范文资料网>反思报告>教案大全>《初中数学平行线的性质教案

初中数学平行线的性质教案

时间:2022-12-28 17:42:29 教案大全 我要投稿
  • 相关推荐

初中数学平行线的性质教案

  作为一位兢兢业业的人民教师,总归要编写教案,借助教案可以让教学工作更科学化。快来参考教案是怎么写的吧!下面是小编整理的初中数学平行线的性质教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

初中数学平行线的性质教案

初中数学平行线的性质教案1

  教学建议

  一、知识结构

  二、重点、难点分析

  本节教学的重点是不等式的三条基本性质。难点是不等式的基本性质3。掌握不等式的三条基本性质是进一步学习一元一次不等式(组)的解法等后续知识的基础。

  1、不等式的概念

  用不等号(“<”、“>”或“≠”表示不等关系的式子,叫做不等式。

  另外,(“≥”是把“>”、“=”)结合起来,读作“大于或等于”,或记作“≮”,亦即“不小于”)、(“≤”是把“<”、“=”结合起来,读作“小于或等于”,或记作“≯”,也就是“不大于”)等等,也都是不等式。

  2、当不等式的两边都加上或乘以同一个正数或负数时,所得结果仍是不等式。但变形所得的不等式中不等号的方向,有的与原不等式中不等号的方向相同,有的则不相同。因而叙述时不能笼统说成“……仍是不等式”,而应明确变形所得的不等式中不等号的方向。

  3、不等式成立与不等式不成立的意义

  例如:在不等式中,字母表示未知数。当取某一数值时,的值小于2,我们就说当时,不等式成立;当取另外某一个数值时,的值不小于2,我们就说当时,不等式不成立。

  4、不等式的三条基本性质是不等式变形的重要依据,性质1、2类似等式性质,不等号的方向不改变,性质3不等号的方向改变,这是不等式独有的性质,也是初学者易错的地方,因此要特别注意。

  一、素质教育目标

  (-)知识教学

  1、了解不等式的意义。

  2、理解什么是不等式成立,掌握不等式是否成立的判定方法。

  3、能依题意准确迅速地列出相应的不等式。

  (二)能力训练点

  1、培养学生运用类比方法研究相关内容的能力。

  2、训练学生运用所学知识解决实际问题的能力。

  (三)德育渗透点

  通过引导学生分析问题、解决问题,培养他们积极的参与意识,竞争意识。

  (四)美育渗透点

  通过不等式的学习,渗透具有不等量关系的数学美。

  二、学法引导

  1、教学方法:观察法、引导发现法、讨论法。

  2、学生学法:只有准确理解不等号的几种形式的意义,才能在实际中进行灵活的运用。

  三、重点·难点·疑点及解决办法

  (一)重点

  掌握不等式是否成立的判定方法;依题意列出正确的不等式。

  (二)难点

  依题意列出正确的不等式

  (三)疑点

  如何把题目中表示不等关系的词语准确地翻译成相应的数学符号。

  (四)解决方法

  在正确理解不等号的意义后,通过抓住体现不等量的关系的词语就能准确列出相应的不等式。

  四、课时安排

  一课时。

  五、教具学具准备

  投影仪或电脑、自制胶片。

  六、师生互动活动设计

  1、创设情境,通过复习有关等式的知识,自然导入新课的学习,激发学生的学习热情。

  2、从演示的有关实验中,探究相应的不等量关系,从学生的讨论、分析中探究代数式的不等关系的几种常见形式。

  3、从师生的互动讲解练习中掌握不等式的.有关知识,并培养学生具有一定的灵活应用能力。

  七、 教学步骤

  (一)明确目标

  本节课主要学习依题意正确迅速地列出不等式。

  (二)整体感知

  通过复习等式创设情境,自然过渡到不等式的学习过程中,又通过细心的分析、审题寻找出正确的不等量关系,从而列出正确的不等式。

  (三) 教学过程

  1、创设情境,复习导入

  我们已经学过等式和它的基本性质,请同学们观察下面习题,思考并回答:

  (1)什么是等式?等式中“=”两侧的代数式能否交换?“=”是否具有方向性?

  (2)已知数值:-5,,3,0,2,7,判断:上述数值哪些使等式成立?哪些使等式不成立?

  学生活动:首先自己思考,然后指名回答。

  教师释疑:①“=”表示相等关系,它没有方向性,等号两例可以相互交换,有时不交换只是因为书写习惯,例如方程的解。

  ②判断数取何值,等式成立和不成立实质上是在判断给定的数值是否为方程的解,因为等式为一元一次方程,它只有惟一解,所以等式只有在时成立,此外,均不成立。

  【教法说明】设置上述习题,目的是使学生温故而知新,为学习本节内容提供必要的知识准备。

  2、探索新知,讲授新课

  不等式和等式既有联系,又有区别,大家在学习时要自觉进行对比,请观察演示实验并回答:演示说明什么问题?

  师生活动:教师演示课本第54页天平称物重的两个实例(同时指出演示中物重为克,每个砝码重量均为1克),学生观察实验,思考后回答:演示中天平若不平衡说明天平两边所放物体的重量不相等。

  【教法说明】结合实际生活中同类量之间具有一种不相等关系的实例引入不等式的知识,能激发学生的学习兴趣。

  在实际生活中,像演示这样同类量之间具有不相等关系的例子是大量的、普遍的,这种关系需用不等式来表示。那么什么是不等式呢?请看:

  提问:

  (1)上述式子中有哪些表示数量关系的符号?

  (2)这些符号表示什么关系?

  (3)这些符号两侧的代数式可以随意交换位置吗?

  (4)什么叫不等式?

  学生活动:观察式予,思考并回答问题。

  答案:

  (1)分别使用“<”“>”“≠”。

  (2)表示不等关系。

  (3)不可以随意互换位置。

  (4)用不等号表示不等关系的式子叫不等式。

  不等号除了“<”“>”“≠”之外,还有无其他形式?

  学生活动:同桌讨论,尝试得到结论。

  教师释疑:①不等号除“<”“>”“≠”外,还有“≥”“≤”两种形式(“≥”是指“>”与“=”结合起来,读作“大于或等于”,也可理解成“不小于”;同理“≤”读作“小于或等于”,也可理解成“不大于”。)现在,我们来研究用“>”“<”表示的不等式。

  ②不等号“>”“<”表示不等关系,它们具有方向性,因而不等号两侧不可互交换,例如,不能写成。

  【教法说明】①通过学生自己观察思考,进而猜测出不等式的意义,这种教法充分发挥了学生的主体作用。

  ②通过教师释疑,学生对不等号的种类及其使用有了进一步的了解。

  3、尝试反馈,巩固知识

  同类量之间的大小关系常用“>”“<”来表示,请同学们根据自己对不等式的理解,解答习题。

  (1)用“<”或“>”境空。(抢答)

  ①4___-6;②-1____0③-8___-3;④-4.5___-4。

  (2)用不等式表示:

  ①是正数;②是负数;③与3的和小于6;④与2的差大于-1;⑤的4倍大于等于7;⑥的一半小于3。

  (3)学生独立完成课本第55页例1。

  注意:不是所有同类量都可以比较大小,例如不在同一直线上的两个力,它们只有等与不等关系,而无大小关系,这一点无需向学生说明。

  学生活动:第(1)题抢答;第(2)题在练习本上完成,由两个学生板演,完成之后,由学生判断板演是否正确

  教师活动:巡视辅导,统计做题正确的人数,同时给予肯定或鼓励。

  【教法说明】①第(1)题是为了调动积极性,强化竞争意识;第(2)题则是为了训练学生书面表述能力。

  ② 教学时要注意引导学生将题目中表示不等关系的词语翻译成相应的不等号,例如“小于”用“<”表示,“大于等于”用“≥”表示。

  下面研究什么使不等式成立,请同学们尝试解答习题:

  已知数值;-5,,3,0,2,-2.5,5.2;

  (1)判断:上述数值哪些使不等式成立?哪些使不成立?

  (2)说出几个使不等式成立的的数值;说出几个使不成立的数值。

  学生活动:同桌研究讨论,尝试得到答案。

  教师活动:引导学生回答,使未知数的取值不仅有正整数,还有负数、零、小数。

  师生总结:判定不等式是否成立的方法就是:如果不等号两侧数值的大小关系与不等另一致,称不等式成立;否则不成立。例如对于;当时,的值小于6,就说时不等式成立;当时,的值不小于6,就说时,不成立。

  【教法说明】通过学生自己举例,培养他们运用已有的知识探索新知识的意识,同时也活跃了课堂气氛。

  4。变式训练,培养能力

  (1)当取下列数值时,不等式是否成立?

  -7,0,0.5,1,,10

  (2)①用不等式表示:与3的和小于等于(不大于)6;

  ②写出使上述不等式成立的几个的数值;

  ③取何值时,不等式总成立?取何值时不成立?

  学生在练习本上完成1题,2题,同桌订正;教师抽查,强调注意事项。

  【教法说明】

  ①使学生进一步了解使不等式成立的未知数的值可以有多个,为6.2讲解不等式的解集做准备。

  ②强化思维能力和归纳总结能力。

  (四)总结、扩展

  学生小结,师生共同完善:

  本节课的重点内容:

  1、掌握不等式是否成立的判断方法;

  2、依题意列出正确的不等式。

  注意:列不等式时,要注意把表示不等关系的词语用相庆的不等号来表示。例如“不大于”用“≤”表示,而不用“<”表示,这一点学生容易出现错误。

  八、布置作业

  (一)必做题:P61? A组1,2,3。

  (二)选做题:

  1、单项选择

  (1)绝对值小于3的非负整数有()

  A、1,2  B。0,1  C。0,1,2  D。0,1,3

  (2)下列选项中,正确的是()

  A、不是负数,则

  B、是大于0的数,则

  C、不小于-1,则

  D、是负数,则

  2、依题意列不等式

  (1)的3倍与7的差是非正数

  (2)与6的和大于9且小于12

  (3)A市某天的最低气温是-5℃,最高气温是10℃,设这天气温为℃,则满足的条件是____________________。

  【设计说明】

  1、再现本节重点,巩固所学知识。

  2、有层次性地布置作业,可以调动全体学生的学习积极性,这也是实施素质教育的具体体现。

  参考答案

  1、<,<,>,>,<,<

  2、5.2,6,8.3,11是的解,-10,-7,-4. 5,0,3不是解

  (二)1。(1)C(2)D

  九、 板书设计

  一、什么叫不等式?

  用:“>”“<”“≠”“≥”“≤”表示不等关系的式子叫不等式。

  重点研究“>”“<”

  二、依题意列不等式

  “大于”“>”;“小于”“<”;“不大于”“≤”;“不小于”“≥”;

  三、不等式能否成立

  时,(√);时,(×);

  时,(×)

  四、归纳总结重点

  (一)依题意列不等式。

  (二)会判断不等式是否成立。

  十、背景知识与课外阅读

  费?马?数

  费马(P。de Fermat)是17世纪法国著名数学家,是法国南部土鲁斯议会的议员,他在数论、解析几何、概率论三个方面都有重要贡献。他无意发表自己的著作,平生没有完整的著作问世。去世后,人们才把他写在书页空白处和给朋友的书信中,以及一些陈旧手稿中的论述收集汇编成书。费马特别爱好数论,在这方面有好几项成就,如费马数、费马小定理、费马大定理等。

  费马于1640年前后,在验算了形如

  的数当的值分别为

  3,5,17,257,65537

  后(请注意这些数均为质数)便宣称:对于为任何自然数,是质数。

  大约过了100年,1732年数学家欧拉(L。Eu1er)指出。

  从而否定了费马的上述结论(猜想)。

  尔后,人们又对进行了大量研究,发现在中,除了上述五个质数外,人们尚未再发现新的质数。

  虽然费马的这个猜想是错误的,但为了纪念这位数学家,人们仍把这种形式的数叫做费马数。

初中数学平行线的性质教案2

  一、主题分析与设计

  本节课是苏科版义务教育课程标准实验教科书七年级数学(下册)第七章第2节内容——探索平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是"空间与图形"的重要组成部分。

  《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以"生活·数学"、"活动·思考"、"表达·应用"为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。

  二、教学目标

  1、知识与技能:掌握平行线的性质,能应用性质解决相关问题。

  2、数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。初中数学教育叙事

  3、解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。

  4、情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。

  三、教学重、难点

  1、重点:对平行线性质的掌握与应用

  2、难点:对平行线性质1的探究

  四、教学用具

  1、教具:多媒体平台及多媒体课件

  2、学具:三角尺、量角器、剪刀

  五、教学过程

  (一)创设情境,设疑激思

  1、播放一组幻灯片。

  内容:

  ①供火车行驶的铁轨上;

  ②游泳池中的泳道隔栏;

  ③横格纸中的线。

  2、提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?

  3、学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;

  4、教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7。2探索平行线的性质(板书)

  (二)数形结合,探究性质

  1、画图探究,归纳猜想

  教师提要求,学生实践操作:任意画出两条平行线(a ∥ b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)

  教师提出研究性问题一:

  指出图中的同位角,并度量这些角,把结果填入下表:

  教师提出研究性问题二:

  将画出图中的同位角任先一组剪下后叠合。

  学生活动一:画图————度量————填表————猜想

  学生活动二:画图————剪图————叠合

  让学生根据活动得出的数据与操作得出的结果归纳猜想:两直线平行,同位角相等。

  教师提出研究性问题三:

  再画出一条截线d,看你的猜想结论是否仍然成立?

  学生活动:探究、按小组讨论,最后得出结论:仍然成立。

  2、教师用《几何画板》课件验证猜想,让学生直观感受猜想

  3、教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)

  (三)引申思考,培养创新

  教师提出研究性问题四:

  请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?

  学生活动:独立探究————小组讨论————成果展示。

  教师活动:评价学生的研究成果,并引导学生说理

  因为a ∥ b(已知)

  所以∠ 1= ∠ 2(两直线平行,同位角相等)

  又∠ 1= ∠ 3(对顶角相等)

  ∠ 1+ ∠ 4=180°(邻补角的定义)

  所以∠ 2= ∠ 3(等量代换)

  ∠ 2+ ∠ 4=180°(等量代换)

  教师展示:

  平行线性质2:两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)

  平行线性质2:两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)

  (四)实际应用,优势互补

  1、(抢答)课本P13练一练1、2及习题7。2 1、5

  2、(讨论解答)课本P13习题7。2 2、3、4

  (五)课堂总结:这节课你有哪些收获?

  1、学生总结:平行线的性质1、2、3

  2、教师补充总结:

  ⑴用"运动"的观点观察数学问题;(如我们前面将同位角剪下叠合后分析问题)

  ⑵用数形结合的方法来解决问题;(如我们前面将同位角测量后分析问题)

  ⑶用准确的语言来表达问题;(如平行线的性质1、2、3的表述)

  ⑷用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程)

  (六)作业

  学习与评价P5 1、2、3(填空);4、5、6(选择);7、8(拓展与延伸)

  六、教学反思:

  数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为"过程"不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得"情感、态度、价值观"方面的体验。这节课的教学实现了三个方面的转变:

  ①教的转变:本节课教师的角色从知识的传授者转变为学生学习的.组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生"教"你他们活动的过程和通过活动所得的知识或方法。

  ②学的转变:学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地"学"数学,而是深入地"做"数学。

  ③课堂氛围的转变:整节课以"流畅、开放、合作、‘隐'导"为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以"对话"、"讨论"为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。

  总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧

【初中数学平行线的性质教案】相关文章:

平行线的性质教案03-25

小数的性质数学教学教案12-13

数学小数的意义和性质教案11-29

《等式的性质》数学计划10-20

初中化学氧气的性质和用途教案12-30

《小数的性质》教案02-20

数学初中教案11-18

初中数学 教案02-24

《减法的运算性质》教案02-22