- 相关推荐
一元二次方程的根的判别式一教案
在教学工作者实际的教学活动中,常常需要准备教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。优秀的教案都具备一些什么特点呢?以下是小编精心整理的一元二次方程的根的判别式一教案,仅供参考,欢迎大家阅读。
一元二次方程的根的判别式一教案1
一、教学内容分析
“一元二次方程的根的判别式”一节,在整个中学数学中占有重要的地位,既可以根据它来判断一元二次方程的根的情况,又可以为今后研究不等式,二次三项式,二次函数,二次曲线等奠定基础,并且用它可以解决许多其它综合性问题。通过这一节的学习,培养学生的探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力,并向学生渗透分类的数学思想,渗透数学的简洁美。
教学重点:根的判别式定理及逆定理的正确理解和运用
教学难点:根的判别式定理及逆定理的运用。
教学关键:对根的判别式定理及其逆定理使用条件的透彻理解。
二、学情分析
学生已经学过一元二次方程的四种解法,并对 的作用已经有所了解,在此基础上来进一步研究 作用,它是前面知识的深化与总结。从思想方法上来说,学生对分类讨论、归纳总结的数学思想已经有所接触。所以可以通过让学生动手、动脑来培养学生探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力。
三、教学目标
依据教学大纲和对教材的分析,以及结合学生已有的知识基础,本节课的教学目标是:
知识和技能:
1、感悟一元二次方程的根的判别式的产生的过程;
2、能运用根的判别式,判别方程根的'情况和进行有关的推理论证;
3、会运用根的判别式求一元二次方程中字母系数的取值范围;
过程和方法:
1、培养学生的探索、创新精神;
2、培养学生的逻辑思维能力以及推理论证能力。
情感态度价值观:
1、向学生渗透分类的数学思想和数学的简洁美;
2、加深师生间的交流,增进师生的情感;
3、培养学生的协作精神。
一元二次方程的根的判别式一教案2
一、教材分析
1、教材所处的地位和作用:本课是阅读教材P39页的有关内容,虽然新课程标准没有要,教材上也作为阅读教材,但由于其内容太重要了,因而必须把它作为一堂课来上。它的作用在于让学生能尽快判定一元二次方程根的情况。
2、教学内容:本课主要是引导学生通过对一元二次方程ax2+bx+c=0(a≠0)配方后得到的(x+ )2 = 2 的观察,分析,讨论,发现,最后得出结论:只有当 2
b2-4ac≥ 0 时,才能直接开平方,进一步讨论分析得出根的判别式,从而运用它解决实际问题。
3、新课程标准的要求:由于根的判别式作为删去内容,虽然其内容重要,因而在处理这部分内容时,只能要求作了解性深入,练习尽可能简捷明确。
4、教学目标:
(1)知识能力目标:通过本课的学习,让学生在知识上了解掌握根的判别式。在能力上在求不解方程能判定一元二次方程根的情况;根据根的情况,探求所需的条件。
(2)情感目标:学生通过观察、分析、讨论、相互交流、培养与他人交流的能力,通过观察、分析、感受数学的变化美,激发学生的探求欲望。
5、数学思想:由感性认识到理性认识。
6、教学重点:
(1)发现根的判别式。
(2)用根的'判别式解决实际问题。
7、教学难点:
根的判别式的发现
8、教法:启导、探究
9、学法:合作学习与探究学习
10、教学模式:引导——发现式
二、教学过程
(一)自习回顾,引入新课
1、师生共同回顾:一元二次方程的解法
2、解下列一元二次方程。
(1)x2 -1=0 (2)x2 -2x =-1
(3)(x+1)2- 4=0 (4)x2 +2x+2=0
3、为什么会出现无解?
(二)探索
1、回顾:用配方法解一元二次方程ax2+bx+c=0(a≠0)的过程。
2、观察(x+ ) 2= 2 在什么情况下成立?
3、学生分组讨论。
4、猜测?
5、发现了什么?
6、总结:2(先由学生完成,后由教师补充完整),通过观察分析发现,只有当 b2-4ac≥ 0时, 才能直接开平方,也就是说,一元二次方程ax2+bx+c=0(a≠0)只有当系数a,b,c都是b2-4ac≥ 0时,才有实数根。(注意有根和有实数根的区别)
7、进一步观察发现一元二次方程ax2+bx+c=0(a≠0)
(1)当b2-4ac> 0时,_______________________
(2)当b2-4ac= 0时,_________________________
(3)当b2-4ac< 0时,_________________________
8、总结:
(1)比较分析学生的讨论分析结果。
(2)由学生总结。
(3)教师根据学生总结情况补充完整。
把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式。
(1)当b2-4ac> 0时,_______________________
(2)当b2-4ac= 0时,_________________________
(3)当b2-4ac< 0时,________________________
(三)应用新知:
1、不解方程判定下列一元二次方程根的情况。
(1)x2-x-6=0 b2-4ac=______ x1=_____ x2=_____
(2)x2-2x=1 b2-4ac=______ x1=_____ x2=_____
(3)x2-2x+2=0 b2-4ac=______ x1=_____ x2=_____
2、根据根的情况,求字母系数的取值范围。
例1:当m取什么值时,关于x的一元二次方程,2x2-(m+2)+2m=0有两个相等的实数根?并求出方程的根。
(1)读题分析:
A、二次项系数是什么? a=_______
B、一次项系数是什么? b=_______
C、常数项是什么? c=_______
(2)建立等式,根据有个常数根 b2-4ac=0
(3)由学生完成解题过程后教师评价
3、证明
例2:说明不论m取什么值时,关于x的一元二次方程(x-1)(x-2)=m2,不论m取代的值都有几个不相等的实根。
(四)练习
已知关于x的一元二次方程2x2-(2m+1)x+m=0的根的判别式是9,求m的值及方程的根。
(五)小结:把_________叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,并会用它们解决一些实际问题。
三、作业
1、把例1、例2整理在作业本上。
2、有余力的同学把练习题整理在作业本。
四、教学后记
一元二次方程的根的判别式一教案3
一、倍分关系
1、已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。
2、已知甲数是乙数的少5,甲数比乙数大65,求乙数。
3、某厂今年的产值是去年产值的3倍少25万,今年和去年产值总和是75万,求今年该厂的产值。
二、百分比问题:
1、某储户将12000元人民币存入银行一年,取出时共得到人民币12240元,求该储户所存储种的利率。
2、某商品降价12%后的售价为176元,求该商品的原价。
3、受季节影响,一个月内,某商品涨价10%后有下跌了10%,现在售价297元,求该商品原价。
三、物资分配:
1、一筐梨,分散后小箱装,用去8个箱子,还剩8kg未能装下;用9个箱子,则最后一个箱子还可以装4kg,求这筐梨的质量。
2、某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,问,春游的总人数是多少?
四、比例问题:
1、某一时期,日元与人民币的比价为25.2:1,那么日元50万,可以兑换人民币多少元?
2、图纸上某零件的`长度为32cm,它的实际长度是4cm,那么量得该图纸上另一个零件长度为12cm,求这个零件的实际长度。
3、某人将2600元工资作了打算,购书费用、休闲娱乐费用、家庭开支、存款比为1:3:5:4,请问此人打算休闲娱乐花去多少元?
五、调配问题:
1、一车间与二车间总人数为150人,将一车间的15名工人调动到二车间,两车间人数相等,求二车间人数。
2、某厂甲车间有工人32人,乙车间有62人,现在从厂外有招聘新工人98名分配到两个车间,问应该如何分配才能使二车间的人数是一车间人数的3倍。
六、数字问题:
1、三个连续偶数的和是360,求这三个偶数。
2、一个两位数个位数字与十位数字的和为10,如果将个位数字与十位数字交换位置,得到的新的两位数字比原来的两位数大18,求原来的两位数。
3、一个五位数,如果将第一位上的数移动到最后一位得到一个新的五位数(例如:此变换可以由4321得到3214),新的五位数比原来的数小11106,求原来的五位数。
七、几何问题:
1、将棱长为20cm的正方体铁块锻造成一个长为100cm,宽为5cm的长方体铁块,求长方体铁块的高度。
2、将棱长为20cm的正方体铁块没入盛水量筒中,已知量筒底面积为12cm 2,问量筒中水面升高了多少cm?
【一元二次方程的根的判别式一教案】相关文章:
一元二次方程复习教案03-12
一元一次不等式教案02-23
《根的秘密》教案04-08
一元一次方程教案02-13
《一元一次不等式组》教案02-22
《一元一次方程》教案04-02
一元二次不等式教案11-19
解一元一次方程教案02-25
我是一根棒棒糖中班教案03-17