5平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

  ③通过计算你们有什么发现?

  生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

  生2:把除法转化成乘法来做……4/5÷3=4/5×1/3=4/15

  能再讲讲这样做的道理吗?

  师:“4/5÷3”表示把4/5平均分成3份,取其中的一份。

  请同学们拿出第二张操作纸,你能把图中的4/5平均分成3份,并表示出其中的一份吗?

  展示学生的分法

  师(指着涂色部分):你所表示的这一部分是4/5的多少?

  通过直观图理解4/5的1/3是4/15

  (3)比较归纳,发现规律。

  分数除以整数(0除外),等于分数乘这个整数的倒数。要注意的是:

  结果最简。除号要变成乘号。

  三、巩固练习

  学生独立完成

  四、课堂小结

  1、分数除法的意义是什么?

  2.分数除以整数的计算法则是什么?(学生总结)

  五、作业布置

小学数学分数除法教案9

  设计说明

  本节课通过设置疑问,运用自主探索、合作探究等学习方式理解分数与除法的关系,运用此关系探索假分数与带分数的互化方法,理解假分数与带分数的互化算理,培养学生观察、比较、推理、归纳及交流的能力。本节课在教学设计上主要有以下两大特点:

  1.让学生在生活中感悟数学。

  从生活实际出发,从“分蛋糕”的情境入手,把教材内容与“数学现实”有机地结合起来,符合小学生的认知特点,可以消除学生对数学知识的陌生感,同时增强学生的数学应用意识,唤起学生对数学学习的`兴趣。

  2.让学生体验成功的乐趣。

  数学课堂教学要着眼于学生的潜能和可发展性,充分相信学生,给学生提供充分的自主探索的时间与空间,鼓励学生自主地进行观察、实验、猜测、推理、验证、交流等数学活动(探索除法与分数的关系,探索假分数与带分数互化的方法),使学生在自主探索的过程中真正理解和掌握数学基础知识与基本技能、数学思想和方法,从而获得广泛的数学活动经验。

  课前准备

  教师准备 PPT课件

  学生准备 学具 三种颜色的纸条

  教学过程

  第1课时 分数与除法(一)

  ⊙设置疑问,导入课题

  1.下面各题的商可以分为哪几类?

  36÷6=6 4÷5=0.8 80÷5=16 5÷10=0.5

  3÷7=0.428571428571… 4÷9=0.4444…

  引导学生归纳分类:

  36÷6=6和80÷5=16的商为整数;

  4÷5=0.8和5÷10=0.5的商为有限小数;

  3÷7=0.428571428571…和4÷9=0.4444…的商为循环小数。

  2.师总结:两个自然数相除,不能整除的时候,它们的商还可以用分数来表示。今天我们就来学习这部分内容。[板书:分数与除法(一)]

  设计意图:复习旧知,回顾所学知识的内在联系,引出课题。

  ⊙层层深入,探索分数与除法的关系

  1.出示问题,理解题意,列出算式。

  课件出示:把1块蛋糕平均分给2个小朋友,每人可以分到几块蛋糕?如果把7块蛋糕平均分给3个小朋友呢?

  师引导学生读题,提问(1):把1块蛋糕平均分给2个小朋友,可以写出怎样的算式?把7块蛋糕平均分给3个小朋友呢?

  预设 生:根据除法的意义,可以分别列式为1÷2和7÷3。

  提问(2):把1块蛋糕平均分给2个小朋友,每人分到几块蛋糕?把7块蛋糕平均分给3个小朋友呢?

  预设 生:每人分别可以分到块和块。

  提问(3):与1÷2之间是什么关系?与7÷3呢?

  (学生观察、讨论后可以明确:1÷2=,7÷3=)

  2.初步探索除法与分数的关系。

  师:观察1÷2=,7÷3=,说一说整数除法中被除数和除数与得数中的分子和分母存在着什么样的关系。

  (学生小组讨论交流,汇报)

  师生共同总结:任何一个分数都可以表示为分子除以分母,其中,分子相当于被除数,分母相当于除数。即:被除数÷除数=(除数不为0)。

  如果分别用字母ab表示除法算式中的被除数和除数,分数与除法的这种关系怎样表示?

  质疑:这里的ab是否可以是任意自然数?为什么?

  (不可以,这里的b≠0。在除法中,除数不能为0,所以在分数中,分母也不能为0。教师板书:b≠0)

小学数学分数除法教案10

  教学目标:使学生进一步理解分数与除法的关系,学会根据分数与除法的关系,把低级单位的名数改写成高级单位的名数以及解答"求一个数是另一个数的几分之几"的应用题。

  教学重点:名数之间的互化。

  教学难点:名数之间的互化的实质理解。

  教学课型:新授课

  教具准备:课件

  教学过程:

  一,铺垫复习,导入新知

  1,用分数表示下面各式的商。[课件1]

  5÷6 14÷25 12÷12 18÷35

  2,在括号里填上适当的`数或字母。[课件2]

  12÷35=( )/( ) ( )÷( )=4/7

  ( )÷( )=a/b 8÷( )=( )/9

  ( )÷17=7/( ) 1÷( )=( )/d

  3,把5个饼分给9孩子吃,每个孩子分得多少个 [课件3]

  4,小新家养鸡30只,养鸭10只。养的鸡是鸭的几倍

  5,填空。[课件4]

  30分米=( )米 180分=( )小时

  二,变式类推,深化理解

  1,教学P91 。例4: (1)3分米是几分之几米

  (2)17分是几分之几时

  思考:A,这两题与复习题有什么区别 有什么相同

  B,第(1)题要把分米数改写成米数应该怎么办 怎样计算

  板书: 3÷10=3/10(米)

  C,第(2)小题是要将什么改写成什么 怎样求得

  板书: 17÷60=17/60(时)

  ※ P91 。做一做

  2,教学P92 。例5: 小新家养鹅7只,养鸭10只。养的鹅是鸭的几分之几

  (1)提问:A,用谁作标准 该怎样计算

  B,与复习题对比,有哪些不同点和相同点

  (2)归纳。

  求一个数是另一个数的几倍与求一个数是另一个数的几分之几,都用除法计算,除数都作标准数,得到的商都表示两个数之间的关系,都不能写单位名称。

  ※ P92 。做一做

  习前提问:说说用什么作标准数

  三,加强练习,深化概念

  1,P93 。4

  要求说说题目的思路和单位之间的进率。

  2,P93 。6

  提问:这两个问题中的标准量相同吗 请说说标准量分别是什么

  3,P93 。7

  四,全课小结,抽象概括

  1,本节课所学的两个内容分别是什么

  2,你还有问题要问吗

  五,家作。

  P93 。5,8

小学数学分数除法教案11

  教学目标:

  1、理解分数除以整数的意义,掌握分数除以整数的计算方法,并能正确计算。

  2、通过实践活动和自主探究,培养学生动手能力及发现问题、解决问题的能力。

  3、通过一系列“自主探究----得出结论”的过程,体验其中的成就感,增强学生学习数学的自信心。

  教学重点:

  理解分数除法的意义,掌握分数除以整数的计算方法。

  教学难点:

  分数除以整数计算法则的推导过程。

  教学准备:

  多媒体课件、长方形纸等。

  教学过程:

  一、旧知复习,蕴伏铺垫

  复习时我安排了两道练习,引发学生记忆的再现,为学生选择原有知识中的有效的.信息做好铺垫。

  1、展示问题:

  (1)什么是倒数?

  (2)你能举出几对倒数的例子吗?

  (3)如何求一个数的倒数?

  2、展示多媒体:笑笑和淘气去买白糖。

  问题1:他们每人买了两袋白糖,一共买了多少袋白糖?

  问题2:这些白糖一共重2千克,每袋白糖有多重?

  问题3:如果笑笑家15天吃完一袋白糖,那么平均每天吃多少千克?

  二、创设情境,理解意义

  展示多媒体:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?

  1、利用准备好的纸,先把纸平均分成7份,再涂出其中的4份,然后再将这4份平均分成2份,将其中1份涂色,最后看看涂上色的这部分占整张纸的几分之几。

  2、汇报

  三、大胆猜想

  学生通过操作,明白2/7是怎样得到的。那么到底应该怎样计算分数除法呢?让学生大胆猜想分数除法的计算方法。学生根据刚才的推理,很容易得出“分母不变,被除数的分子除以整数得到商的分子”的计算方法。

  四、再次探究

  1、学生很快发现有些算式是无法用以上结论计算出来的,如4/7÷3,分子4除以3是除不尽的。

  2、让学生动手分一分、涂一涂,然后再让他们进行小组交流。

  3、得出分数除法的计算方法:除以一个整数(零除外)等于乘这个整数的倒数。

  板书: 分数除法(二)

  除以一个整数(零除外)等于乘这个整数的倒数。

小学数学分数除法教案12

  教学目标:

  1、知识目标:体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

  2、能力目标:培养学生动手动脑能力,以及判断、推理能力。

  3、情感目标:培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

  教学重点:

  能求一个数的倒数。

  教学难点:

  分数除以整数计算法则的推导过程。

  教学准备:

  长方形纸片。

  教学过程:

  一、创设情景,教学分数除法的意义

  1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!

  (1)每人吃1/2块饼,4个人共吃多少块饼?

  (2)把2块饼平均分给4个人,每人吃了多少块饼?

  (3)有2块饼,分给每人1/2块,可分给几个人?

  2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

  师:讨论:分数除法的意义和整数除法的意义一样吗?

  总结:分数除法的意义与整数除法的.意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  二、探究分数除法的计算方法

  (1) 引导参与,探究新知

  师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

  出示问题1。

  请大家拿出一张操作纸,涂色表示出这张纸的4/7。

  师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2

  请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。

  方法一:把4/7平均分成2份就是把4份平均分成2份,每份是2个1/7,也就是2/7。展示折纸和计算过程。4/7÷2=4÷2/7=2/7

  方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/7的1/2是多少,可以用乘法来做。展示折纸和计算过程。4/7÷2=4/7×1/2=2/7

  师:对这种做法大家有什么疑问吗?

  生:这儿是除法怎么变成了乘法?

  师:老师也有这个疑问,你能讲讲吗?

  师:谁能结合图来讲一讲呢?

  师:很好!把除法转化成乘法,问题迎刃而解,你真棒!……

  (2)质疑问难,理解新知

  ①师小结:有的是用分子除以整数,分母不变的方法算出结果2/7,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

  ②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

  ③通过计算你们有什么发现?

  生1、用第一种方法就不能做了。因为: 上一题的时候,分子4是2的倍数,4÷2能得到整数商。而 4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

  生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21

  能再讲讲这样做的道理吗?

  师:“4/7÷3”表示把4/7平均分成3份,取其中的一份。

  请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的一份吗?

  展示学生的分法

  师(指着涂色部分):你所表示的这一部分是4/7的多少?

  通过直观图理解4/7的1/3是4/21

  (3)比较归纳,发现规律。

  ①师:在计算这两道题时同学们想到了不同的算法,计算左边这道题你比较喜欢那种方法?右边呢?

  ②在两道题的计算中同学们都想到了把除法转化成乘法来做,请观察一下,左边这道算式,在转化的前后什么变了,什么没变?怎么变的?

  ③师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!

  小组活动,说算法。

  ④师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。

  出示:分数除以整数,等于分数乘这个整数的倒数。

  还有需要注意的地方吗?

  生:有,除数不能为0。

  师:谁能把分数除以整数的计算法则用自己的话来说一说?

  完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。

  ⑥那象这样的分数除以整数的题目在计算时要注意些什么?

  生:要约分!结果最简。除号要变成乘号!

  三、巩固练习

  学生独立完成

  四、课堂小结

  1、这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)

  板书设计:

  分数除以整数

小学数学分数除法教案13

  教学目标

  1.通过比较,进一步弄清求一个数的几分之几是多少的乘法应用题和相应的列方程解的应用题的数量关系之间的内在联系,解题思路,解题方法的联系和区别.

  2.能正确熟练地解答稍复杂的分数应用题.

  3.培养学生分析问题和解决问题的能力.

  教学重点

  明确分数乘、除法应用题的'联系和区别.

  教学难点

  明确分数乘、除法应用题的联系和区别.

  教学过程

  一、启发谈话,激发兴趣.

  在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答

  时易混淆.这节课我们就来一起对这两类应用题进行比较.通过比较弄清它们之间的联系与区别.

  二、学习新知

  (一)出示例8的4个小题.

  1.学校有20个足球,篮球比足球多 ,篮球有多少个?

  2.学校有20个足球,足球比篮球多 ,篮球有多少个?

  3.学校有20个足球,篮球比足球少 ,篮球有多少个?

  4.学校有20个足球,足球比篮球少 ,篮球有多少个?

  (二)学生试做.

  1.第一题

  解法(一)

  解法(二)

  2.第二题

  解:设篮球有 个.

  解法(一)

  解法(二)

  解法(三)

  3.第三题

  解法(一)

  解法(二)

  4.第四题

  解:设篮球 个.

  解法(一)

  解法(二)

  解法(三)

  (三)比较区别

  1.比较1、3题.

  教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有

  什么不同的地方?

  (1)观察讨论.

  (2)全班交流.

  (3)师生归纳.

  这两道题都是把足球看作单位“1”,单位“1”的量是已知的,求篮球有多少个?

  就是求一个数的几分之几是多少?用乘法计算,不同的是(1)题篮球比足球多 ,而第(3)题是篮球比足球少 ,计算进一个要加上多的数,一个要减去少的个数.

  2.比较2、4题

  教师提问:这两道的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?

  (1)观察讨论.

  (2)全班交流.

  (3)师生归纳.

  这两道题都是把篮球看作单位“1”,而且单位“1”的量者是未知的,因此要设单位“1”的量为 ,根据一个数乘以分数的意义找出等量关系列方程解答.熟练之后也可以直接列除法算式解答.

  三、巩固练习.

  (一)请你根据算式补充不同的条件.

  学校有苹果树30棵,________________,桃树有多少棵,

  1. 2.

  3. 4.

  5. 6.

  (二)分析下面的数量关系,并列出算式或方程.

  1.校园里有柳树60棵,杨树比柳树多 ,杨树有多少棵?

  2.校园里有柳树60棵,杨树比柳树少 ,杨树有多少棵?

  3.校园里的杨树比柳树多 ,杨树有25棵,柳树有多少棵?

  4.校园里的柳树比杨树少 ,杨树有25棵,柳树有多少棵?

  四、归纳总结.

  今天我们通过对分数乘、除法应用题进行比较,找到了它们之间的联系和区别,这些对于我们正确解答分数应用题有很大帮助,大家一定要掌握好.

  五、板书设计

  数学教案-分数乘、除法应用题的对比

小学数学分数除法教案14

  教材分析

  这节课是在学习了“已知一个数的几分之几是多少,求这个数”的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。根据新旧知识的联系,抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。

  学情分析

  在已经学习了,已知一个数的几分之几是多少,求这个数是多少的问题的基础上,六年级学生能在一定的基础之上去拓展,去学习更新的知识。

  教学目标

  逆向思维,能根据具体的数量和分率,求出单位“1”的量。通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地用方程解答一些简单的实际问题。

  教学重点和难点

  1、 能确定单位“1”,理清题中的数量关系。

  2、利用题中的等量关系用方程解答。

  教学过程

  一、1、苹果的重量是X千克,梨的重量比苹果多5千克 。

  ⑴、梨的重量比苹果多了( )千克。

  ⑵、梨的'重量是( )千克。

  2、钢笔X元,比毛笔少了3元 。

  ⑴、钢笔比毛笔少了( )元。

  ⑵、毛笔是( )元。

  3、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

  二、新授课

  1、教学补充例题:水果店运来了一些苹果,已经卖了36千克 ,还剩下20千克,水果店运来了多少苹果?

  (1)卖了 是什么意思?应该把哪个数量看作单位“1”?

  (2)引导学生理解题意,画出线段图。

  (3)引导学生根据线段图,分析数量关系式:运来苹果的重量-卖了的重量=剩下的重量

  (4)指名列出方程。解:设运来苹果X千克。

  x-36=20

  2、教学例2

  (1)出示例题,理解题意。

  (2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的 (1+)

  (2)学生试画出线段图。

  (3)根据线段图,结合题中的分率句,列出数量关系式:

  航模小组人数+美术小组比航模小组多的人数=美术小组人数

  (4)根据等量关系式解答问题。

  解:设航模小组有人。

  (1+)=25

  =25÷

  =20

  答:略。

  三、小结

  1、今天学习了两道应用题,找出它们的共同点?(这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

  2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)

  四、练习

  练习十第4、12、14题。

小学数学分数除法教案15

  设计说明

  分数乘、除法及比是本册教材的重点内容,为突出知识间的内在联系,帮助学生形成知识网络,本节复习课在教学设计上主要关注以下几个方面:

  1.重视对分数乘、除法之间的关系及分数乘、除法计算方法的复习。

  教学中,结合教材内容,进一步强调分数乘、除法之间的关系,加强计算方法的指导,使学生在进一步理解并掌握分数除法是分数乘法的逆运算的同时,计算能力得到提高。

  2.重视对相关概念、性质及某些知识间相互关系的复习。

  教学中,把比的相关概念、倒数的相关概念、比的性质以及比与分数、除法的关系等作为重要的复习内容,结合教材相关习题进行全面、系统地复习,使学生加深对概念的理解,同时将比与分数、除法联系起来。

  3.重视对学生解决问题能力的培养。

  教学中,把用分数乘、除法解决问题和用比解决实际问题作为重要的复习内容之一,结合教材习题,重点分析题中的数量关系,使学生通过对比练习,更好地掌握解决分数乘、除法问题以及比的有关问题的思路,提高学生分析问题、解决问题的能力。

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙整理复习

  1.结合教材习题,复习分数乘、除法的意义,计算方法及一些特殊规律。(板书课题)

  (1)(出示课件)先想一想分数乘、除法应该怎样计算,再计算下面各题。

  ×=  ×=  ×18=

  ÷=  ÷=  21÷=

  ÷=  ÷=  ×=

  ①复习分数乘法的计算方法。

  (分子与分子相乘的积作分子,分母与分母相乘的积作分母。能约分的可以先约分再计算)

  ②复习分数除法的计算方法。

  [甲数除以乙数(0除外)等于甲数乘乙数的倒数]

  ③生独立计算。

  ④观察左边两列算式,你能发现乘法与除法之间有什么规律吗?

  (乘法与除法是互逆运算)

  (2)结合×和×18复习分数乘法的意义。

  (一个数乘分数表示求这个数的几分之几是多少;一个数乘整数表示求几个相同加数的和的简便运算,与整数乘法的意义相同)

  (3)结合÷和21÷复习分数除法的意义。

  (分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算)

  (4)复习分数四则混合运算。

  ①分数四则混合运算的.运算顺序是怎样的?

  (与整数四则混合运算的运算顺序相同)

  ②下面各题怎样简便就怎样算,并说一说算理。

  +++

  15×

  +3÷

  3.7×+1.3÷

  ÷

  0.5×

  2.复习倒数的意义及相关知识。

  (1)什么叫倒数?0为什么没有倒数?

  (乘积是1的两个数互为倒数。因为0和任何数相乘都等于0,所以0没有倒数)

  (2)写出下面各数的倒数。

  5    1

  (3)判断下面的说法是否正确。

  ①一个真分数的倒数一定比这个真分数大。(  )

  ②一个数乘分数的积一定比原来的数小。(  )

  ③一个数除以分数的商一定比原来的数大。(  )

  3.复习比的意义及相关知识。

  (1)(出示课件)说出下面每个比的前项、后项。

  2∶5    0.6∶0.3

  (2)结合上题,复习比的意义及比的各部分名称。

  (两个数相除又叫做两个数的比,比号前面的数叫做比的前项,比号后面的数叫做比的后项)

  (3)复习比值的意义及求法。

  (比的前项除以比的后项,所得的商叫做比值)

  (4)复习比与分数、除法的关系。

  (根据学生的回答进行对比复习。比的前项相当于分数的分子、除法中的被除数;比号相当于分数的分数线、除法中的除号;比的后项相当于分数的分母、除法中的除数;比值相当于分数的分数值、除法中的商)

【小学数学分数除法教案】相关文章:

《分数除法》数学教案01-02

分数与除法教案12-15

分数除法教案10-27

《分数与除法 》教案03-08

分数与除法的教案03-05

《分数除法》教案02-23

《分数除法》数学教案15篇02-06

《分数除法练习》教案09-09

人教版分数除法教案10-27