- 相关推荐
反比例函数教案20篇
作为一无名无私奉献的教育工作者,就难以避免地要准备教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。我们该怎么去写教案呢?下面是小编整理的反比例函数教案,希望对大家有所帮助。
反比例函数教案1
教学目标
(1)进一步体验现实生活与反比例函数的关系。
(2)能解决确定反比例函数中常数志值的实际问题。
(3)会处理涉及不等关系的实际问题。
(4)继续培养学生的交流与合作能力。重点:用反比例函数知识解决实际问题。
难点:如何从实际问题中抽象出数学问题,建立数学模型,用数学知识解决实际问题。教学过程
1、引入新课
上节课我们学习了实际问题与反比例函数,使我们认识到了反比例函数在现实生活中的实际存在。今天我们将继续学习这一部分内容,请看例1(投影出课本第50页例2)。例1码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间。轮船到达目的地后开始卸货,卸货速度v(吨/天)与卸货时间t(天)之间有怎样的关系由于紧急情况,船上货物必须在不超过5日内卸载完毕,那么每天至少卸货多少吨
2、提出问题、解决问题
(1)审完题后,你的切入点是什么,
由题意知:船上载物重是30×8=240吨,这是一个不变量,也就是在这个卸货过程中的`常量,所以根据卸货速度×卸货天数=货物重量,可以得到v与t的函数关系即vt=240,v=240,所以v是t的反比例函数,且t>0.t
(2)你们再回忆一下,今天求出的反比例函数与昨天求出的反比例函数在思路上有什么不同(昨天求出的反比例函数,常数k是直接知道的,今天要先确定常数k)
(3)明确了问题的区别,那么第二问怎样解决
根据反比例函数v=240(t>0),当t=5时,v=48。即每天至少要48吨。这样做的答t
案是不错的,这里请同学们再仔细看一下第二问,你有什么想法。实际上这里是不等式关系,5日内完成,可以这样化简t=240/v,0 3、巩固练习 例2某蓄水池的排水管道每小时排水8 m3,6 h可将满池水全部排空。 (1)蓄水池的容积是多少 (2)如果增加排水管,使每时的排水量达到q(m3),将满池水排空所需时间为t(h),求q与t之间的函数关系式。 (3)如果准备在5 h内将满池水排空,那么每小时排水量至少为多少 (4)已知排水管的最大排水量为每时12 m3,那么最少多长时间可将满池水全部排空 这个巩固练习前三问与例题类似,设置第四问是为了与第一堂课相衔接,使学生学会将函数关系式变形。授课时,教师要对第四问进行细致分析。由学生板书,师生分析,为小结作准备。 4、小结让学生以小组为单位进行合作交流,总结出本节课的收获与困惑,而后师生共同得出结论: (1)学习了反比例函数的应用。 (2)确定反比例函数时,先根据题意求出走,而后根据已有知识得出反比例函数。 (3)求“至少”“最多”值时,可根据函数的性质得到。 5、作业设计①必做题: (1)课本第61页第2题。 (2)某打印店要完成一批电脑打字任务,每天完成75页,需8天,设每天完成的页数y,所需天数x。问y与x是何种函数关系若要求在5天内完成任务,每天至少要完成几页 【学习目标】 1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。 2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系。 3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用。 【学习重点】 理解反比例函数的意义,确定反比例函数的解析式。 【学习难点】 反比例函数的解析式的确定。 【学法指导】 自主、合作、探究 教学互动设计 【自主学习,基础过关】 一、自主学习: (一)复习巩固 1.在一个变化的过程中,如果有两个变量x和y,当x在其取值范围内任意取一个值时,y,则称x为,y叫x的. 2.一次函数的解析式是:;当时,称为正比例函数. 3.一条直线经过点(2,3)、(4,7),求该直线的解析式. 以上这种求函数解析式的方法叫: (二)自主探究 提出问题:下列问题中,变量间的对应关?可用怎样的函数关系式表示? 1.如图K-3-8,已知反比例函数的图象经过三个点A(-4,-3),B(2m,y1),C(6m,y2),其中m>0. (1)当y1-y2=4时,求m的值; (2)过点B,C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若△PBD的面积是8,请写出点P的坐标(不需要写解答过程). 26.1.2反比例函数的图象和性质:课文练习 1.下面关于反比例函数y=-3x与y=3x的说法中,不正确的`是( ) A.其中一个函数的图象可由另一个函数的图象沿x轴或y轴翻折“复印”得到[ B.它们的图象都是轴对称图形 C.它们的图象都是中心对称图形 D.当x>0时,两个函数的函数值都随自变量的增大而增大 教学目标: 1、借助正比例的意义理解反比例的意义,能根据反比例的意义正确判断两种量是否成反比例。 2、在小组合作学习过程中,掌握合作学习技能,体验合作学习的快乐。 教学过程: 一、创设情境,明确问题 同学们,昨天老师去幼儿园接小朋友,看见幼儿园的老师正在给小朋友们分饼干,想知道他们是怎么分的吗?我们一起去看一看: 人数(人) 1 2 3 4 5 块数(块) 3 6 9 12 15 每人分的块数(块) 3 3 3 3 3 仔细观察,从这个表中,你知道了什么?你知道表中的哪两种量成正比例吗?(说明理由) 说一说成正比例的两个量的变化规律。 师小明的妈妈要去银行换一些零钱,请你帮忙算一算,各换多少张: 面值(元) 1 2 5 10 20 张数(张) 20 总钱数(元) 二、探索新知,寻求规律 1、独立思考:出示表格,让学生自己观察,提出问题并解决问题。 2、小组合作,交流探讨问题。 要求:认真听取别人的意见,详细说明自己的观点,如果有不懂的地方要虚心求助,最重要的是要控制好自己的言行,小组长要协调好本组的合作过程。 3、汇报交流,发现规律。 4、教师小结,明确概念,呈现课题。 5、在理解概念的基础上增加记忆。 三、理解应用,巩固新知。 1、给车棚的地面铺上水泥砖,每块水泥砖的面积与所需数量如下: 没块水泥砖的面积(平方厘米) 500 400 300 数量(块) 600 750 1000 每块水泥砖的面积与所需数量是否成反比例?为什么? 2、下表中x和y两个量成反比例,请把表格填写完整。 x 2 40 y 5 0.1 3、判断下面每题中的两种量是否成反比例,并说明理由。 (1)全班的人数一定,每组的.人数和组数。 (2)圆柱的体积一定,圆柱的底面积和高。 (3)书的总页数一定,已经看的页数和未看的页数。 (4)圆柱的侧面积一定,它的底面周长和高。 (5)、六(1)班学生的出席人数与缺席人数。 4、下面各题中的两种量是不是成比例?如果成比 例,成什么比例? (1)、订阅《小学生天地》的份数和总钱数。 (2)、小新跳高的高度与他的身高。 (3)、平行四边形的面积一定,底和高。 (4)、正方行的边长与它的周长。 (5)、三角形的面积一定,底和高。 5、生活中还有哪些成反比例关系的量? 四、课堂总结,拓展延伸 1、这节课学会了什么知识?反比例的意义是什么? 2、这节课你与小组同学合作的怎么样?以后应该怎么做? 教学目标 知识与技能:1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。 2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。 3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。 过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力. 情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。 教学重点 教学难点 1) 重点:画反比例函数图象并认识图象的特点. 2)难点:画反比例函数图象. 教学关键 教师画图中要规范,为学生树立一个可以学习的模板 教学方法 激发诱导,探索交流,讲练结合三位一体的教学方式 教学手段 教师画图,学生模仿 教具 三角板,小黑板 学法 学生动手,动眼,动耳,采用自主,合作,探究的学习方法 教学过程 (包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置) 内 容 设计意图 一:课前检测: 1.什么叫做反比例函数; (一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k0)的形式,那么称y是x的反比例函数。) 2.反比例函数的定义中需要注意什么? (1)k为常数,k0 (2)从y= 中可知x作为分母,所以x不能为零. 二:激发兴趣 导入新课 问题1:对于一次函数 y = kx + b ( k 0 )的图象与性质,我们是如何研究的? y=kx+b y=kx K0 一、二、三 一、三 b0 一、三、四 K0 一、二、四 二、四 b0 二、三、四 问题2:对于反比例函数 y=k/x ( k是常数,k 0 ),我们能否象一次函数那样进行研究呢? 可以 问题3:画图象的步骤有哪些呢? (1)列表 (2)描点 (3)连线 (教学片断: 师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。 生:我知道反比例函数来源于生活,生活中的许多问题都属于反比例函数问题,例如,在匀速运动中当路程一定时,且路程不等于零,则速度与时间成反比例函数关系。 生:我知道反比例函数的解析式为 且k不等于0 生:我知道反比例函数的图象是曲线。 师:同学们说的都很好,关于反比例函数,相信大家还会知道一些,今天我们先讨论到这里.现在大家思考一个问题,我们在研究一次函数时研究完解析式后,研究的是函数图象,那么对于反比例函数我们接下来该研究什么呢? 生:该研究反比例函数图象和性质了。 师:现在给大家几分钟的时间探讨一下反比例函数图象该怎么画? 三:探求新知 学生思考、交流、回答。 提问:你能画出 的图象吗? 学生动手画图,相互观摩。 (1) 列表(取值的特殊与有效性) x -8 -4 -2 -1 -1/2 1/2 1 2 4 8 (2)描点(描点的准确) (3)连线(注意光滑曲线) 议一议 (1)你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。 (2)如果在列表时所选取的数值不同,那么图象的形状是否相同? (3)连接时能否连成折线?为什么必须用光滑的曲线连接各点? (4)曲线的发展趋势如何? 曲线无限接近坐标轴但不与坐标轴相交 学生先分四人小组进行讨论,而后小组汇报 做一做 作反比例函数 的图象。 学生动手画图,相互观摩。 想一想 观察 和 的图象,它们有什么相同点和不同点? 学生小组讨论,弄清上述两个图象的异同点 相同点:(1)图象分别都是由两支曲线组成(2)都不与坐标轴相交(3)都是轴对称图形(y=x、y=-x)和中心对称图形(对称中心(0,0)即坐标原点) 不同点:第一个图象位于一、三象限;第二个图象位于二、四象限 四:归纳与概括 反比例函数 y = 有下列性质:反比例函数的图象y = 是由两支曲线组成的。 (1) 当 k0 时,两支曲线分别位于第___、___象限, (2) 当 k0 时,两支曲线分别位于第___、___象限. 五:课堂练习 (1) (2)反比例函数 的图象是________,过点( ,____),其图象分布在_ __象限; 六:形成性检测 (1)已知函数 的图象分布在第二、四象限内,则 的取值范围是_________ (2)若ab0,则函数 与 在同一坐标系内的图象大致可能是下图中的 ( ) (A) (B) (C) (D) (3)画 和 的图象 七:反馈拓展 在同一坐标系中作出函数y=2/x与函数y=x-1的图象,并利用图象求它们的交点坐标. 八:作业布置 (1) 作反比例函数y=2/x,y=4/x,y=6/x的图象 (2) 习题5.2.1 (3)预习下一节 反比例函数的图象与性质II 复习上节主要内容 (3分钟) (5分钟) 运用类比研究一次函数性质的方法,来研究反比例函数图象与性质 由于初中学生属于义务教育阶段,没有经过入学选拔,所以两极分化比较严重,上面提出的问题带有一定的开放性,面向各层次的学生,使不同层次的学生都有一定的问题可答,从而激发起不同层次学生的学习积极性。 数学教学重要目的之一是使学生学会学习,利用这个问题可以使学生学会寻找研究的方向,会提出研究的课题,提高学习的能力。 数学学习活动是学生对自己头脑中已有知识的重新建构,所以利用学生头脑中已有的一次函数图象与性质,及研究一次函数图象与性质的方法,创设问题情境,可以激发学习研究的热情,点燃学生思维的火花,并使学生知道如何研究新问题,使学生在探究过程中实现知识的迁移,形成新的认知结构。 (12分钟) 引导学生正确画出反比例函数图象,并能归纳反比例函数图象的`有关性质. 在画第一个图象时,教师要在黑板上用三角板一步一步的示范,在重要地方再重点强调,直到整个图象的完成。只有以身示范,同学学习才有样可依,有了正确标准的样板,学生学习也变得容易。这样可以培养学生严谨与严密的做题步骤以及做题的规范性。 注:(1)x取绝对值相等符号相反的数值 (2) x取值要尽可能多,而且有代表性 (3)连线时用光滑曲线从小到大依次连接 (4)图象不与坐标轴相交 在此学生若是回答图象是轴对称图象或者中心对称图象都要予以肯定,这些内容留给学生课下探讨,并鼓励提出问题的学生继续探索不要放弃。 (3分钟) 此时图象由学生仿照第一个在下边自己独立画出,并且监督学生,在有学生画的不对的地方及时指出,并使其改正后鼓励。最后在黑板上画出正确的图象,使学生自己画的图象与黑板对比。 (5分钟) 活动效果及注意事项 学生初次作非线性函数的图象,在作图过程中应给学生留有思考和交流的时间;连线必须是光滑的曲线 (4分钟) 培养学生归纳,语言表达能力 此中注意分类讨论思想的应用 巩固反比例函数图象性质 (2分钟) 与新课较接近的简化检测可以再次回顾所学内容,以及内容重点。这类题多为口算或口答,题目简单不过所学内容可以全部体现。 (5分钟) 这类练习要求动笔计算或者画图,有一定难度,可以深化所学内容。 (4分钟) 此题既是对函数图象画法的复习又是对方程求解的深化。其中蕴含了数形结合思想。 (1分钟) 巩固作反比例函数图象的步骤,预习下一节课内容 教学反思与检讨: 本节课通过学生自主探索,合作交流,自主画图,以认知规律为主线,以发展能力为目标,以从直观感受到分析归纳为手段,培养学生的合情推理能力和积极的情感态度,促进良好的数学观的形成。培养了学生的抽象思维能力,同时也向学生渗透了归纳类比,数形结合以及分类讨论的数学思想方法。 由于此节课是动手画图,限于器材以及教学设备,图象显示不能用几何画板和投影仪,不过一笔一笔的教学生一个范例,既可给学生思考也可有学习的空间。 在由图象获取性质的时候有一些不足,以后教课时要注意引导,使学生较快获得有效信息,从而归纳出要得到的性质和结论。在这节课要多强调光滑曲线以及画法。 反比例函数的图象与性质 一:画出 的图象 (1)列表(取值的特殊与有效性) x -8 -4 -2 -1 -1/2 1/2 1 2 4 8 (2)描点(描点的准确) (3)连线(注意光滑曲线) 注:(1)x取绝对值相等符号相反的数值 (2)x取值要尽可能多,而且有代表性 三:练习 (3)连线时用光滑曲线从小到大依次连接 (4)图象不与坐标轴相交 二:反比例函数的图象y = 是由两支曲线组成的。 (1) 当 k0 时,两支曲线分别位于第一、三象限, (2) 当 k0 时,两支曲线分别位于第二、四象限. 教学目标: 1.能运用反比例函数的相关知识分析和解决一些简单的实际问题。 2.在解决实际问题的过程中,进一步体会和认识反比例函数是刻 画现实世界中数量关系的一种数学模型。 教学重点运用反比例函数解决实际问题 教学难点运用反比例函数解决实际问题 教学过程: 一、情景创设 引例:小丽是一个近视眼,整天眼镜不离鼻子,但自己一直不理解自己的眼镜配制的原理,很是苦闷,近来她了解到近视眼镜的'度数y(度)与镜片的焦距为x(m)成反比例,并请教师傅了解到自己400度的近视眼镜镜片的焦距为0.2m,可惜她不知道反比例函数的概念,所以她写不出y与x的函数关系式,我们大家正好学过反比例函数了,谁能帮助她解决这个问题呢? 反比例函数在生活、生产实际中也有着广泛的应用。 例如:在矩形中S一定,a和b之间的关系?你能举例吗? 二、例题精析 例1、见课本73页 例2、见课本74页 例3、某气球内充满一定质量的气体,当温度不变时,气球内气体的气压p(千帕)是气球体积V(米3)的反比例函数(1)写出这个函数解析式(2)当气球的体积为0.8m3时,气球的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积不小于多少立方米? 四、课堂练习课本P74练习1、2题 五、课堂小结反比例函数的应用 六、课堂作业课本P75习题9.3第1、2题 七、教学反思 更多初二数学教案,请点击 教学目标: 1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题 2、能根据实际问题中的条件确定反比例函数的解析式。 3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。 教学重点、难点: 重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题 难点:根据实际问题中的条件确定反比例函数的解析式 教学过程: 一、情景创设: 为了预防“非典”,某学校对教室采用药熏消毒法进行消毒, 已知药物燃烧时,室内每立方米空气中的含药量(g)与时间x(in)成正比例.药物燃烧后,与x成反比例(如图所示),现测得药物8in燃毕,此时室内空气中每立方米的含药量为6g,请根据题中所提供的信息,解答下列问题: (1)药物燃烧时,关于x 的函数关系式为: ________, 自变量x 的'取值范围是:_______,药物燃烧后关于x的函数关系式为_______. (2)研究表明,当空气中每立方米的含药量低于1.6g时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室; (3)研究表明,当空气中每立方米的含药量不低于3g且持续时间不低于10in时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么? 二、新授: 例1、小明将一篇24000字的社会调查报告录入电脑,打印成文。 (1)如果小明以每分种120字的速度录入,他需要多少时间才能完成录入任务? (2)录入文字的速度v(字/in)与完成录入的时间t(in)有怎样的函数关系? (3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字? 例2某自来水公司计划新建一个容积为 的长方形蓄水池。 (1)蓄水池的底部S 与其深度 有怎样的函数关系? (2)如果蓄水池的深度设计为5,那么蓄水池的底面积应为多少平方米? (3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100和60,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数) 三、课堂练习 1、一定质量的氧气,它的密度 (g/3)是它的体积V( 3) 的反比例函数, 当V=103时,=1.43g/3. (1)求与V的函数关系式;(2)求当V=23时求氧气的密度. 2、某地上年度电价为0.8元&nt;/&nt;度,年用电量为1亿度.本年度计划将电价调至0.55元至0.75元之间.经测算,若电价调至x元,则本年度新增用电量(亿度)与(x-0.4)(元)成反比例,当x=0.65时,=-0.8. (1)求与x之间的函数关系式; (2)若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%? [收益=(实际电价-成本价)×(用电量)] 3、如图,矩形ABCD中,AB=6,AD=8,点P在BC边上移动(不与点B、C重合),设PA=x,点D到PA的距离DE=.求与x之间的函数关系式及自变量x的取值范围. 四、小结 五、作业 30.3——1、2、3 教学设计思路 由对现实问题的讨论抽象出反比例函数的概念,通过对问题的解决进一步明确:1.反比例函数的意义;2.反比例函数的概念;3.反比例函数的.一般形式。 教学目标 知识与技能 1.从现实情境和已有的知识、经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。 2.经历抽象反比例函数概念的过程,领会反比例函数的意义,表述反比例函数的概念。 过程与方法 1.经历对两个变量之间相依关系的讨论,培养辩证唯物主义观点。 2.经历抽象反比例函数概念的过程,发展抽象思维能力,提高数学化意识。 情感态度与价值观 1.认识到数学知识是有联系的,逐步感受数学内容的系统性; 2.通过分组讨论,培养合作交流意识和探索精神。 教学重点和难点 理解和领会反比例函数的概念。 教学难点 领悟反比例函数的概念。 教学方法 启发引导、分组讨论 课时安排 1课时 教学媒体 课件 教学过程设计 复习引入 1.什么叫一次函数?一次函数的一般形式是怎样的?什么叫正比例函数?它与算术中的正比例有怎样的关系? 2.在上一学段,我们研究了现实生活中成反比例的两个量 第一课时 教学设计思想 本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。接下来主要讨论了反比例函数在体积、面积这样的实际问题中的应用。分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。 教学目标 知识与技能 1.能灵活列反比例函数表达式解决一些实际问题。 2.能综合利用几何、方程、反比例函数的知识解决一些实际问题。 过程与方法 1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。 2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。 情感态度与价值观 体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。 教学重难点 重点:掌握从实际问题中建构反比例函数模型。 难点:从实际问题中寻找变量之间的'关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。 教学方法 启发引导、合作探究 教学媒体 课件 教学过程设计 (一)创设问题情境,引入新课 [师]有关反比例函数的表达式,图像的特征我们都研究过了,那么,我们学习它们的目的是什么呢? [生]是为了应用。 [师]很好。学习的目的是为了用学到的知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。 问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。 教学目标 (一)教学知识点 1.进一步巩固作反比例函数的图象. 2.逐步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质. (二)能力训练要求 1.通过画反比例函数图象,训练学生的作图能力. 2.通过从图象中获取信息,训练学生的识图能力. 3.通过对图象性质的研究,训练学生的探索能力和语言组织能力. (三)情感与价值观要求 让学生积极投身于数学学习活动中,有助于培养他们的好奇心与求知欲.经过自己的'努力得出的结论,不仅使他们记忆犹新,还能建立自信心.由学生自己思考再经过合作交流完成的数学活动,不仅能使学生学到知识,还能使他们互相增进友谊. 教学重点 通过观察图象,归纳概括反比例函数图象的共同特征,探索反比例函数的主要性质. 教学难点 从反比例函数的图象中归纳总结反比例函数的主要性质. 教学方法 教师引导学生类推归纳概括学习法. 教具准备 投影片三张 第一张:(记作5.2.2A) 第二张:(记作5.2.2B) 第三张:(记作5.2.2C) 教学过程 Ⅰ.创设问题情境,引入新课 [师]上节课我们学习了画反比例函数的图象,并通过图象总结出当k0时,函数图象的两个分支分别位于第一、三象限内;当k0时,函数图象的两个分支分别位于第二、四象限内.并讨论了反比例函数 一、背景分析 1.对教材的分析 本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。 本节课前一课时是在具体情境中领会反比例函数的意义和概念。函数的性质蕴涵于概念之中,对反比例函数性质的探索是对其内在规定性的的认识,也是对函数的概念的深化。同时,本节课也是下一节课《反比例函数的应用》的基础,有了本节课的知识储备,便于学生利用函数的观点来处理问题和解释问题。 传统教材在内容和编写意图的比较:传统教材里反比例函数的内容仅有一节,新教材里反比例函数的内容增加至一章。本节课中的作函数图象的要求在新旧教材中并不一样,旧教材对画图只是一带而过,而新教材中让学生反复作反比例函数的图象,为下一步性质的探索打下良好的基础。因为在学生进行函数的列表、描点作图是活动中,就已经开始了对反比例函数性质的探索,而且通过对函数的三种表示方式的整和,逐步形成对函数概念的整体性认识。在旧教材中对反比例函数性质只是简单观察以后,由老师讲解得到,但是在新教材中注重从操作、观察、概括和交流这些数学活动中得到性质结论,从而逐步提高从函数图象中获取信息的能力。这也充分体现了重视获取知识过程体验的新课标的精神。 (1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。 (2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。 (3)难点:探索并掌握反比例函数的主要性质。 2、对学情的分析 九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用z+z智能教育平台进行教学,比较形象,便于学生接受。 二、教学过程 一、忆一忆 师:同学们还记得我们在学习一次函数时,是怎么作出一次函数图象的吗?一次函数的图象是什么图形? 生:作一次函数的图象要采用以下几个步骤: (1)列表 (2)描点 (3)连线。 生乙:一次函数的图象是一条直线。 师:大家说的很好,看来大家对过去的知识掌握的很牢固,那么同学们想一下,y=4/x是什么函数? 生:反比例函数。 师:你们能作出它的图象吗? 生:可以。 点评:复习旧知识,让学生感受到新旧知识的联系,并为后面的作反比例函数的图象做好准备。 二、作图象,试比较 师:请填写电脑上的表格,并开始在坐标纸上描点,连线。 师:再按照上述方法作y=-4/x的图象。 (学生动手操作) 师:下面大家分小组讨论:对照你们所作出的两个函数图象,找出它们的相同点与不同点。 (学生讨论交流,教师参与) 师:讨论结束,下面哪个小组的同学说说你们的看法? 生1:它们的图象都是由两支曲线组成的。 生2:y=4/x的图象的两条曲线分布在一、三象限内,而y=-4/x的图象的两支曲线分布在二、四象限内。 点评:这里让学生自己上台操作,既培养了学生的'动手能力,又可以激发学生学好数学的兴趣。 三、细观察,找规律 师:大家都说得很好,下面我们一起观察反比例函数y=k/x的图象,当k的发值生变化时,函数的图象发生了怎样的变化,并分小组讨论有什么规律。 (展示图象,让学生观察y=k/x的图象,按下动画按钮,在运动中观察值的变化与函数的图象变化之间的关系,并与同学们充分讨论) 师:请同学们谈一谈刚才讨论的结果。 生:我发现函数图象的变化与k的值有关:当k>0时,在每一象限内,y随x的增大而减小,当k<0时,在每一象限内,y随x的增大而增大。 师:看来大家都经过了认真的思考和讨论,对规律总结的也比较完整,下面我们一起把刚才两个环节的知识点一起总结一下。 (1)反比例函数y=k/x的图象是由两支曲线所组成的。 (2)当k>0时,两支曲线分别在一、三象限;当k<0时,两支曲线分别在二、四象限。 (3)当k>0时,在每一象限内,y随x的增大而减小,当k<0时,在每一象限内,y随x的增大而增大。 师:如果我们将反比例函数的图象绕原点旋转180后,你会发现什么现象?这说明了什么问题? (由学生在电脑上进行操作) 生:我发现旋转后的图象与原图象完全重合了,这说明反比例函数的图象是一个中心对称图形。 师:大家做得很好。那么,如果我们在图象上任取a、b两点,经过这两点分别作轴、轴的垂线,与坐标轴围成的矩形面积分别为s1、s2,观察两个矩形面积的变化情况,并找出其中的变化规律。 题目: (1)拖动k,使k变化,观察k不断变化过程中,矩形面积的变化情况,讨论得出结论。 (2)拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。 生:我们发现,在同一个反比例函数中,不管k值怎么变化,矩形的面积始终不变。 师:大家的观察很仔细,总结得也很正确。 点评:在这个环节中,既让学生动手操作,又让他们分组交流,这样既培养了他们的动手能力,又增强了他们的团结合作的意识。结论主要有学生来发现,体现了新课程理论的精神。 四、用规律,练一练 1、课本137页随堂练习1 生:第一幅图是y=-2/x的图象,因为在这里的k<0,双曲线应在第二、四象限。 2、下列函数中,其图象唯一、三象限的有哪几个?在其图象所在象限内,的值随的增大而增大的有哪几个? (1)y=1/(2x) (2)y=0.3/x (3)y=10/x (4)y=-7/(100x) 生:其中(1)(2)(3)的图象在一、三象限;(4)的图象在每一象限内,y随x的增大而增大。 五、想一想,谈收获 师:通过今天的学习,你有什么收获? 生甲:我今天知道了怎样画反比例函数的图象。 生乙:我今天知道了反比例函数的图象是由两支曲线所组成的。 生丙:我还懂得了:当k>0时,图象分布在一、三象限,在每一个象限内,y随x的增大而减小;当k<0时,图象分布在二、四象限,在每一个象限内,y随x的增大而增大 生丁:我还能用反比例函数的相关性质解题。 师:看来大家今天学到了不少知识,只要大家能保持这种对数学的热情和勇于挑战的精神,在数学上一定会有所收获的。 总评:本节课很好的反映了新课程的一些理念,首先,就是将数学教学与多媒体教学进行了很好的整合,尤其是采用了z+z智能教育平台进行教学,在本节课从进入课堂到结束,始终有多媒体教学的参与,如在讲解反比例函数的性质时运用多媒体展示可以给学生以直观的感受,并给学生留下深刻的印象,教师也能熟练地操作电脑,可以看出教师扎实的基本功。其次,在本节课的教学中,教师将学习的主动权交给学生,课堂始终在学生自主探索、合作交流的气氛中进行,如在得出反比例函数的性质时,就在小组内进行了广泛交流,由学生自己去探索,去发现新知识,这样可以激发学生求知的欲望,达到事半功倍的目的。同时教师也主动的参与进去,把自己也当成了教室里的一员,真正体现了新课程的理念。 教学反思: 本节课由于在课前进行了大量的准备工作,包括对教材的钻研、教学内容的设计、多媒体课件的制作、学生学情的了解,因此在教学中比较顺利,对重难点内容也有效的进行了突破,尤其是电脑的引入,极大的调动了学生的学习积极性。学生由于成了课堂的主人,所以在课堂上保持了高涨的热情,因此这堂课的效果也较好。 教学目标 使学生对反比例函数和反比例函数的图象意义加深理解. 教学重难点 重点:反比例函数的图象. 难点:利用反比例函数的图象解题. 教学过程 一、情境创设 反比例函数 解析式y=kx(k为常数,k≠0) 图象形状双曲线(以原点为对称中心) k>0位置一、三象限 增减性每一象限内,y随x的增大而减小 k<0位置二、四象限 增减性每一象限内,y随x的增大而增大 二、例题讲解 例1.如图是反比例函数的图象的一支。 (1)函数图象的'另一支在第几象限?试求常数m的取值范围; (2)点都在这个反比例函数的图象上,比较、、的大小 例2.如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是-2, 求:(1)一次函数的解析式; (2)△AOB的面积. 四、课堂练习 课本P70练习1、2题 五、课堂小结 1.反比例函数的图象. 2.反比例函数的性质. 六、课堂作业 课本P72/第5题 教学目标 1. 经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。 2. 理解反比例函数的概念,会列出实际问题的反比例函数关系式。 3. 使学生会画出反比例函数的图象。 4. 经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质。 教学重点 1、 使学生了解反比例函数的表达式,会画反比例函数图象 2、 使学生掌握反比例函数的图象性质 3、 利用反比例函数解题 教学难点 1、 列函数表达式 2、 反比例函数图象解题 教学过程 教师活动 一、作业检查与讲评 二、复习导入 1.什么是正比例函数? 我们知道当 (1) 当路程s一定,时间t与速度v成反比例,即vt=s(s是常数) (2) 当矩形面积一定时,长a和宽b成反比例,即ab=s(s是常数) 创设问题情境 问题1:小华的爸爸早晨骑自行车带小华到15千米外的镇上去赶集,回来时让小华乘坐公共汽车,用的时间少了。假设自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系。 分析 和其他实际问题一样,要探求两个变量之间的关系,就应先选用适当的符号表示变量,再根据题意列出相应的函数关系式. 设小华乘坐交通工具的速度是v千米/时,从家里到镇上的时间是t小时.因为在匀速运动中,时间=路程÷速度,所以 从这个关系式中发现: 1.路程一定时,时间t就是速度v的反比例函数.即速度增大了,时间变小;速度减小了,时间增大. 2.自变量v的取值是v>0. 问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.设它的一边长为x(米),求另一边的长y(米)与x的函数关系式. 分析 根据矩形面积可知 xy=24,即 从这个关系中发现: 1.当矩形的面积一定时,矩形的一边是另一边的反比例函数.即矩形的一边长增大了,则另一边减小;若一边减小了,则另一边增大; 2.自变量的取值是x>0. 三、新课讲解 上述两个函数都具有的形式,一般地,形如(k是常数,k≠0)的函数叫做反比例函数(proportional function). 说明 1.反比例函数与正比例函数定义相比较,本质上,正比例y=kx,即,k是常数,且k≠0;反比例函数,则xy=k,k是常数,且k≠0.可利用定义判断两个量x和y满足哪一种比例关系. 2.反比例函数的解析式又可以写成:( k是常数,k≠0). 3.要求出反比例函数的解析式,只要求出k即可. 实践应用 例1 下列函数关系中,哪些是反比例函数? (1)已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系; (2)压强p一定时,压力F与受力面积s的关系; (3)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系. (4)某乡粮食总产量为m吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x的函数关系式. 例2 当m为何值时,函数是反比例函数,并求出其函数解析式. 例3 将下列各题中y与x的函数关系与出来. (1),z与x成正比例; (2)y与z成反比例,z与3x成反比例; (3)y与2z成反比例,z与成正比例; 例4 已知y与x2成反比例,并且当x=3时,y=2.求x=1.5时y的值. 分析 因为y与 x2成反比例,所以设,再用待定系数法就可以求出k,进而再求出y的值. 例5 已知y=y1+y2, y1与x成正比例,y2与x2成反比例,且x=2与x=3时,y的值都等于19.求y与x间的函数关系式. 小结 一般地,形如(k是常数,k≠0)的函数叫做反比例函数(proportional function). 要求反比例函数的解析式,可通过待定系数法求出k值,即可确定. 练习2 1.分别写出下列问题中两个变量间的函数关系式,指出哪些是正比例函数,哪些是反比例函数,哪些既不是正比例函数也不是反比例函数? (1)小红一分钟可以制作2朵花,x分钟可以制作y朵花; (2)体积为100cm3的长方体,高为hcm时,底面积为Scm2; (3)用一根长50cm的铁丝弯成一个矩形,一边长为xcm时,面积为ycm2; (4)小李接到对长为100米的管道进行检修的任务,设每天能完成10米,x天后剩下的未检修的管道长为y米. 2.已知y与x-2成反比例,当x=4时,y=3,求当x=5时,y的值. 3.已知y=y1+y2, y1与成正比例,y2与x2成反比例.当x=1时,y=-12;当x=4时,y=7.(1)求y与x的函数关系式和x的取范围;(2)当x=时,求y的值. 4.已知一个长方体的体积是100立方厘米,它的长是ycm,宽是5cm,高是xcm. (1)写出用高表示长的函数式; (2)写出自变量x的取值范围; (3)当x=3cm时,求y的值. 5.试用描点作图法画出问题1中函数的图象. 上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线.那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质. 二、探究归纳 1.画出函数的图象. 解 1.列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值: 2.描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(-6,-1)、(-3,-2)、(-2,-3)等. 3.连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象. 上述图象,通常称为双曲线(hyperbola). 提问 这两条曲线会与x轴、y轴相交吗?为什么? 画出反比例函数的图象 1.这个函数的图象在哪两个象限?和函数的图象有什么不同? 2.反比例函数(k≠0)的图象在哪两个象限内?由什么确定? 3.联系一次函数的.性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律? 反比例函数有下列性质: (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少; (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加. 注 1.双曲线的两个分支与x轴和y轴没有交点; 2.双曲线的两个分支关于原点成中心对称. 以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义? 在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少. 在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小. 三、实践应用 例1 若反比例函数的图象在第二、四象限,求m的值. 分析 由反比例函数的定义可知: ,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值. 解 由题意,得 解得. 例2 已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx-k的图象经过的象限. 例3 已知反比例函数的图象过点(1,-2). (1)求这个函数的解析式,并画出图象; (2)若点A(-5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上? 例4 已知函数为反比例函数. (1)求m的值; (2)它的图象在第几象限内?在各象限内,y随x的增大如何变化? (3)当-3≤x≤时,求此函数的最大值和最小值. 例5 一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米. (1)写出用高表示长的函数关系式; (2)写出自变量x的取值范围; (3)画出函数的图象. 说明 由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支. 小结 本节课学习了画反比例函数的图象和探讨了反比例函数的性质. 1.反比例函数的图象是双曲线(hyperbola). 2.反比例函数有如下性质: (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少; (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加. 五、课堂练习 1.在同一直角坐标系中画出下列函数的图象: 2.已知y是x的反比例函数,且当x=3时,y=8,求: (1)y和x的函数关系式; (2)当时,y的值; (3)当x取何值时,? 3.若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值. 4.已知反比例函数经过点A(2,-m)和B(n,2n),求: (1)m和n的值; (2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0< x2,试比较y1和 y2的大小 四、课后作业布置 课后练习卷一份 六、课后教学反思 一、教学目标 1.利用反比例函数的知识分析、解决实际问题 2.渗透数形结合思想,提高学生用函数观点解决问题的能力 二、重点、难点 1.重点:利用反比例函数的知识分析、解决实际问题 2.难点:分析实际问题中的数量关系,正确写出函数解析式 3.难点的突破方法: 用函数观点解实际问题,一要搞清题目中的基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练掌握反比例函数的意义、图象和性质,特别是图象,要做到数形结合,这样有利于分析和解决问题。教学中要让学生领会这一解决实际问题的基本思路。 三、例题的意图分析 教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。 教材第58页的`例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。 补充例题一是为了巩固反比例函数的有关知识,二是为了提高学生从图象中读取信息的能力,掌握数形结合的思想方法,以便更好地解决实际问题 一、教学目标 1.使学生理解并掌握反比例函数的概念 2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式 3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想 二、重、难点 1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式 2.难点:理解反比例函数的概念 3.难点的突破方法: (1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解 (2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x≠0的.一切实数;看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k≠0),比较二者解析式的相同点和不同点。 (3)(k≠0)还可以写成(k≠0)或xy=k(k≠0)的形式 三、例题的意图分析 教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。 教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。 补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。 四、课堂引入 1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的? 2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的? 五、例习题分析 例1.见教材P47 分析:因为y是x的反比例函数,所以先设,再把x=2和y=6代入上式求出常数k,即利用了待定系数法确定函数解析式。 例1.(补充)下列等式中,哪些是反比例函数 (1)(2)(3)xy=21(4)(5)(6)(7)y=x-4 分析:根据反比例函数的定义,关键看上面各式能否改写成(k为常数,k≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是,分子不是常数,只有(2)、(3)、(5)能写成定义的形式 例2.(补充)当m取什么值时,函数是反比例函数? 分析:反比例函数(k≠0)的另一种表达式是(k≠0),后一种写法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误 知识技能目标 1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质; 2、利用反比例函数的图象解决有关问题。 过程性目标 1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质; 2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。 教学过程 一、创设情境 上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质。 二、探究归纳 1、画出函数的图象。 分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0。 解 1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值: 2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(—6,—1)、(—3,—2)、(—2,—3)等。 3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。 上述图象,通常称为双曲线(hyperbola)。 提问这两条曲线会与x轴、y轴相交吗?为什么? 学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。 学生讨论、交流以下问题,并将讨论、交流的结果回答问题。 1、这个函数的图象在哪两个象限?和函数的图象有什么不同? 2、反比例函数(k≠0)的图象在哪两个象限内?由什么确定? 3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的.增加,函数y将怎样变化?有什么规律? 反比例函数有下列性质: (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少; (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。 注 1、双曲线的两个分支与x轴和y轴没有交点; 2、双曲线的两个分支关于原点成中心对称。 以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义? 在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。 在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。 三、实践应用 例1若反比例函数的图象在第二、四象限,求m的值。 分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值。 解由题意,得解得。 例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx—k的图象经过的象限。 分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此k<0,而一次函数y=kx—k中,k<0,可知,图象过二、四象限,又—k>0,所以直线与y轴的交点在x轴的上方。 解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以k<0,所以一次函数y=kx—k的图象经过一、二、四象限。 例3已知反比例函数的图象过点(1,—2)。 (1)求这个函数的解析式,并画出图象; (2)若点A(—5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上? 分析(1)反比例函数的图象过点(1,—2),即当x=1时,y=—2。由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象; (2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上。 解(1)设:反比例函数的解析式为:(k≠0)。 而反比例函数的图象过点(1,—2),即当x=1时,y=—2。 所以,k=—2。 即反比例函数的解析式为:。 (2)点A(—5,m)在反比例函数图象上,所以, 点A的坐标为。 点A关于x轴的对称点不在这个图象上; 点A关于y轴的对称点不在这个图象上; 点A关于原点的对称点在这个图象上; 例4已知函数为反比例函数。 (1)求m的值; (2)它的图象在第几象限内?在各象限内,y随x的增大如何变化? (3)当—3≤x≤时,求此函数的最大值和最小值。 解(1)由反比例函数的定义可知:解得,m=—2。 (2)因为—2<0,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大。 (3)因为在第个象限内,y随x的增大而增大, 所以当x=时,y最大值=; 当x=—3时,y最小值=。 所以当—3≤x≤时,此函数的最大值为8,最小值为。 例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。 (1)写出用高表示长的函数关系式; (2)写出自变量x的取值范围; (3)画出函数的图象。 解(1)因为100=5xy,所以。 (2)x>0。 (3)图象如下: 说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。 四、交流反思 本节课学习了画反比例函数的图象和探讨了反比例函数的性质。 1、反比例函数的图象是双曲线(hyperbola)。 2、反比例函数有如下性质: (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少; (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。 五、检测反馈 1、在同一直角坐标系中画出下列函数的图象: (1);(2)。 2、已知y是x的反比例函数,且当x=3时,y=8,求: (1)y和x的函数关系式; (2)当时,y的值; (3)当x取何值时,? 3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。 4、已知反比例函数经过点A(2,—m)和B(n,2n),求: (1)m和n的值; (2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0 教学目标: 经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的 概念。 教学程序: 一、导入: 1、从现实情况和已有知识经验出发,讨论两个变量之间的相依关系,加强对函数概念的理解,导入反比例函数。 2 、U=IR,当U=220V时, (1)你能用含 R的代数式 表示I吗? (2)利用写出的关系式完成下表: R(Ω) 20 40 60 80 100 I(A) 当R越来越大时,I怎样 变化? 当R越来越小呢? ( 3)变量I是R的函数吗?为什么? 答:① I = UR ② 当R越来越大时,I越来越小,当R越来越小时,I越来越大。 ③变量I是R的函数 。当给定一 个R的值时,相应地就确定了一个I值,因此I是R的函数。 二、新授: 1、反比例函数的概念 一般地,如果两个变量x, y之间的关系可以表示成 y=kx (k为常数,k≠0)的`形式,那么称y是x的反比例函 数。 反比例函数的自变量x 不能为零。 2、做一做 一个矩形的 面积为20cm2,相邻两条边长分别为xcm和 ycm,那么变量y是变量x的 函数吗?是反比例函数吗? 解:y=20x ,是反比例函数。 三、课堂练习 : P133,12 四、作业: P133,习题5.1 1、2题 一、教学设计思路 1. 本节 课讲述内容为北师大版教材九年级下册第五章《反比例函数》 的第二节,也这一章的重点。本节课是在理解反比例 函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。 2. 对教材的分析 (1) 教学目标:进 一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对 函数进行认识上的`整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。 (2) 重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。 (3) 难点:探索并掌握反比例函数的主要性质。 二、教学过程 (一)作图象,试比较 1、提问: (1)=4/x 是什么函数?你会作反比例函数的图象吗? (2)作图的步骤是 怎样的(3)填写电脑上的表格,开始在坐标纸上描点连线。 2、按照上述方法作 =—4/x 的图象3、 对照你所作的两个函数图象,找一下它们的相同点和不同点。 (二)细观察,找规律 1、让学生观察函 数 =/x 的图象 ,按下动画按钮,在运动中观察值的变化与函数图象变化之间的关系,并与同学充分讨论有何规律。 2、演示反比例函数中心 对称的性质以及轴对称性质,显示反比例函数的两条对称轴。 3、让学生观察函数 =/x 的图象,观察过反比例函数上任意一 点作x轴和轴的垂线,观察其围成矩形的面积变化情况。 (1) 拖动,使变化,观察不断变化过程中,矩形面积的变化情况,讨论得出 结论。 (2) 拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。 (三)用规律,练一练 1、给出两个反比例函数的图象,判断哪一个是 =2/x 和 =—2/x 的图象。 2、判断一位同学画的反比例函数的图象是否正确。 3、下列函数中,其图象位于第一、三象限 的有哪几个?在其图象所在象限内,的值随x的增大而增 大的有哪几个? (四)想一想,作小结 (五)作业:课本137页第1题、141页第2题 一、教学目标 1.使学生理解并掌握反比例函数的概念 2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式 3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想 二、重、难点 1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式 2.难点:理解反比例函数的概念 3.难点的突破方法: (1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解 (2)注意引导学生对反比例函数概念的理解,看形式 ,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x0的一切实数;看函数y的取值范围,因为k0,且x0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k0),比较二者解析式的相同点和不同点。 (3) (k0)还可以写成 (k0)或xy=k(k0)的形式 三、例题的意图分析 教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的`模型思想。 教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的变化与对应的思想,特别是函数与自变量之间的单值对应关系。 补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。 教学任务分析 教学目标 知识技能 通过对“杠杆原理”等实际问题与反比例函数关系的探究,使学生能够从函数的观点来解决一些实际问题 数学思考 通过对实际问题中变量之间关系的分析,建立函数模型,运用已学过的反比例函数知识加以解决,体会数学建模思想和学以致用的数学理念 解决问题 分析实际问题中变量之间的关系,建立反比例函数模型解决问题,进一步运用函数的图像、性质挖掘杠杆原理中蕴涵的道理 情感态度 利用函数探索古希腊科学家阿基米德发现的“杠杆定律”,使学生的求知欲望得到激发,再通过自己所学知识解决了身边的问题,大大提高了学生学习数学的兴趣 重点 运用反比例函数解释生活中的一些规律、解决一些实际问题 难点 把实际问题利用反比例函数转化为数学问题加以解决 教学流程安排 活动流程图 活动内容和目的 活动1创设情境,引出问题 活动2分析解决问题 活动3从函数的观点进一步分析规律 活动4巩固练习 活动5课堂小结、布置作业 教师提出生活中遇到的难题,请学生帮助解决,激发学生的兴趣 与学生共同分析实际问题中的变量关系,引导学生利用反比例函数解决问题 引导学生追寻杠杆原理中蕴涵的规律,从反比例函数的图象、性质等角度挖掘 通过课堂练习,提高学生运用反比例函数解决实际问题的能力 归纳、总结所学,体会利用函数的观点解决实际问题 教学过程设计 问题与情境 师生行为 设计意图 活动1 如何打开这个未开封的奶粉桶呢?— 教师提出实际生活中的问题,学生提出解决办法,教师引出利用杠杆原理解决问题。 能否从数学角度探索杠杆原理中蕴涵的变量关系呢? 让学生了解到日常生活中存在着许多两个量之间具有反比例关系的例子,自然引入课题 活动2 展示问题1: 几位同学玩撬石头的游戏,已知阻力和阻力臂不变,分别是1200牛顿和0.5米,设动力为F,动力臂为。回答下列问题: (1)动力F与动力臂有怎样的函数关系? (2)小刚、小强、小健、小明分别选取了动力臂为为1米、1.5米、2米、3米的撬棍,你能得出他们各自撬动石头至少需要多大的力吗?从上述的运算中我们观察出什么规律? 不妨列表描点画出图象 (图象在第三象限会有吗?) 分析问题中变量间的关系 分析动力F与动力臂的关系,将撬石头的实际问题转化为反比例函数问题。由抽象到具体,验证几个具体的数值通过验证几个数值,进行列表描点,作出图象观察规律,,进一步从图象的变化趋势上解释规律 在数学课上引用一个物理力学的实际问题,一下子抓住了学生的猎奇心理,激发了他们的学习兴趣;最后落实到运用数学来解决,学生可以体会到数学的基础性和重要性,激发学生求知的热情 教师按照学生的认知规律有层次、有步骤地引导学生分析解决问题 活动3 从函数的观点进一步分析规律 (3)用反比例函数的性质解释:开启桶盖时用长的改锥还是短的改锥?在我们使用撬棍时,为什么动力臂越长就越省力?问题 (4)受条件限制,无法得知撬石头时的阻力,小刚选择了动力臂为1.2米的撬棍,用了500牛顿的力刚好撬动;小明身体瘦小,只有300牛顿的力量,他该选择动力臂为多少的撬棍才能撬动这块大石头呢? (5)地球重量的近似值为(即为阻力),假设阿基米德有500牛顿的力量,阻力臂为20xx千米,请你帮助阿基米德设计该用动力臂为多长的杠杆才能把地球撬动?利用反比例函数的变化规律解释实际生活中一些问题深入挖掘动力臂与动力F又有怎样的函数关系呢?待定系数法解决函数问题公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”: 阻力阻力臂=动力动力臂,他形象地说,“给我一个支点我可以把地球撬动” 从函数的角度深层次挖掘变量间的关系,在这一过程中学生逐渐建立运用运动变化的`观点解释一些现象,实现从静到动的转变举一反三,函数模型未变,但两个量的角色发生变化,深入探究,体会其中的变与不变的函数思想激发学生学习兴趣,培养科学探索精神 活动4 展示练习 市政府计划建设一项水利工程,工程需要运送的土石方总量为米,某运输公司承办了该项工程运送土方的任务。 (1)运输公司平均每天的工作量(单位:米3/天)与完成运送任务所需的时间(单位:天)之间具有怎样的函数关系? (2)这个运输公司有100辆卡车,每天一共可运送土石方立方米,则公司完成全部运输任务需要多长时间? (3)当公司以问题(2)中的速度工作了40天后,由于工程进度的需要,剩下的所有运输任务必须在50天内完成,公司至少需要再增加多少辆卡车才能按时完成任务?教师展示练习,学生认真审题、思考学生认真审题后自主探究学生建立了反比例函数关系后求值学生相互讨论,协作解决问题(3),请学生代表汇报他们讨论的结果,教师作适时、适当的引导和指导 提醒学生:应把较复杂的问题分解,将难点逐一击破,从不同的角度利用不同的方法解决问题 通过巩固练习,让学生进一步加深对反比例函数的运用和理解,更深层次体会建立反比例模型解决实际问题的思想,巩固和提高所学知识 给学生足够的时间和空间,给他们创造展示他们能力和所学知识的机会可从不同角度入手,培养学生从多角度审视、解决问题的能力 活动6 归纳、总结 作业:教科书习题17.2第6题 教师引导学生回忆、总结,教师予以补充 通过小结,使学生把所学知识进一步内化、系统化 教学目标:使学生对反比例函数和反比 例函数的图象意义加深理解。 教学重点:反比例函数 的应用 教学程序: 一、新授: 1、实例1:(1)用含S的代数式 表示P,P是 S的反比例函数吗?为什么? 答:P=600s (s0),P 是S的'反比例函数。 (2)、当木板面积为0.2 m2时,压强是多少? 答:P=3000Pa (3)、如果要求压强不超过6000Pa,木板的面积至少 要多少? 答:至少0.lm2。 (4)、在直角坐标系中,作出相应的函数 图象。 (5)、请利用图象(2)和(3)作出直观 解释,并与同伴进行交流。 二、做一做 1、(1)蓄电池的电 压为定值,使用此电源时,电流I(A)与电阻R()之间的函数关系如图5-8 所示。 (2)蓄电池的电压是多少?你以写出这一函数的表达式吗? 电压U=36V , I=60k 2、完成下表,并 回答问题,如果以蓄电池为电源的用电器限制电流不得超过10A,那么用电器的可变电阻应控制在什么范围内? R() 3 4 5 6 7 8 9 10 I(A ) 3、如图5-9,正比例函数y=k1x的图象与反比例函数y=60k 的图象相交于A、B两点,其中点A的坐标为(3 ,23 ) (1)分别写出这两个函 数的表达式; (2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流; 随堂练习: P145~146 1、2、3、4、5 作业:P146 习题5.4 1、2 【反比例函数教案】相关文章: 反比例函数教案01-15 反比例函数的意义教案01-23 《反比例》教案03-07 正弦函数、余弦函数图像教案02-25 《幂函数》教案11-04 《函数的应用》教案02-26 反比例的意义教案04-01 《对数函数》教案03-01 函数的最值教案02-26 反比例函数教案2
反比例函数教案3
反比例函数教案4
反比例函数教案5
反比例函数教案6
反比例函数教案7
反比例函数教案8
反比例函数教案9
反比例函数教案10
反比例函数教案11
反比例函数教案12
反比例函数教案13
反比例函数教案14
反比例函数教案15
反比例函数教案16
反比例函数教案17
反比例函数教案18
反比例函数教案19
反比例函数教案20