范文资料网>反思报告>教案大全>《初中数学分式教案

初中数学分式教案

时间:2022-12-29 19:38:34 教案大全 我要投稿

初中数学分式教案

  作为一名为他人授业解惑的教育工作者,往往需要进行教案编写工作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。快来参考教案是怎么写的吧!以下是小编收集整理的初中数学分式教案,仅供参考,希望能够帮助到大家。

初中数学分式教案

初中数学分式教案1

  教学目标:

  1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式;

  2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质;

  3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;

  4、体会数学从实践中来又到实际中去的研究、应用过程;

  5、培养学生的观察能力,及数学地发现问题,解决问题的能力.

  教学重点:

  结合图象分析总结出反比例函数的性质;

  教学难点:描点画出反比例函数的图象

  教学用具:直尺

  教学方法:小组合作、探究式

  教学过程

  1、从实际引出反比例函数的概念

  我们在小学学过反比例关系.例如:当路程S一定时,时间t与速度v成反比例

  即vt=S(S是常数);

  当矩形面积S一定时,长a与宽b成反比例,即ab=S(S是常数)

  从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:

  (S是常数)

  (S是常数)

  一般地,函数(k是常数,)叫做反比例函数.

  如上例,当路程S是常数时,时间t就是v的反比例函数.当矩形面积S是常数时,长a是宽b的反比例函数.

  在现实生活中,也有许多反比例关系的例子.可以组织学生进行讨论.下面的例子仅供

  2、列表、描点画出反比例函数的图象

  例1、画出反比例函数与的图象

  说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的时候最好多取几个,正负可以对称着取分别画点描图

  一般地反比例函数(k是常数,)的图象由两条曲线组成,叫做双曲线.

  3、观察图象,归纳、总结出反比例函数的性质

  前面学习了三类基本的.初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习.

  显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考)

  (1)的图象在第一、三象限.可以扩展到k >0时的情形,即k>0时,双曲线两支各在第一和第三象限.从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限.

  的讨论与此类似.

  抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程.

  (2)函数的图象,在每一个象限内,y随x的增大而减小;

  从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k>0时,函数的图象,在每一个象限内,y随x的增大而减小.

  同样可以推出的图象的性质.

  (3)函数的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出,.如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出图象的性质.

  函数的图象性质的讨论与次类似.

  4、小结:

  本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中.

  5、布置作业习题13.8 1-4

初中数学分式教案2

  一、素质教育目标

  (一)知识教学点

  1.使学生了解反比例函数的概念;

  2.使学生能够根据问题中的条件确定反比例函数的解析式;

  3.使学生理解反比例函数的性质,会画出它们的图像,以及根据图像指出函数值随自变量的增加或减小而变化的情况;

  4.会用待定系数法确定反比例函数的解析式.

  (二)能力训练点

  1.培养学生的作图、观察、分析、总结的能力;

  2.向学生渗透数形结合的教学思想方法.

  (三)德育渗透点

  1.向学生渗透数学来源于实践又反过来作用于实践的观点;

  2.使学生体会事物是有规律地变化着的观点.

  (四)美育渗透点

  通过反比例函数图像的研究,渗透反映其性质的图像的直观形象美,激发学生的兴趣,也培养学生积极探求知识的能力.

  二、学法引导

  教师采用类比法、观察法、练习法

  学生学习反比例函数要与学习其他函数一样,要善于数形结合,由解析式联想到图像的位置及其性质,由图像和性质联想比例系数 k 的符号.

  三、重点·难点·疑点及解决办法

  1.教学重点:反比例的概念、图像、性质以及用待定系数法确定反比例函数的解析式.因为要研究反比例函数就必须明确反比例函数的上述问题.

  2.教学难点:画反比例函数的图像.因为反比例函数的图像有两个分支,而且这两个分支的变化趋势又不同,学生初次接触,一定会感到困难.

  3.教学疑点:(1)反比例函数为何与 x 轴, y 轴无交点;(2)反比例函数的图像只能说在第一、三象限或第二、四象限,而不能说经过第几象限,增减性也要说明在第几象限(或说在它的每一个象限内).

  4.解决办法:(1)中隐含条件是或;(2)双曲线的两个分支是断开的,研究函数的增减性时,要将两个分支分别讨论,不能一概而论.

  四、 教学步骤

  (一)教学过程

  提问:小学是否学过反比例关系?是如何叙述的?

  由学生先考虑及讨论一下.

  答:小学学过:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做反比例的量,它们的关系叫做反比例关系.

  看下面的实例:(出示幻灯)

  1.当路程 s 一定时,时间 t 与速度 v 成反比例;

  2.当矩形面积 S 一定时,长 a 与宽 b 成反比例;

  它们分别可以写成( s 是常数),( S 是常数)写在黑板上,用以得出反比例函数的概念:(板书)

  一般地,函数( k 是常数,)叫做反比例函数.

  即在上面的例子中,当路程 s 是常数时,时间 t 就是速度 v 的反比例函数,能否说:速度 v 是时间 t 的反比例函数呢?

  通过这个问题,使学生进一步理解反比例函数的概念,只要满足( k 是常数,)就可以.因此可以说速度 v 是时间 t 的反比例函数,因为( s 是常量).对第2个实例也一样.

  练习一:教材P129中1口答.P130 1

  根据前面学习特殊函数的经验,研究完函数的概念,跟着要研究的是什么?

  答:图像和性质.

  通过这个问题,使学生对课本上给出的知识的发生、发展过程有一个明确的认识,以后

  学生要研究其他函数,也可以按照这种方式来研究.

  下面,我们就来看一个例题:(出示幻灯)

  例1画出反比例函数与的图像.

  提问:1.画函数图像的关键问题是什么?

  答:合理、正确地选值列表.

  2.在选值时,你认为要注意什么问题?

  答:(1)由于函数图像的特点还不清楚,多选几个点较好;

  (2)不能选,因为时函数无意义;

  (3)选整数较好计算和描点.

  这个问题中最核心的一点是关于的问题,提醒学生注意.

  3.你能不能自己完成这道题呢?

  学生在练习本上列表、描点、连线,教师在黑板上板演,到连线时可暂停,让学生先连完线之后,找一名同学上黑板连线,然后就这名同学的连线加以评价、总结:

  注意:(1)一般地,反比例函数的图像由两条曲线组成,叫做双曲线;

  (2)这两条曲线不相交;

  (3)这两条曲线无限延伸,无限靠近 x 轴和 y 轴,但永不会与 x 轴和 y 轴相交.

  关于注意(3)可问学生:为什么图像与 x y 轴不相交?

  通过这个问题既可加深学生对反比例函数图像的记忆,又可培养学生思维的灵活性和深刻性.

  再让学生观察黑板上的图,提问:

  1.当时,双曲线的两个分支各在哪个象限?在每个象限内, y x 的增大怎样变化?

  2.当时,双曲线的两个分支各在哪个象限?在每个象限内, y x 的增大怎样变化?

  这两个问题由学生讨论总结之后回答,教师板书:

  对于双曲线(1)当:(1)当时,双曲线的两分支位于一、三象限, y x 的增大而减少;(2)当时,双曲线的两分支位于二、四象限, y x 的增大而增大.

  3.反比例函数的这一性质与正比例函数的性质有何异同?

  通过这个问题使学生能把学过的相关知识有机地串联起来,便于记忆和应用.

  练习二:教材P129中2由学生在练习本上完成,教师巡回指导.P130中2、3填在书上

  上面,我们讨论了反比例函数的'概念、图像和性质,下面我们再来看一个不同类型的例题:(出示幻灯)

  例2已知 y 与成反比例,并且当时,,求时, y 的值.

  用提问的方式对此题加以分析:

  (1) y 与成反比例是什么含义?

  由学生讨论这一问题,最后归结为根据反比例函数的概念,这句话说明了:.

  (2)根据这个式子,能否求出当时, y 的值?

  (3)要想求出 y 的值,必须先知道哪个量呢?

  (4)怎样才能确定 k 的值?用什么条件?

  答:用待定系数法,把时代入,求出 k 的值.

  (5)你能否自己完成这道例题:

  由一名同学板演,其他同学在练习本上完成.

  例3已知:,与 x 成正比例,与 x 成反比例,当时,时,,求 y x 的解析式.

  分析:一定要先写出 y x 的函数表达式,

  要用 x 分别把,表示出来得,

  要注意不能写成 k ,∴

  解:设,

  .

  由题意得

  ∴ .

  (二)总结、扩展

  教师提问,学生思考回答:

  1.什么是反比例函数?

  2.反比例函数的图像是什么样的?

  3.反比例函数的性质是什么?

  4.命题方向及题型设置,反比例函数也是中考命题的主要考点,其图像和性质,以及其函数解析式的确定,常以填空题、选择题出现,在低档题中,近两年各省、市的中考试卷中出现不少将反比例函数与一次函数、几何知识、三角知识等综合编拟的解答题,丰富了压轴题的形式和内容.

  五、布置作业

  1.教材P130中4,5,6

  2.选做:P130中B1,2

  六、板书设计

  13.8反比例函数及其图像

  引例:(1)例1:例2:例3:

初中数学分式教案3

  分式(2课时)

  上课时间 年 月 日星期

  一、复习要点

  1、分式的通分和约分

  2、分式的定义域

  3、分式的化简和求值

  二、复习过程

  1、求代数式的值:①化 ②代 ③算

  例:①已知x+y=5;xy=3,求x3y+2x2y2+xy3

  ②已知a=-1,b=-3,c=1,求 a2b--3abc

  ③已知a= 求 ÷( - )+

  ④已知x= y= ,求 +

  2、分式的通分和约分

  (1)通分最简公分母:小;高

  (2)约分:注: 与 和

  3、分式的定义域

  ①分式 (1)何时有意义(2)何时无意义(3)何时值为0

  4、分式的化简和求值

  ①1- ÷ +

  其他例题见复习用书13页5(6、7、8、)6

  三、小结 1、分式的通分和约分

  2、分式的'定义域

  3、分式的化简和求值

  四、练习:略

  五、作业:

  见复习用书

  分式(2课时)

  上课时间 年 月 日星期

  一、复习要点

  1、分式的通分和约分

  2、分式的定义域

  3、分式的化简和求值

  二、复习过程

  1、求代数式的值:①化 ②代 ③算

  例:①已知x+y=5;xy=3,求x3y+2x2y2+xy3

  ②已知a=-1,b=-3,c=1,求 a2b--3abc

  ③已知a= 求 ÷( - )+

  ④已知x= y= ,求 +

  2、分式的通分和约分

  (1)通分最简公分母:小;高

  (2)约分:注: 与 和

  3、分式的定义域

  ①分式 (1)何时有意义(2)何时无意义(3)何时值为0

  4、分式的化简和求值

  ①1- ÷ +

  其他例题见复习用书13页5(6、7、8、)6

  三、小结 1、分式的通分和约分

  2、分式的定义域

  3、分式的化简和求值

  四、练习:略

  五、作业:

  见复习用书

初中数学分式教案4

  学习目标

  1、了解分式的概念,会判断一个代数式是否是分式。

  2、能用分式表示简单问题中数量之间的关系,能解释简单分式的实际背景或几何意义。

  3、能分析出一个简单分式有、无意义的条件。

  4、会根据已知条件求分式的值。

  学习重点

  分式的概念,掌握分式有意义的条件

  学习难点

  分式有、无意义的条件

  教学流程

  预习导航

  一、创设情境:

  京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一。如果货运列车的速度为akm/h,快速列车的速度为货运列车2倍,那么:

  (1)货运列车从北京到上海需要多长时间?

  (2)快速列车从北京到上海需要多长时间?

  (3)已知从北京到上海快速列车比货运列车少用多少时间?

  观察刚才你们所列的式子,它们有什么特点?

  这些式子与分数有什么相同和不同之处?

  合作探究

  一、概念探究:

  1、列出下列式子:

  (1)一块长方形玻璃板的面积为2㎡,如果宽为am,那么长是

  (2)小丽用n元人民币买了m袋瓜子,那么每袋瓜子的价格是 元。

  (3)正n边形的每个内角为 度。

  (4)两块面积分别为a公顷、b公顷的棉田,产棉花分别为m㎏、n㎏。这两块棉田平均每公顷产棉花 ______㎏。

  2、两个数相除可以把它们的商表示成分数的形式。如果用字母 分别表示分数的分子和分母,那么 可以表示成什么形式呢?

  3、思考:

  上面所列各式有什么共同特点?

  (通过对以上几个实际问题的研讨,学会用 的形式表示实际问题中数量之间的关系,感受把分数推广到分式的优越性和必要性)

  分式的概念:

  4、小结分式的概念中应注意的问题.

  ① 分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;

  ② 分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;

  ③ 如同分数一样,在任何情况下,分式的分母的值都不可以为0,否则分式无意义。分式分母不为零是隐含在此分式中而无须注明的`条件。

  二、例题分析:

  例1 : 试解释分式 所表示的实际意义

  例2:求分式 的值 ①a=3 ②a=—

  例3:当取什么值时,分式 (1)没有意义?(2)有意义?(3)值为零。

  三、展示交流:

  1、在 ____________中,是整式的有_____________________,是分式的有________________;

  2、 写成分式为____________,且当m≠_____时分式有意义;

  3、当x_______时,分式 无意义,当x______时,分式的值为1。

  4、 若分式 的值为正数,则x的取值应是 ( )

  A. , B. C. D. 为任意实数

  四、提炼总结:

  1、什么叫分式?

  2、分式什么时候有意义?怎样求分式的值

初中数学分式教案5

  教学目标

  1.通过实践总结分式 的乘 除法,并能较熟练地进行式的乘除法 运算.

  2.理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘 方运算

  3.引 导学生通过分析、归纳,培养学生用类比的 方法探索新知识的能力

  教学重点 分式的乘除法、乘方运算

  教学难点 分式的乘除法、混合运算,分式乘法,除法 、乘方运算中符号的确定.

  教学过程

(一)复习与情境导入

  1.(1)什么叫做分式的.约分?约分的根据是什么?

  (2):下列各式是否正确?为什么?

  2.(1)回忆:

  计算:

  (2)尝试探究:计算:

  (1) ; (2) .

  概括 :分式的乘除法用式子表示即 抢答

  尝试 探究用式子表示,用文字表达.培养学生的合情推理能力.

  (二)实践与探索 1

  例2计算

  分析:①本题是几个分式在进行什么运算?

  ②每个分式的分子 和分母都是什么代数式?

  ③在分式的分子、分母中的多项式是否可以分解因式,怎样分解?

  ④怎样应用分式 乘法法则得到积的分式?

  解 原式= = .

  练习:①课本练习1.

  ②计 算:

  (三)实践与探索2

  探索分式的乘方的法则1.思 考

  我们都学过了有理数的乘方,那么分式的乘 方该是怎样运算的呢?

  先做下面的乘法:(1) = =( )3;

  (2) = =( )k.

  2.仔细观察这两题的结果,你能发现什么 规律?与同伴交流一下,然后完成下面的填 空: )(k) =___________(k是正整数)

  老师应格外强调符 号问题 自主探究,后合作交流学习探索分式的乘方的法则

  (四)小结与作业 怎样进 行分式 的乘除法?怎样进行分式的乘方?

  作业:

  (五)板书设计

【初中数学分式教案】相关文章:

初中数学分式教案4篇12-31

分式的教案02-25

《分式的加减法》教案08-27

初中数学 教案02-24

数学初中教案11-18

初中数学平行教案12-28

初中数学优秀教案12-30

初中数学《圆 》教案12-30

初中数学函数教案02-23