- 相关推荐
运算定律教案
作为一无名无私奉献的教育工作者,很有必要精心设计一份教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。怎样写教案才更能起到其作用呢?以下是小编为大家收集的运算定律教案,希望能够帮助到大家。
运算定律教案1
教学目标
1、通过猜测—验证—应用等环节引导学生探索并理解整数乘法运算定律对于小数同样适用。
2、能够正确的、合理的、灵活的运用乘法运算定律进行有关小数乘法的简便运算。
3、让学生相互交流、合作、体验成功的喜悦。
教学重难点
教学重点
探索、发现、理解整数乘法运算定律,在小数乘法中同样适用
教学难点
运用运算定律进行小数乘法的简便计算。
教学工具
课件
教学过程
一、创设情境
师:同学们,我们已经学习了整数乘法的一些运算定律,哪位同学说一说整数乘法的运算定律有哪些?
生:乘法交换律、乘法结合律和乘法分配律。
师:同学们,你们能用数字、字母或者符号来表示出这三个定律吗?
师:我们知道乘法运算定律在整数乘法中,可以使一些计算更简便了,那么在小数乘法中,这些运算定律是否也能运用?今天这节课我们就来研究这个问题。
二、探究新知
1、猜测
0.7×1.2○1.2×0.7
(0.8×0.5)×0.4○0.8×(0.5×0.4)
(2.4+3.6)×0.5○2.4×0.5+3.6×0.5
师:猜一猜,每一组算式它们有怎样的关系?(由于是猜测,学生出现的答案可能会不一样。)
2、验证(同桌合作)
通过计算学生发现每一组算式都相等。
师:仔细观察每一组算式,它们有什么特点?
生:第一组算式运用了乘法交换律,第二组算式运用了乘法结合律,第三组算式运用了乘法分配律。
3、举例验证
师:通过上面的`一组例子,能否就说明乘法运算定律在小数乘法中同样适用?
生:不能。
师:对,单纯的一组例子并没有说服力,我们需要多举几个例子进行验证。同学们你们能仿照第一组的例子,也写出三种这样的算式,并验证是否相等。
(学生动手写,让学生进行汇报,尽量让多个学生进行汇报,这样例子多了,结论更有说服力。)
学生汇报。(教师有目的的板书几组算式,让学生观察发现,乘法运算定律,在小数乘法中同样适用。)
师:小组同学相互交流,你能用一句话来概括你们的发现吗?(引导学生得出结论:整数乘法的运算定律在小数乘法中同样适用。)
4、应用
出示例7
师:同学们,通过我们的验证整数运算定律在小数中同样适用是正确的,但究竟怎样才能使计算简便呢?请同学们仔细观察下面两题,看看它们能不能用简便方法计算。
0.25×4.78×4 0.65×201
(1)让学生独立思考,然后尝试写在练习本上。
(2)指明学生板演。
(3)让学生说一说每一题运用了乘法的什么运算定律?
①0.25×4.78×4 ② 0.65×201
=0.25×4×4.78乘法交换律=0.65×(200+1)
=1×4.78 =0.65×200+0.65×1乘法分配律
=4.78 =130.65
师:第①题,为什么先让0.25和4相乘?
生:因为0.25和4相乘,正好得1,计算起来比较的简便。(使学生体会理解算前先观察题中有没有特殊的数,如果两个数的积是1、10、100、1000等等,运用运算定律先算,这样使计算简便。)
师:你人为第②小题,解题的关键是什么?(使学生体会到先把特殊的数进行分解,然后才能进行简算。)
生:把201分成200+1,用乘法分配律完成。
师:在小数乘法中,要使计算简便,我们应该注意什么?(启发学生思考,认真审题,要观察数的特点。)
(4)交流评价。
三、方法应用
师:刚才,我们运用了乘法的运算定律,使小数乘法简便了许多,下面请同学们再来看看下面两道题,怎样算合理简便。
16×1.25 (3+5)×0.8
(1)让学生独立做。
(2)小组内进行交流。
(3)汇报(体现算法多样化)
(4)评价总结。
四、梳理知识,总结升华
谈话:这节课你都获得了哪些知识?在本节课中你最大的收获是什么?
五、课堂检测
(一)、我会填。
2.5×(0.77×0.4)= × ×
6.1×3.6+3.9×3.6=( + )×
2.02×8.5= ×8.5+ ×8.5
(二)、我会选
0.31×2.5 - 0.24先算( )
A.加法
B.减法
C.乘法
3.6×4.5+3.6×5.5可以运用( )进行简算
A.乘法交换律
B.乘法结合律
C.乘法分配律
(三)、我会改,下面的计算对吗?把不对的改正过来。
50.4×1.9-1.8
=50.4×0.1
=5.04
3.76×0.25+25.8
=0.094+25.8
=25.894
(四)、用简便方法算下面各题
2.5×24 0.25×32×0.125
3.7×99 (4+0.4+0.04)×25
(五)、运用所学的知识解决实际问题。
学校举行文艺汇演,要分别订做一些合唱服和舞蹈服,如果平均每套用布1.8米,一共需要用布多少米?舞蹈服38套元套合唱服62套
六、布置作业
第13页练习三,第4题。
第14页练习三,第9题。
板书
整数乘法运算定律推广到小数
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
运算定律教案2
教学目标:
进一步掌握乘法运算定律,会根据不同算式的特征,正确灵活、合理选择运算定律进行简算,提高应用乘法运算定律进行简便计算的能力。
教学过程:
(一)明确目标。
出示上节课出来的本单元的框架,指出本节课要复习的内容,并提出要求,掌握乘法的三个运算定律,并能灵活的`运用于简便计算。
(二)复习定律
1、简算。
4×13×25125×(8+80)
全班练习、两位学生板演,完成后反馈校对,并说明计算的理由。教师板书运算定律的名称。
2、掌握定律。
简要的叙述运算定律和字母表示,学生回答,教师板书相应的字母公式。
根据字母公式,比较乘法结合律和乘法分配律有什么区别?根据字母公式说说他们的结构特征。
(三)定律运用
1、课本第6题
(1)归类,各应用什么运算定律可以使运算简便,画出具有特征的数学运算符号。
(2)全班练习,完成上面一行3题,完成后反馈校对,指出每一题的特征。
(3)全班练习,完成下面一行3题,完成后反馈校对,指出每一题的特征。
2、判断、改错练习。
(1)400×(25+1)=400×25+1
(2)(64+4)×25=64×25+25
(3)25×32=25×(4×8)=25×4+25×8
(四)综合练习
1、练习第7题。
(1)找出能运用乘法运算定律的算式,并各自归入相应运算定律类型中。
(2)余下的两题:32+144+68+56,1230-216-184,为什么不能归入相应的类型?他们可以简算吗?
(3)独立练习。
(4)反馈矫正。
2、两步四则混合运算练习。
(1)计算课本第8题,完成后校对。
(2)计算第9题,完成后的、反馈讲评。
3、应用题练习。
(1)独立练习第10题。
(2)反馈讲评,对25×400+25×40025×400×2两种方法进行比较。
4、思考题指导。
(1)独立思考2分钟。
(2)指名已解答的同学说思路。
(五)巩固知识结构
通过两节课,我们对第一单元进行了系统的复习,说一说第一单元中学到了哪些知识,掌握了哪些本领?还有什么不清楚的地方?
(六)作业:《作业本》
运算定律教案3
教学目标
1.使学生在原有知识的基础上,进一步理解乘法的意义,并能运用它解决实际问题.
2.使学生理解和掌握乘法交换律,并能运用它进行验算.
3.借助视察、比较、综合、概括等方法,培养学生的分析推理、抽象概括、及运用新知解决实际问题的能力.
教学重点:
使学生理解并运用乘法的意义及其运算定律——交换律.
教学难点:
乘法交换律的应用.
教具学具准备
口算卡片、投影仪.
教学步骤
一、铺垫孕伏
1.口算:14×3 50×30 2×50 15×4 15+15+15+15
4+4+4+4 30×12 60× 40 4×25 9+9+9+9+9
2.导入:刚才的口算题同学们算得很对,那么同学们想不想即算得对又算得快呢?好!为了实现你们的愿望,这节课我们继续学习乘法的有关知识.乘法的意义和乘法的交换律.(板书课题)
二、探求新知
1.教学乘法意义:
(1)出示例1,指名读题.演示课件“乘法的意义”出示例1 下载
引导学生分析:横着看或竖着看,每排放几个,一共有几排?
教师提问:如果要求盘里一共有多少个鸡蛋用加法怎样解答?
用加法计算:5+5+5+5+5+5=30(个)
或6+6+6+6+6=30(个) (教师板书)
教师提问:如果要求盘里一共有多少个鸡蛋用乘法该怎样解答呢?
用乘法计算:5×6=30(个)或6×5=30(个)(教师板书)
(2)对比例1中的两种方法,哪种方法简便?
引导学生说出:求几个相同加数的和,可用加法计算,也可用乘法计算,用乘法计算比较简便.
教师提问:从上面的算式关系,谁能说一说乘法是什么样的运算?
教师补充说明:求几个相同加数和的简便运算叫做乘法.演示课件“乘法的'意义” 下载
相乘的两个数叫做因数,乘得的数叫积.
(3)教学1和0的乘法特点:
想一想:过去学过的乘法算式中,有没有不表示求几个相同加数的和的?
启发学生举例:3×1=3 1×1=1 3×0=0 0×0=0 (教师板书)
引导学生观察:这几个算式都和哪几个数有关系?
教师归纳:一个数和1相乘,仍得原数.
一个数和0相乘,仍得0.
(4) 反馈练习:(投影出示)
①下列算式能否改成乘法算式,为什么?
120+120+120+120 80+90+70 15+15+15+20
②判断:
求几个加数和的简便运算叫乘法.( )
求几个相同加数和的运算叫乘法.( )
2.教学乘法交换律:
(1) 出示例2 演示课件“乘法交换律”出示例2
观察下面每组的两个算式,它们有什么样的关系?
12×5○5×12 400×20○20×400
引导学生分组计算,使学生明确:左边两个数的乘积和右边两个数的乘积相等.
学生讨论:是不是所有像这样的式子都具有这些特点呢?
引导学生互相讨论,自己举例说明,教师巡视.
启发学生得出结论:两个数相乘,交换因数的位置,它们的积不变.
教师指出:这叫做乘法的交换律.
反馈练习:
①下列各式运用了乘法的交换律,对吗?为什么?
11×9=9×100 12×18=2×18 a+b=b+a
②课本第60页“做一做”第1题.
根据运算定律在下面的□里填上适当的数.
12×32=32×□ 39×41=□×□
(2) 教师提问:
加法交换律可用字母表示出来,如果用a和b表示两个因数,那么乘法的交换律用字母该怎样表示呢?(a×b=b×a) (教师板书)
教师指出:这里a、b表示大于0或等于0的整数.
教师提问:以前学习哪些知识时用了乘法交换律.(笔算乘法验算时用到了乘法交换律.)
(3)练习:课本第60页的“做一做”第2题.
计算下面各题,用交换因数的位置的方法进行验算.
32×25 105×424
三、巩固发展
四、课堂小结
教师带领学生回忆本节课学习了什么?应注意什么问题?(1和0的乘法特点)
五、布置作业
教材62页1、2题
1题、应用乘法意义说明下面各题为什么要用乘法计算?
(1) 一幢宿舍楼有6个单元,每个单元可以住15户.一共可以住多少户?
(2) 一头牛重500千克,一头大象的重量是这头牛的10倍.这头大象有多重?
2题、根据运算性质定律在下面□里填上适当的数.
15×16=16×□ 25×7×4=□×□×7
(60×25)×□=60×(□×8) (125×□)×□=125×(9×14)
运算定律教案4
设计说明
1.创设情境,引入新课。
教学中巧妙地创设问题的情境,吸引学生积极地投入,积极地思考。课件出示三道应用整数乘法运算定律的计算题,在学生计算后,利用课件演示把刚才做的三道题加上小数点,巧妙地变成了小数乘法计算题。接着质疑:整数乘法变成了小数乘法,它们能应用整数乘法的运算定律进行计算吗?由此引出新知的学习。为下面学生将整数乘法运算定律迁移到小数乘法做好准备。
2.充分放手,让学生自主探究新知。
自主学习能力可以说是学生学会求知、学会学习的核心。本课让学生带着疑问去计算这三组题,通过计算发现每组中的两个算式的结果相同。然后组织学生观察算式,交流发现的规律,进而共同总结出整数乘法的运算定律对于小数乘法同样适用。在学生明确了整数乘法的运算定律对于小数乘法同样适用的基础上出示例题,让学生试着运用乘法的运算定律进行简便运算。在板演时重点引导学生说一说每一步各应用了哪一个运算定律,使学生体会整数乘法的运算定律在小数乘法中的应用,培养学生思维的逻辑性。
3.运用新知解决问题。
用学到的知识解决问题才是数学学习的真谛,因此在新知学习之后,我设计一系列形式多样的练习题,让学生通过练习巩固新知,提高学生运用知识解决问题的能力,并培养学生自觉进行简算的意识,提高思维的灵活性。
课前准备
教师准备 PPT课件
学生准备 探究报告单
教学过程
⊙创设情境,引入新课
1.引发思考。
想一想,小数四则混合运算的`顺序和整数是一样的吗?(一样)
2.观察发现。
观察下面的每组算式,左右两边的结果相等吗?分别运用了什么定律?
7×12○12×7
(8×5)×4○8×(5×4)
(24+36)×5○24×5+36×5
(学生独立解答,并交流)
3.提出问题。
顽皮的小精灵给上面各题中的数加上了小数点,不用计算,你能很快知道答案吗?
0.7×1.2○1.2×0.7
(0.8×0.5)×0.4○0.8×(0.5×0.4)
(2.4+3.6)×0.5○2.4×0.5+3.6×0.5
4.质疑,揭题。
整数乘法变成了小数乘法,它们能应用整数乘法的运算定律进行计算吗?这节课我们就来探究整数乘法的运算定律适不适用于小数。(板书课题)
设计意图:生动的情境和亲切的开场语调动了学生的学习热情,作为知识铺垫的复习题以添上小数点的方式呈现出来,激发了学生的学习积极性。
⊙探究新知
1.验证整数乘法的运算定律对于小数乘法同样适用。
(1)探究验证方法。
师:怎样验证小精灵的猜想对不对呢?
预设 生1:看两边的算式结果是否相等。
生2:举例验证。
(2)验证。
①笔算验证。
师:动笔算一算,运用运算定律得到的算式结果与原式是否相等?
(学生独立计算,汇报结果)
②举例验证。
小组合作:根据每个运算定律写一个小数乘法的例子,算出两边算式的结果,看是否相等,并填写探究报告单。
乘法运算定律
字母表示
举例
结果是否相等
乘法交换律
乘法结合律
乘法分配律
③交流、汇报自己的发现。
小结:我们通过实例推导证明了整数乘法的运算定律对于小数乘法同样适用。那么我们就可以利用乘法的运算定律来解决小数乘法的实际问题了。
设计意图:引导学生通过观察、计算、讨论等形式验证小精灵的猜想,从而自主发现规律:整数乘法的交换律、结合律和分配律对于小数乘法同样适用。
2.教学例7。
(1)课件出示例7中的第1道小题。
师:请你试着做一做,并说一说每一步各应用了哪一个运算定律。
(学生试做,并板演汇报)
0.25×4.78×4
=0.25×4×4.78→乘法交换律
=1×4.78
=4.78
强调:运用乘法的运算定律进行简便计算时,要注意观察数的特点。
(2)课件出示例7中的第2道小题。
师:你认为解此题的关键是什么?
预设 生:先把202改写成200+2,再应用乘法分配律进行计算。
师:你会做吗?谁来说一说这道题的解题思路?(指名上台讲解、演示)
设计意图:充分放手,让学生在运用乘法运算定律解决例7的过程中巩固新知,训练思维,使学生获得成功的体验。
运算定律教案5
教学内容
人教版小学数学四年级下册P17—18。
学习目标
1.理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2.经历探索加法交换律和加法结合律的过程,培养学生的概括推理能力。
3.获得成功的体验,增强对数学的兴趣和信心,形成独立思考和探究问题的意识习惯。
学习重点:
理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
学习难点:
经历探索加法交换律和加法结合律的过程,发现并概括出运算律。
学习准备
课件、学习单
学习过程
一、创设情境,提出问题。
1.师:暑假是外出旅游的大好时节,好多人都旅游去了,当然李叔叔也不例外,看他是怎么去的?课件出示:
生:骑自行车。
师:你们看的真准,再仔细看看,你从图中还了解到了哪些信息?
生1:李叔叔准备骑车旅行一周。
生2:李叔叔上午骑了40km,下午骑了56km。
2.师:根据了解到的信息你能提出什么问题?
生1:李叔叔今天一共骑了多少千米?
生2:李叔叔今天上午比下午少骑多少千米?
二.合作探究,解决问题。
(一)探究加法交换律
1.列式计算
师:今天我们选取“李叔叔今天一共骑了多少千米”来做我们的学习材料,要解决这个问题我们应该怎么列式?
生1:40+56(板书)
师:还可以怎样列式?
生2:56+40(板书)
师:它们之间可用什么符号连接?
生:等号。(师板书等号)
师:为什么可以用等号连接?
生1:因为它们的和都是96千米。
生2:因为它们都是求的李叔叔一天行的总路程。
2.课件出示:
123+377 Ο 377+123
1124+76 Ο 76+1124
师:这两道题,它们的算式之间的能用等号相连吗?请你算一算!
生:能
师:为什么?
生:因为它们的和都相等。
师板书:
3.师:观察这三个等式,你发现了什么吗?
生:两个数相加,交换加数的位置,和不变。
师:从刚才的发现中,你们会猜想到什么呢?
生:是否所有的加法算式两个加数交换位置和不变呢?
(板书:两个数相加,交换加数的位置,和不变?)
4.师:口说无凭,你打算怎样验证咱们的猜想?
生:我们可以再举几个例子来验证一下。
师:那请大家拿出本子来,举几个这样例子来验证看看!
(生独立举例验证)
5.师:谁来上台说说你是怎么举例验证的?
生:(百以内的加法、多位数的加法、小数加法……)
师:通过刚才这两位同学的举例,都能证明我们的发现是正确的。谁有没有发现交换加数位置和不相等的情况吗?
生:没有。
师:也就是说,我们举不出反例,那证明我们该刚才的发现是正确。
师:谁能够再一次总结一下我们刚才发现的这个规律?
生:两个数相加,交换加数的位置,和不变。
师:旁边的问号是不是可以擦掉了?!
师:这个规律,数学家们给它起了一个名字,叫做“加法交换律”
(板书加法交换律)
6.师:刚才同学们举了那么多的例子,这样的例子能举完吗?
生:举不完。
师:是啊,像这样的等式我们能写出很多很多来。
(师边说便在等式的下面板书“……”)
师:既然像这样的等式写不完,你能否开动你的脑筋,想办法用一个算式表示出所有的等式吗?试一试,把你的想法在本子上写出来。
(学生尝试)
7.师:谁来说一说你是用一个怎样的算式表示加法交换律的?
生1:甲数+乙数=乙数+甲数。
生2:△+□=□+△
生3:a+b=b+a
师:这三位同学的方法能表示出所有的情况吗?
生:能。
师:这三种方法,你更欣赏哪一种?
生:第三种。
师:说说你的理由。
生:因为第三种更方便、更简洁。
师:其实咱们的数学家想到的式子,跟生3的想法不谋而合,也是a+b=b+a。
(师板书a+b=b+a)
师:你觉得a和b可以表示哪些数?
8.师:同学们现在回想一下,我们是怎样探索出“加法交换律”的,同桌互相交流一下。
生1:我们是先观察发现,再举例验证,最后是总结规律。
师:很简单明了,还有谁来说一说?
生2:我们第一步是观察发现,我观察这三个等式,发现了任意两个数相加,它们的和不变,第二步是举例验证,我们举了好多例子,证明我们是正确的,最后一步是总结规律,总结的规律是“两个数相加,交换加数的位置,和不变”。
师:说的好不好?把掌声送给他!
(板书:观察发现→举例验证→总结规律。)
9.师:我们刚才是通过观察发现,然后是举例验证,再总结规律,这是一种非常好的学习方法。刚才大家经历了一次像数学家一样做数学的过程,那你能不能用这种学习方法去探索其他的运算定律呢?
生:能。
(二)探究加法结合律
1.师:现在请大家自学<学习单一》,自学之前老师给大家提供了一个学习锦囊,谁愿意大声读一遍?
生:
一.观察发现。
仔细算出每一组题的结果,你发现了什么?
二.举例验证。
你能再举出几组这样的例子吗?
三.总结规律。
你能用符号表示这个运算定律吗?
2.师:下面就请大家按照自学锦囊上的提示自学,开始。
(生独立完成)
师:完成的同学同桌交流一下。
3.师:都完成好了吗?谁愿意到前面分享一下你的自学收获?
生:我发现第一组算式都等于288,第二组算式都等于273,第三组算式都等于507,它们都可以用等号来连接。
师:每一组题的两道算式的计算方法有什么不一样吗?
生1:前一道算式都是先算前两个数的和,再和第三个数相加,后一道都是先算后两个数的和,再和第一个数相加。
师:刚才这位同学分享了这么多自学的收获,那你还发现了什么?还其他的发现吗?
生:我还发现这三组题,后面的题都改变了运算顺序。
师:运算顺序改变了,那么什么没有变?
生:和不变。
师:还有没有什么不变?
生:数字的位置没变,只是运算顺序变了。
4.师:刚才通过这三组算式发现了一个非常重要的规律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。那这个规律对不对还需要我们怎么样?
生:举例验证。
师:那谁来说一说你举的例子?好,你来!
生1:(24+76)+28=24+(76+28)(师板书)
师:谁再来分享一下你举的例子?
生2( 8+7)+3=8+(7+3)
师:谁再来举一个?
生3:(325+178)+22=325+(178+22),他们都等于525.
5.师:谢谢大家的`分享。刚才,我们大家进行了举例验证,你们验证我们发现的规律对不对?
生:对!
师:有没有举出反例的?
生:没有。
师:那由此可以说明,我们该发的规律是……
生:正确的!
师:下面请同学们把我们发现的规律齐读一边,预备,起!
生::三个数相加,先把前两个数相加,或者先把后两个数相加,和不变
师:刚才发现这个重要的规律,我们把它叫做加法结合律。
(板书:加法结合律)
6.师:这是我们发的第二个运算定律,那你能用符号表示加法结合律吗?
生:(a+b)+c=a+(b+c)。
7.师:今天这节课,我们采用观察发现、猜想验证、总结规律的学习方法,发现了两种的加法运算定律,现在你还有什么不懂得、想提出来供大家研究吗?
生:加法交换律和加法结合律有什么相同点和不同点?
师:这个问题很有研究的价值,下面就请大家小组内交流研究,开始!
(生小组交流,师巡视)
师:哪一位同学到前面来分享一下你们讨论的结果?
生1:我们小组发现的它们的相同点是都是加法,和不变;不同点是加法交换律的加数是两个数,加法结合律的加数是三个数。加法交换律是数字的位置变了,加法结合律是运算顺序变了。
师:你们同意吗?还有和这一组不一样的吗?
师:好的,看来其他组的同学的发现同他们是一样的,我们班的同学观察力和思考力非常强,那下面,我们就运用我们学会的本领来练一练,解决生活中的实际问题!
三、巩固练习,拓展提高。
1.下列等式各运用了什么运算定律?
2.你能( )中填上适当的数吗?
3.今天我和妈妈一起逛超市,看到体育用品柜台有下列物品:
4.小明在上课的时候,老师出了一道这样的题目:
四.课堂总结。
1.本节课你什么收获?还有什么疑问?
2.师:同学们今天的表现非常出色,用自己善于发现的眼睛和聪明的头脑找到了加法算式中的规律,认识并理解了加法交换律和加法结合律,并能初步应用。你看,数学家能总结出来的运算定律我们也能总结出来,我相信只要我们在以后的学习中勤动脑、多动手,一定可以把数学学得更棒!
五.板书设计
运算定律教案6
教学目标
1.通过教学,学生懂得应用加法运算定律可以使一些分数计算简便,会进行分数加法的简便计算.
2.培养学生仔细、认真的学习习惯.
3.培养学生观察、演绎推理的能力.
教学重点
整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便.
教学难点
整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便.
教学过程
一、复习准备【演示课件“整数加法运算定律推广到分数加法”】
1.教师:整数加法的运算定律有哪几个?用字母怎样表示?
板书:a+b=b+a
(a+b)+c=a+(b+c)
2.下面各等式应用了什么运算定律?
①25+36=36+25
②(17+28)+72=17+(28+72)
③6.2+2.3=2.3+6.2
④(0.5+1.6)+8.4=0.5+(1.6+8.4)
教师:加法交换律和结合律适用于整数和小数,是否也适用于分数加法呢?这节课我们就一起来研究.
二、学习新课【继续演示课件“整数加法运算定律推广到分数加法”】
1.出示:下面每组算式的左右两边有什么关系?
○○
教师说明:整数加法运算定律,对分数加法同样适用.
教师提问:整数加法的'运算定律可以在什么范围内使用?
(加法的交换律、结合律中的数,既包括了整数,又包括了小数和分数)
2.出示例3计算:
观察:这些加数分母和分子有什么特点?
思考:怎样可以使计算简便?
学生口述,教师板书:
教师提问:这道题哪里应用了加法交换律?哪里应用了加法结合律?
最后结果要注意什么问题?
学生总结:应用整数加法的运算定律可以把分母相同的分数先加起来,或凑成整数再计算比较简便.
三、巩固反馈.
1.在下面的○里填上合适的运算符号.
①○
②○
2.用简便方法计算下面各题.【继续演示课件“整数加法运算定律推广到分数加法”】
①②
3.思考题:
已知你能很快算出的和吗?
四、课堂总结.
整数加法的交换律、结合律对分数加法同样适用,应用加法运算定律可以把分母相同的分数先加起来,或凑成整数再计算比较简便.
五、布置作业.
用简便方法计算下面各题.
六、板书设计
运算定律教案7
教学内容:
人教版数学四年级下册第三单元“运算定律”的整理和复习。
教学目标:
1.通过整理与复习,帮助学生形成知识网络,加深对运算定律和性质的理解,能运用运算定律和性质进行一些简便计算。
2.经历复习的全过程,学会复习整理的方法,提高数学学习的应用意识。
3.使学生能够根据实际情况,灵活选择合理算法,培养学生的简算意识和发散思维能力
4.在讨论、交流、归纳的活动过程中,树立自主探讨和合作交流的意识。感受数学与生活的联系,增强学生学数学的兴趣。
教学重点:
指导学生整理学过的运算定律和性质,加深对运算定律和性质的理解,能运用运算定律进行一些简便计算。
教学难点:
根据算式的特点灵活进行简便运算。
教学准备:
多媒体课件。
教学过程:
一、比赛激趣,引入课题。
比一比:谁能很快地说出计算结果:12×25125×16
好神奇!这么快!你是怎样算的?让学生说出算法。
师:运用运算定律可以使一些计算变得简便,对我们今后的学习可有用了,下面,我们一起来把这一单元的'知识进行整理和复习。揭示课题并板书:运算定律与简便算法
二、梳理知识,构建网络
1、小组整理。
师:这个单元我们都学习了哪些运算定律和性质?
下面,请分小组对本单元所学的知识进行整理。
2、展示、汇报、交流。教师根据学生的汇报板书知识网络图:
加法交换律:a+b=b+a例1
加法运算定律加法结合律: (a+b)+c=a+(b+c)例2
运算加法运算定律的应用例3
定律连减的性质:a-b-c=a-(b+c)例4
整理乘法交换律:a×b=b×a例5
复习乘法结合律:(a×b)×c=a×(b×c)例6
乘法运算定律乘法分配律:a×(b+c)=a×c+a×c例7
连除的性质:a÷b÷c=a÷(b×c)例8
(解决问题策略多样化)
三、知识应用,能力拓展。
1、我有火眼金睛,我能看出下面的算式应用了哪些运算定律和性质。
24+38+76=38+(24+76)
6×99 +6=6×(99+1)
370-16-14=370-(16+14)
3500÷7÷2=3500÷14
4×6×5×8=(4×8)×(6×5)
35×102=35×100+35×2
2、我是小法官:
(1)、22+29+78=29+100()
(2)、35×16=35×2×8()
(3)、102×56=100×56+2()
(4)、12×97+3=12×100()
(5)、45×(9×2)=45×9+45×2 ()
(6)、64 ÷(8×2)= 64÷8÷2()
(7)、498-302=498-300 ()
3、我是小神算,怎样简便我就怎样计算。(先仔细观察,找找题中隐藏的秘密,再想想可以怎样算?那种方法更简便?运用了什么运算定律或性质?)
(1)25×26×4(2)88×125
(3)518-245-355(4)68+59+32+241
(5)6400÷4÷25(6)125 ×32×25
师:通过刚才的计算你明白了什么?
师:是的,计算时首先要有简算意识,其次要学会分析题目的特征,想想怎样算比较简便。这样不但能使计算更快更准更简便,而且能使你的思维更灵活,方法更多样。
4、我会解决问题。
(1)学校买来5400册图书,要把它们分别放到25个书柜里,每个书柜4层,平均一个书柜每层放多少本书?
(2)我们学校新学期要购进62套桌椅,每张课桌65元,每把椅子35元。一共需要多少钱?
5、能力扩展
(1)老师昨天用计算器计算1235×49时,发现键“4”坏了。可我还想用这个计算器计算,你能帮老师想到办法怎样计算吗?
请写出算式:(1235×50-1235)
四、课堂小结:
这节课你有什么收获?你想提醒同学们注意哪些地方或者你还有什么地方没有完全弄明白?
课后合作探究:
通过本单元的学习,你已经掌握了加法、乘法的运算定律,也学会了探究运算规律的一般方法。课后请用学过的方法和同学一起试着研究下面的运算规律:(a + b)÷c = a÷c + b÷c(其中c ≠ 0 )
运算定律教案8
教学目标
1、通过尝试解决实际问题,观察,比较发现并概括加法交换律。
2、初步学习用加法运算定律进行简便计算,并用来解决实际问题。
3、提高观察、概括能力和语言表达能力。
教学重难点
初步学习用加法运算定律进行简便计算,并用来解决实际问题。
教学工具
课件
教学过程
(一)谈话导入,
孩子们你们知道我们班上有多少小女孩?多少小男孩?那么我们班上一共有多少个孩子?
学生列式,师板书
(二)呈现事实,形成问题
1、出示准备题:
(1)27+73(2)37+58
73+27 58+37
2、学生计算得数。
3、请学生观察两组算式,说说有什么发现?
投影书上的主题图,
你搜集到了什么信息?
今天李叔叔一共骑了多少米?根据学生回答板书:40+56=96千米
56+40=96千米
和前面的两个例子比较你发现了什么?、
4根据学生回答板书:猜想——两个数相加,交换加数的位置它们的和不变。
既然和不变,每组算式可以用什么符号连接呢?(=)
5、问题:这个猜想正确吗?
(三)验证猜想,形成结论
1、验证我们的猜想是否正确,我们可以举更多的例子,符合猜想的例子越多,猜想将被认为越可靠。
让学生举例,
如35+20=20+35等等让学生多说
同桌互说
学生汇报答案。加数相同,调换位置,得数也相同,符合猜想。
2、同学自己设计一组式题验证,小组交流结果,汇报结论。
3、这种猜想看起来比较可靠,但我们不可能把符合猜想的`例子
全部举完过就给我们的证明留下了遗憾,有没有其他的办法呢?我们来看生活实例。
例:一家电影院,走廊的左边是476个座位,走廊的右边有518个座位,一共有几个座位,(用两种方法计算)
(1)口答列式:476+518518+476
为什么这样列式?
(2)判断:得数会相同吗?
(3)计算结果,得出结论:476+518=518+476
在加法中,交换加数的位置,和不变。
4、揭题:这就是我们今天要学习的“加法交换律”(板书)
5这种规律在其他运算中有吗?学生质疑,验证。在这个环节中有出现个别代表一般的给予举例纠正。
学生自学书本、质疑。
6、小结:
(1)什么是加法交换律?
用字母a、b表示加法交换律。板书:a+b=b+a
(四)应用成果,巩固新知
1、学习加法交换律的最终目的是用。
问:验算加法,我们用什么方法?根据什么?
2、“练一练”1,先计算出得数,再用加法交换律进行验算。
问:验算方法运用什么运算定律?
3、“练一练”
(1)分组完成。(每组一生板演,比赛形式进行)
(2)指名说出验算方法和根据。
4、放录音、做游戏——“我该在什么位置”
(1)将卡片470、880、1013、214、58、58发给六个同学。
(2)伴随音乐,寻找自己的位置,并贴上。
(3)小结:这些算式都用等号连接,两边都有相同加数,那就意味着另一个加数也相同,我们并用了加法交换律。
(五)反思过程,学会学习
1、这节课我们发现了什么?是怎样获得证明的?(举例证明一意义论证)2、这一规律已有哪些运用?
3、质疑:满足“和不变”这一要求,有没有其他可能?
课后习题
完成课后练习题。
运算定律教案9
教学内容
教科书第12——13页的内容,练习三的第1——4题,数学教案-加法的意义和运算定律。
教学目的:
1、使学生在已学过的加法知识的基础上,概括出加法的意义,对加法的认识从感性上升到理性。
2、使学生理解并掌握加法交换律。
授课类型:新授课
教学方法:讨论法、讲授法
教学重点难点:加法的意义
授课时间:一课时
教学过程:
一:教学加法的意义
1、加法的意义
(1)教学例1
教师出示例1,让学生读题,边指名说出条件和问题,教师用线段图表示出数量关系。
让学生自己解答,解答后,说一说为什么用加法计算。教师重述用加法算的理由,并板书。
137+359=494(米)
答:北京到济南的铁路长494米。
在此基础上,教师给出加法的意义:把两个数合并成一个数的`运算叫做加法。
做练习三的第1题。
让学生说出为什么用加法计算。
2、教学加法各部分的名称。
教师指着137+359=494问:
137和357在加法算式中叫什么数?494叫什么?
137 + 359 =494
│ │ │
加数 加数 和
提问:我们上面做的加法,两个加数是什么样的数?
任何两个自然数相加得到的和都比加数怎样?
一个自然数和0相加得到的和怎样?
0和0相加会怎样?
总结上面的结论,小学数学教案《数学教案-加法的意义和运算定律》。
二、教学加法交换律
加法运算有一些基本性质,对我们以后的计算很有用,下面我们就来学习加法的一个运算定律。
例1求北京到济南的铁路长是怎样列式的?还可以怎样列式?
137+357=357+137
教师再出示几组不同的算式让学生先填上计算符号,再观察,看一看它们有什么样的关系。
18+17( )17+18
124+235( )235+124
比较三个等式归纳出一般规律。
(1)这三个等式中,每组算式有几个加数?
(2)每个等式中,左右两边的加数的位置怎样?左右两边的和怎样?
请几个学生试着把发现的规律说一说,然后教师完整地叙述一遍,说明这一规律叫做加法交换律。
用字母表示加法交换律
如果用字母a 和b分别表示两个加数,可以写成下面的形式:
a+b=a+b
做第13页的“做一做”
三、巩固练习:
做练习三的第——4题。
让学生根据加法的交换律来做。
四、小结:
今天我们学习了加法的意义和加法的交换律,谁能结合具体的题目说一说加法的意义和加法的交换律的含义?
附板书:加法的意义和加法交换律
137+359=494(米)
答:北京到济南的铁路长494米。
137 + 359 =494
│ │ │
加数 加数 和
137+357=357+137
18+17( )17+18
124+235( )235+124
a+b=a+b
运算定律教案10
教学内容:
教科书第25页的例1和第25、26页的乘法交换律,完成“做一做”中的题目和练习五的第1——5题。
教学目的:
使学生加深对乘法的意义和乘法各部分名称的认识,理解并掌握乘法交换律,能够用乘法交换律验算乘法,培养学生分析推理的能力。
教学重点难点:
乘法的意义和乘法交换律
授课类型:
新授课练习课
教学方法:
讨论法、讲授法
授课时间:
一课时
教具准备:
多媒体
教学过程:
一、复习
教师出示复习题。
1、同学们乘8辆汽车去参观,平均每辆汽车坐45人。去参观的一共有多少人?
2、同学们做纸花。第一组做了45朵,第二组做的和第一组同样多,第三组做了50朵。三个组一共做了多少朵?
3、小荣家养鸭45只,养的鸡比鸭多90只。小荣家养鸡多少只?
上面这些题哪些可以用乘法计算?为什么?
二、新课
1、教学例1出示例1的插图,再提问:要求盘里一共有多少个鸡蛋可以怎样求?还可以怎样求?
用加法计算:5+5+5+5+5+5=30(个)
用乘法计算:5×6=30(个)
解答这道题用乘法计算简便还是用加法计算简便?
求几个相同加数的和的简便运算,叫做乘法。
在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。
注意:一个数和1相乘,仍得原数。例如:1×3=33×1=31×1=1
一个数和0相乘,仍得0。例如:0×3=03×0=00×0=0
2、教学乘法交换律。
让学生再看例1的插图,然后教师提问:要求一共有多少个鸡蛋,同乘法计算还可以这样列式?学生回答后,教师板书:6×5=30(个)
比较一下这两个乘法算式,有哪些相同?有哪些不同?
学生发言后,教师边说边板书:两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。
用字母表示:a×b=b×a
三、巩固练习:
1、做第26页“做一做”的题目。先让学生独立做,然后再集体核对。
2、做练习五的第3、4题。学生独立做完后,再集体核对。
四、作业:练习五的第1、2、5题。
小结:今天我们学了什么?什么叫乘法的交换律?
附板书:乘法的.意义和乘法交换律
用加法计算:5+5+5+5+5+5=30(个)
用乘法计算:5×6=30(个)
求几个相同加数的和的简便运算,叫做乘法。
在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。
注意:一个数和1相乘,仍得原数。例如:1×3=33×1=31×1=1
一个数和0相乘,仍得0。例如:0×3=03×0=00×0=0
两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。
用字母表示:a×b=b×a
运算定律教案11
教学目标
知识技能
1、初步体会整数的运算定律在小数中仍然适用。
2、能运用乘法运算定律使小数计算简便。
过程与方法
1、让学生经历自主探究的过程,培养学生的观察比较的能力,培养合理运用所学的知识解决新问题的能力。
2、发展学生思维的灵活性,培养学生感悟、运用知识的能力。
3、通过复习旧知识、自学教材中三个关系式,观察与分析,将旧知识推移到新知识里,培养学生迁移类推的能力。
情感、态度与价值观
1、引导学生积极参与探索、思考的过程。
2、培养学生独立思考、认真审题灵活运用运算定律简算的习惯和能力。
教学重难点
教学重点:
1、理解整数乘法的运算定律在小数乘法中同样适用。
2、运用运算定律进行小数乘法的简便计算。
教学难点:学生通过观察能选择合理的方法进行小数乘法的简便计算。
教学工具
ppt课件
教学过程
一、创设情境
师:同学们,我们已经学习了整数乘法的一些运算定律,哪位同学说一说整数乘法的运算定律有哪些?
生:乘法交换律、乘法结合律和乘法分配律。
师:同学们,你们能用字母来表示出这三个定律吗?
师:我们知道乘法运算定律在整数乘法中,可以使一些计算更简便了,那么在小数乘法中,这些运算定律是否也能运用?今天这节课我们就来研究这个问题。
二、探究新知
1、猜测
0.7×1.2○1.2×0.7
(0.8×0.5)×0.4○0.8×(0.5×0.4)
(2.4+3.6)×0.5○2.4×0.5+3.6×0.5
师:猜一猜,每一组算式它们有怎样的关系?
2、验证
通过计算学生发现每一组算式都相等。
师:仔细观察每一组算式,它们有什么特点?
生:第一组算式运用了乘法交换律,第二组算式运用了乘法结合律,第三组算式运用了乘法分配律。
3、举例验证
师:通过上面的一组例子,能否就说明乘法运算定律在小数乘法中同样适用?
生:不能。
师:对,单纯的一组例子并没有说服力,我们需要多举几个例子进行验证。同学们你们能仿照第一组的`例子,也写出三种这样的算式,并验证是否相等。
(学生动手写,让学生进行汇报,尽量让多个学生进行汇报,这样例子多了,结论更有说服力。)
学生汇报。(教师有目的的板书几组算式,让学生观察发现,乘法运算定律,在小数乘法中同样适用。)
师:小组同学相互交流,你能用一句话来概括你们的发现吗?(引导学生得出结论:整数乘法的运算定律在小数乘法中同样适用。)
4、应用
出示例7
师:同学们,仔细观察下面两题,看看它们能不能用简便方法计算。
0.25×4.78×4 0.65×202
(1)让学生独立思考,然后尝试写在练习本上。
(2)指明学生板演。
(3)让学生说一说每一题运用了乘法的什么运算定律?
师:第①题,为什么先让0.25和4相乘?
生:因为0.25和4相乘,正好得1,计算起来比较的简便。(使学生体会理解算前先观察题中有没有特殊的数,如果两个数的积是1、10、100、1000等等,运用运算定律先算,这样使计算简便。)
师:你认为第②小题,解题的关键是什么?(使学生体会到先把特殊的数进行分解,然后才能进行简算。)
生:把202分成200+2,用乘法分配律完成。
师:在小数乘法中,要使计算简便,我们应该注意什么?(启发学生思考,认真审题,要观察数的特点。)
(4)交流评价。
三、方法应用
师:刚才,我们运用了乘法的运算定律,使小数乘法简便了许多,下面请同学们再来看看下面这道题,怎样算合理简便,你能想出几种算法
4.8×1.25
(1)让学生独立做。
(2)小组内进行交流。
(3)汇报(体现算法多样化)
(4)评价总结。
四、巩固练习:完成做一做题目。
五、梳理知识,总结升华
谈话:这节课你都获得了哪些知识?在本节课中你最大的收获是什么?
六、布置作业:练习三第4.5题。
运算定律教案12
教学目标:
1、会运用乘法结合律,能运用运算定律进行一些简便运算。
2、能根据具体情况,选择算法的意识与能力,发展思维的灵活性
3、能用所学知识解决简单的实际问题。
重点难点:
探究和理解结合律,能运用运算定律进行一些简便运算。
教学过程:
一、激趣定标、激趣导入
主题图引入(观察主题图,根据条件提出问题。
二、揭示课题,展示学习目标。
自学互动
适时点拨活动一
学习方式小组合作
学习任务
1、针对上面的问题1列出算式,有几种列法。
2、为什么列的式子不同,它们的计算结果是怎样的。
3、两个算式有什么特点?你还能举出其他这样的例子吗?
4、能给乘法的这种规律起个名字吗?能试着用字母表示吗?
5、乘法结合律有什么作用。
6、根据前面的加法结合律的方法,你们能试着自己学习乘法中的另一个规律吗?
7、1这组算式发现了什么?
2举出几个这样的例子。
3用语言表述规律,并起名字。
4字母表示。
三、活动一
学习方式小组合作
学习任务
1、小组讨论乘法的结合律、结合律用字母怎样表示。
2、各小组展示自己小组记定律的方法。
3、分别说说是用什么方法记住这些运算定律的。
4、讨论为什么要学习运算定律。
先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。
四、巩固应用
在什么时候使用乘法结合律。使用这个运算定律的结果是什么。使用它们的优点是什么。
怎样用乘法的结合律计算2532125
五、测评训练
1、下面的算式用了什么定律
(6025)8=60(258)
2、P37/24P35/做一做2
3、在□里填上合适的数。
3067=30(□□)125840=(□□)□加法运算定律
《加法的运算定律》是一节概念课,由于四年级的学生认知和思维水平还比较低,抽象思维比较弱,对于他们来说规律的理解历来是教学的难点。
为了解决这个难点,我做了以下的努力:
1.在解决问题的过程中探寻规律。
英国教育家斯宾塞说过:应引导学生进行探寻,自己去推论,对他们讲的应该尽量少一些,而引导让他们说出自己的发现应该尽量多一些。
在初步认识了28+17=17+28这样的等式以后,我问:这样的等式你还能举些例子吗?(学生争先恐后地回答)。接着,我启发道:这样的等式有很多,你可以用你们喜欢的方式来表示。这一开放性问题的出现,学生兴趣盎然,课堂气氛十分的活跃。经过一番合作,学生的探究结果出来了,主要有这样几种:甲数+乙数=乙数+甲数;△+○=○+△;a+b=b+a等等。我追问,如果一直这样说下去,能说完吗?(学生马上回答我:不能。)这时我又让他们用文字叙述这一规律。然后我小结:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算定律。你能给它起个名字吗?然后指着板书,有学生说叫加法交换律。我追问道:为什么?(生答:因为这是两个数相加,只交换位置)。
接着,让学生用同样的方法探究加法结合律。整个过程教师都是教学的`组织者和引导者,这样的设计,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用多种方法表示,让学生有一种成就感。然后引导学生运用前面的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。
2、对加法结合律的教学看法
在加法结合律的教学过程中,教师在教学的时候延续了加法交换律的教学方式,通过实际问题的解决,得出等式;再给出两组式子,通过计算得到也能用等于号连接;然后学生自己举例。这样的教学让学生感受加法结合律的特点:加数位置没有改变,运算顺序改变了,和没变。这样的教学显得顺畅,但是新意不够,学生投入的激情不够。
运算定律教案13
一、教学目标
(一)知识与技能
使学生在已有知识经验的基础上,进一步认识用字母表示数的优越性,掌握用字母表示数的方法,会用字母表示数的方法进行表达和交流,发展符号意识。
(二)过程与方法
让学生经历用字母表示数的过程,积累数学活动经验,进一步培养学生的抽象概括能力和符号意识。
(三)情感态度和价值观
在探究活动中增强学生的数感,体会数学与生活的紧密联系渗透丰富的数学文化。
二、教学重难点
教学重点:掌握用字母表示数的方法,会把已知数据代入公式求值。
教学难点:会用字母表示数的方法进行表达和交流,建立符号意识。
三、教学准备
多媒体课件、作业纸等。
四、教学过程
(一)唤起回忆,导入新课
1.复习旧知:在括号里填上合适的式子。
(1)小明原有a本故事书,捐献给云南灾区小朋友6本,还剩( )本。
(2)公共汽车上原有乘客16人,到中山公园站上车b人,现在车上有( )人。
(3)一种糖果每千克a元,买20千克需要( )元,买b千克需要( )元。
(4)一种空调50台的总价是c元,那么一台空调的单价是( )元。
2.谈话引入。
生活中许多数量都可以用含有字母的式子来表示。今天我们继续学习《用字母表示数》。
3.板书课题:用字母表示数。
【设计意图】从生活中的实例引入,复习用字母表示简单的数量关系,唤醒学生对数学中经常用字母表示数的感知,为新课的学习做好铺垫。
(二)提供素材,掌握表示方法
1.合作学习,尝试用字母表示运算定律和计算公式。
(1)在我们学过的数学知识中,你还见过哪些用字母表示数的'例子?
(2)提供运算定律、计算公式等素材,学生独立尝试用字母表示后小组交流。
①以运算定律和计算公式为例来研究:怎样用字母表示数?
②阅读活动要求,小组展开研究,指名演板。
(3)全班汇报反馈。
【设计意图】符号意识是《义务教育数学课程标准(20xx年版)》中提出的十大核心概念之一,它要求使学生能够理解并且运用符号表示数、数量关系和变化规律。因此,将两个小例题融合,以研究记录单的方式为学生提供运算定律和计算公式这些研究的素材,通过学生自由选取学习素材、独立尝试、小组合作探究和全班汇报交流等教学活动,探究用字母表示数的方法,积累一定的数学活动经验。
2.明确用字母表示数的一般方法及其优越性简明易记。
(1)感受用字母表示数的优越性。
①反馈交流:看到a+b=b+a,你想到了什么运算定律?什么叫加法交换律?剩下的每个式子各表示哪个运算定律?谁来说一说?
②观察对比:过去表示一个运算定律,我们要说一长段话,现在大家用字母也能表示运算定律,你们有什么感受?(板书:简明易记,便于应用)
③S=aa表示什么意思?C=a4表示什么意思?
④小结:大家可以用字母来表达、交流运算定律和计算公式。
(2)含有字母式子中省略乘号的书写方法。
①(出示用字母x 、y、z表示的运算定律)看到用x 、y来表示,有什么想法?(乘号和字母x很相似)想用什么办法来解决?
②介绍德国数学家莱布尼茨为了避免乘号与x混淆,提出将记作 。
③出示规定:在含有字母的式子里,字母中间的乘号可以记作 ,也可以省略不写。这个规定是什么意思呢?在怎样的式子里才能使用这个规定?
④按照这个规定,将xy=yx简写。
⑤学生独立将可以简写的运算定律和计算公式进行简写,指名演板,集体订正。
⑥注意:在含有字母的乘法式子里,乘号可以记作 或省略不写。在加、减、除的运算中还是按照原来的表达方法。
【设计意图】用字母表示数的优越性不能一带而过,要让学生在实际的活动中亲身体验、真切感受。为此,设计了用文字表示的运算定律和用字母表示的对比,让学生形象地感受到数学的符号语言的简洁明了。学生在尝试用字母表示运算定律活动中出现问题,从而学习含有字母式子中省略乘号的书写方式更有说服力,真正体验到 省略的妙处,逐步形成一定的符号感。
3.明确在乘法式子中用字母表示数的方法。
(1)平方的书写方法。
①在正方形的计算公式中,像这样两个相同的字母相乘aa除了简写成aa,还有更简便的表示方法吗?
②指导学生a?的含义及写法。
③把下面各式写成一个数的平方的形式,并读一读。
④比一比:2a和a?意思相同吗?为什么?
⑤长方形的周长计算公式能像这样表示得更简便吗?
⑥小结:通过大家的尝试,我们结合运算定律和计算公式,掌握了用字母表示数的方法。在用字母表示的运算定律中a、b、c可以表示哪些数?在计算公式中字母a、b则分别表示大于0的数。
(2)把已知数据代入计算公式求值。
①如果a=6厘米,你能求出正方形的面积吗?
②把数代入公式,数与数相乘,乘号不能省略。单位是平方厘米,也可以用字母表示。
③学生独立求出正方形的周长。
④小结:知道了字母所表示的数,我们就能应用公式很快求出计算结果。
【设计意图】放手让学生自主探索,尝试用字母表示计算公式,然后结合学生出现的问
题再进行讲解,有利于学生主体作用的发挥,对知识的体验更深刻。
(三)史料介绍,渗透数学文化
1.课堂总结:今天在用字母表示数的过程中,你有哪些收获?通过大家的尝试,在乘法中用字母表示数时,我们可以怎样表示?
2.数学文化渗透:介绍代数之父韦达及其研究成果。
【设计意图】结合整节课的学习内容,有意识地引导学生小结含有字母式子(乘法)的
书写习惯,有利于学生书写的规范,促进良好学习习惯的养成。韦达故事的介绍,有助于增加学生对字母表示数的学习兴趣,深化对知识的理解,让数学课堂彰显数学文化的本性。
(四)巩固运用,拓展延伸
1.课本第56页练习十二第5题。
(1)理解题意:省略乘号什么意思?
(2)学生独立完成,集体订正。
(3)指导:字母和1相乘时,乘号和1可以一起省略不写,b1可以简写成b。
2.课本第56页练习十二第6题。
(1)学生独立完成,集体订正。
(2)设疑:a2的好朋友是谁呢?62呢?等于多少?62等于多少?
小结:62和62不仅结果不同,意义也不同。
【设计意图】通过省略乘号的书写、平方意义的练习,促进学生掌握含有字母的乘法式子的书写习惯,形成技能。
(五)课堂作业
课本第56页第7、8题。
运算定律教案14
教学内容
教材第12页例7及练习三。
内容简析
例7由前面的三组算式经过转变,得出前后的结果相同,引出整数的运算定律在小数乘法中同样适用。
教学目标
1.使学生知道整数乘法的运算定律对于小数同样适用。
2.会运用乘法的运算定律进行一些小数乘法的简便计算。
3.在自主探究中,培养学生的迁移类推和对比的学习方法。
4.培养学生简算的意识,提高思维的灵活性。
教学重难点
运用乘法的运算定律进行小数乘法的简便运算;能选择合理的方法进行小数乘法的计算。
教法与学法
1.本课时解决小数乘法的简便计算时主要是运用迁移类推和对比的教学方法:首先由整数乘法的运算定律迁移到小数乘法,运用类比和比较的方法得出整数乘法的运算定律在小数乘法中同样适用,并能灵活运用。
2.本课时学生的学习主要是通过迁移类推、比较、概括、应用等方法来学习整数乘法的运算定律推广到小数的计算方法及类比的数学思想。
承前启后链
教学过程
一、情景创设,导入课题
竞赛导入:
师:同学们,今天我们先来进行课前比赛,看谁的知识学得棒。
第一轮:看谁算得对(口算)。
25×4=25×2=125×8=25×10=50×2=125×10=
4×8= 4×5= 5×8= 20×5= 32×5= 22×10=
学生口答。
第二轮:看谁算得巧。
25×73×468×125×8125×(10+8)
学生先独立完成,再请学生上台板演。
师:说说你是怎样算的运用了什么定律
师:今天我们就把整数乘法运算定律推广到小数。(板书课题)
【品析:亲切的开场语调动了学生的学习热情,作为知识铺垫的复习题,用竞赛的方式呈现提高学生的学习积极性。】
谈话导入:
师:谁来说说在整数乘法中学过哪些运算定律,怎样用字母表示
师适当板书:乘法交换律:a×b=b×a,乘法结合律(a×b)×c=a×(b×c),乘法分配律:(a+b)×c =a×c+b×c。 (板书)
师:那么整数乘法运算定律在小数中是否同样适用呢(板书课题)
【品析:利用谈话引导学生说出学过的乘法运算定律的字母公式,从而引出整数乘法运算定律在小数乘法中是否同样适用的问题,激发学生的好奇心和求知欲,为新课的开展起到了良好的铺垫作用。】
课件引入:
(出示PPT课件:内容是整数乘法简便算法与得数相连,用篮筐和篮球表示算式和得数)
师:你能将篮球投入相应的篮筐里面吗(学生依次回答)
师:这是什么运算(整数乘法简便运算)
师:那么,整数乘法的简便运算定律在小数乘法中能适用吗(板书课题)
【品析:通过用课件设置情景图连线题引入整数乘法的简便运算方法,进一步追
问在小数乘法中是否同样适用,引起学生的质疑,激发学生探究的欲望。】
二、师生合作,探究新知
◎引领学生分析教材第12页例7上面的三组算式,提取已知信息,并找出待解决问题。
(1)整理从中获得的信息。
①第一组算式前后两个因数交换了位置;
②第二组算式前一个算式先算前两个数,再同第三个数相乘,后一个算式先算后两个数,再同第一个数相乘;
③第三组算式前一个算式先算前两个数的和,再同第三个数相乘,后一个算式先分别求出积,再把两个积相加。
(2)提出的问题。
如:每组的两个算式之间有什么关系呢对比后发现了什么
◎自主学习,分组讨论,探究解题方法。
根据学习经验,出示另一组是整数乘法的三组算式,和现在的三组算式进行比较,学生可以自己找出它们之间的关系。
虽然学生现在还不知道整数乘法的运算定律在小数乘法中同样适用,但是经过回顾分析,可以发现相同点。此时把问题抛给学生,让他们分组讨论,自主探究结果,会发现下面几种规律:(详见配套课件部分)
发现:整数乘法交换律对于小数乘法也适用。
发现:整数乘法结合律对于小数也适用。
发现:整数乘法分配律对于小数也适用。
【品析:本环节中借助例7上面的三组算式,通过计算发现三组算式中的数没变,只是转换成另一种形式进行计算,但结果不变。随即出示三组整数的.乘法,让学生通过整数乘法和小数乘法的对比,把整数乘法的运算定律迁移类推到小数乘法中来,要鼓励学生重点讨论,特别是乘法分配律的算式转化思想,这种数学思想是需要逐步培养的,转化思想在数学学习中很重要,而本节课的整数乘法的运算定律推广到小数的知识,恰恰可以使学生建立数学转化思想,实际教学中要有的放矢地引导,同时在学生自主学习、分组讨论时要及时提示,让学生自己体会出整数乘法运算定律转化到小数乘法的过程和算式之间的转化过程。】
◎顺承算式,研学例7。
在总结完三组算式的基础上,教师抛出问题:我们已经知道整数乘法的运算定律在小数乘法中同样适用,下面请同学们小组合作,完成例7。
学生经过简单的交流讨论后,可以得出结论:两个算式分别运用乘法结合律和乘法分配律进行计算。然后选派学生代表介绍自己的解答方法。
在学生自主探究的过程中适时引导学生思考以下问题:
【品析:本环节是在研讨出整数乘法的运算定律在小数乘法中同样适用的基础上进行教学的,这个过程的学习,不仅仅是记住一个运算定律进行简便计算那么简单,更重要的是要引导学生体会参与推导转化的每一个环节,在整个过程中,体会出各种运算定律的转化和灵活应用。本环节中主要的教法是转化和应用,主要的学法是讨论、探究和应用。】
三、反馈质疑,学有所得
在学习完例7的基础上,引导学生及时消化吸收,请同桌之间互相说一说常用的运算定律有哪些。然后教师提出质疑问题,引导学生在解决问题的过程中学会系统整理。
质疑一:在0.25×4.78×4中先算0.25×4.78,或是0.25×4还是4.78×4呢
学生讨论后得出结论:应该先算0.25×4,再同4.78相乘,因为0.25×4能凑成整数,再同4.78相乘比较简便。
质疑二:在0.65×202中,把202分成200+2时为什么一定要加括号呢
这个问题可以指导学生先组内讨论,归纳总结,引导学生明白把202分成200+2后,如果不加括号会改变原来算式的意义和数值的大小,所以这个问题可以先做初步探究得出结论:只有加上括号后,才不改变题意,还可以应用乘法分配律进行简便计算。
【品析:本环节设置在本课新授知识完成之后,由于本节知识是通过整数乘法推
广到小数乘法,对于学生而言,从整数乘法转化到小数乘法,真正地明白算理是难点,通过再次质疑和研讨真正实现了学有所得。】
四、课末小结,融会贯通
“本节课你学会了哪些知识还有什么是不明白的呢”
在师生共同总结之后,简单回顾乘法运算定律的计算方法:根据实际情况选用不同的运算定律进行简便计算,然后衔接下节课的学习任务,给大家留一个思考的话题:
小数乘法在实际问题中怎样灵活应用呢
五、教海拾遗,反思提升
回味课堂,发现亮点之处:两次质疑和讨论使学生的学习进入了二次消化吸收的过程,这次内化使学生真正明白了运算定律的算式转化道理。
反思过程,有待改进之处:学生对于一步直接运用乘法分配律时的转化过程弄不清楚,要根据学生的实际情况因材施教。
我的反思:
板书设计
整数乘法运算定律推广到小数
运算定律教案15
一、教学目标
1.引导学生探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便运算。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
二、编排特点
1.有关运算定律的知识相对集中,有利于学生形成比较完整的认知结构。
将有关运算定律的知识集中于一个单元,加以系统编排,便于学生感悟知识之间的内在联系与区别,有利于学生通过系统学习,构建比较完整的知识结构。
2.从现实的问题情境中抽象概括出运算定律,便于学生理解和应用。
本单元教材的一个鲜明特点是,不再仅仅给出一些数值计算的实例,让学生通过计算,发现规律,而是结合学生熟悉的问题情境,帮助学生体会运算定律的现实背景。这样便于学生依托已有的知识经验,分析比较不同的解决问题的方法,引出运算定律。同时,教材在练习中还安排了一些实际问题,让学生借助解决实际问题,进一步体会和认识运算定律。
3.重视简便计算在现实生活中的灵活应用,有利于提高学生解决实际问题的能力。
本单元的第三小节,改变了以往简便计算以介绍算法技巧为主的倾向,着力引导学生将简便计算应用于解决现实生活中的实际问题,同时注意解决问题策略的多样化。这对发展学生思维的灵活性,提高学生分析问题、解决问题的能力,都有一定的促进作用。
三、具体编排
1.加法运算定律。
(1)主题图。
旅行途中记录行程的情景。考虑到学生对自行车上的记录仪表比较陌生,所以画了一个仪表表面的放大图,并让小精灵做提示性介绍。
(2)例1。
在主题图的基础上提出了要解决的问题。教学时可以让学生自己解答并交流;并让学生用自己喜欢的方式表示加法交换律。
(3)例2。
加法结合律。理解了题意,并搞清了条件和问题之后,可以放手让学生自己列出算式计算。接着,还可让学生观察比较教材提供的另两组算式,当然也可以让学生自己编出像例2这样的例子,再观察、比较。
(4)例3。
让学生将前面所学的两条加法运算定律,综合运用于解决实际问题的计算中。
2.乘法运算定律。
(1)主题图。
教学时可以先让学生看主题图,说说图中告诉了我们哪些信息,学生可以按自己看到的.说,也可以把图中的两段说明文字复述一遍。再根据这些信息引导学生发现可解决的一些问题。
(2)例1。
让学生自己发现乘法交换律。启发学生用自己喜欢的方式表示乘法交换律。进一步,可让学生在主题图中,找出可用乘法交换律解决的其他问题,并列出算式。
(3)例2。
从解决这个问题的两种算法中,得到乘法结合律的一个实例。引导学生观察、比较、概括得出乘法结合律。小结时,让学生进一步思考小精灵提出的问题:比较加法交换律和乘法交换律、加法结合律和乘法结合律,你发现了什么?要引导学生通过观察、比较明确:交换律是两数相加、相乘的规律,即交换加(因)数的位置,和(积)不变;结合律是三数相加、相乘的规律,即可以从左往右依次计算,也可以先把后两个数先相加(乘),和(积)不变。在这一活动中,应允许学生用自己的话,叙述自己的发现。
(4)例3。
通过比较、概括得出乘法分配律。小结时,教师有必要指出乘法分配律与乘法交换律、结合律的最大区别,在于乘法分配律是乘、加这两种运算之间的一个规律,而乘法交换律、结合律只是乘法一种运算内部的规律。
3.简便计算
(1)例1。
讨论连续减去两个数的几种常用算法。教材展示了三种算法,同时以小精灵提问的方式给出两个问题:他们都是怎样计算的?你喜欢哪种方法?显然,前一个问题是让学生思考、理解三种算法的计算过程和其中的算理;后一个问题是引导学生比较各种方法的特点,思考它们的适用范围。
(2)例2。
画面是书店的一角,题中包含两个需要综合应用加减计算的实践问题,而且解决问题的策略具有较大的灵活性。
(3)例3。
讨论可用连除计算解答的实际问题。教材给出了两种解法,引导学生思考两种解法分别先算什么,再算什么。然后,通过小精灵的提示比较两种算法,说出其中的运算规律。
(4)例4。
以王老师买羽毛球拍和羽毛球为题材,提出了三个问题。整个例题具有一定的综合性。例4的三个问题,可以一次给出,或依次给出,也可以先出示插图和四个已知条件,让学生说说一打装是什么意思,然后由学生自己提出问题。
(5)例5。
教材介绍了按月计算、按周计算的两种思路,以及相应的列式计算过程。在按月计算的过程中,运用了乘法分配律。然后通过小精灵,鼓励学生提出自己的算法,和同学交流。最后让学生根据例题的内容,继续提出其他问题,作为练习题。
四、教学建议
1.充分利用学生已有的感性认识,促进学习的迁移。
对于小学生来说,运算定律的概括具有一定的抽象性。好在学生通过第一学段的学习,对加法和乘法的一些运算规律已经有所了解,这是搞好本单元教学的有利条件。在此基础上,本单元的教学应着重帮助学生把这些零散的感性认识上升为规律性的理性认识。
2.加强数学与现实世界的联系,促进知识的理解与应用。
如前分析,本单元教材最明显的特点之一就是关注数学的现实背景,从社会生活中来,到社会生活中去,体现了数学教学回归社会、回归生活的愿望。因此,领会教材的这一意图,用好教材,借助数学知识的现实原型,可以调动学生的生活经验,帮助学生理解所学运算定律,构建个性化的知识意义。进而,凭借知识意义的理解,也有利于所学运算定律的运用。
3.注意体现算法多样化、个性化的数学课程改革精神,培养学生灵活、合理选择算法的能力。
对于小学生来说,运算定律的运用具有一定的灵活性,对数学能力的要求较高,这是问题的一个方面。另一方面,运算定律的运用也为培养和发展学生思维的灵活性,提供了极好的机会。教学时,要注意让学生探究、尝试,让学生交流、质疑。相应地,教师也应发挥主导作用,当学生探究时,仔细观察,认真揣摩学生的思路,酌情因势利导,不失时机地给予适度启发;当学生交流时,耐心倾听,洞悉学生的真实想法,加以必要的点拨,帮助学生讲清自己的算法,让其他同学也能明白。
【运算定律教案】相关文章:
加法运算定律的教案11-06
《整数乘法运算定律推广到小数》教案08-28
四年级加法运算定律教案06-21
运算的教案03-06
《混合运算》教案09-27
0的运算教案01-22
《运算律》教案02-25
混合运算教案02-22
《数的运算》教案03-15