- 相关推荐
高三数学排列教案
作为一名老师,有必要进行细致的教案准备工作,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那要怎么写好教案呢?下面是小编精心整理的高三数学排列教案,希望对大家有所帮助。
高三数学排列教案1
教学目标
(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;
(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;
(3)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;
教学重点难点
重点是排列的定义、排列数并运用这个公式去解决有关排列数的应用问题。
难点是解有关排列的应用题。
教学过程设计
一、复习引入
上节课我们学习了两个基本原理,请大家完成以下两题的练习(用投影仪出示):
1、书架上层放着50本不同的社会科学书,下层放着40本不同的自然科学的书。
(1)从中任取1本,有多少种取法?
(2)从中任取社会科学书与自然科学书各1本,有多少种不同的取法?
2、某农场为了考察三个外地优良品种A,B,C,计划在甲、乙、丙、丁、戊共五种类型的土地上分别进行引种试验,问共需安排多少个试验小区?
找一同学谈解答并说明怎样思考的的过程
第1(1)小题从书架上任取1本书,有两类办法,第一类办法是从上层取社会科学书,可以从50本中任取1本,有50种方法;第二类办法是从下层取自然科学书,可以从40本中任取1本,有40种方法。根据加法原理,得到不同的取法种数是50+40=90。第(2)小题从书架上取社会科学、自然科学书各1本(共取出2本),可以分两个步骤完成:第一步取一本社会科学书,第二步取一本自然科学书,根据乘法原理,得到不同的取法种数是:50×40=20xx。
第2题说,共有A,B,C三个优良品种,而每个品种在甲类型土地上实验有三个小区,在乙类型的土地上有三个小区……所以共需3×5=15个实验小区。
二、讲授新课
学习了两个基本原理之后,现在我们继续学习排列问题,这是我们本节讨论的重点。先从实例入手:
1、北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同飞机票?
由学生设计好方案并回答。
(1)用加法原理设计方案。
首先确定起点站,如果北京是起点站,终点站是上海或广州,需要制2种飞机票,若起点站是上海,终点站是北京或广州,又需制2种飞机票;若起点站是广州,终点站是北京或上海,又需要2种飞机票,共需要2+2+2=6种飞机票。
(2)用乘法原理设计方案。
首先确定起点站,在三个站中,任选一个站为起点站,有3种方法。即北京、上海、广泛任意一个城市为起点站,当选定起点站后,再确定终点站,由于已经选了起点站,终点站只能在其余两个站去选。那么,根据乘法原理,在三个民航站中,每次取两个,按起点站在前、终点站在后的顺序排列不同方法共有3×2=6种。
根据以上分析由学生(板演)写出所有种飞机票
再看一个实例。
在航海中,船舰常以“旗语”相互联系,即利用不同颜色的旗子发送出各种不同的信号。如有红、黄、绿三面不同颜色的旗子,按一定顺序同时升起表示一定的信号,问这样总共可以表示出多少种不同的信号?
找学生谈自己对这个问题的想法。
事实上,红、黄、绿三面旗子按一定顺序的一个排法表示一种信号,所以不同颜色的'同时升起可以表示出来的信号种数,也就是红、黄、绿这三面旗子的所有不同顺序的排法总数。
首先,先确定最高位置的旗子,在红、黄、绿这三面旗子中任取一个,有3种方法;
其次,确定中间位置的旗子,当最高位置确定之后,中间位置的旗子只能从余下的两面旗中去取,有2种方法。剩下那面旗子,放在最低位置。
根据乘法原理,用红、黄、绿这三面旗子同时升起表示出所有信号种数是:3×2×1=6(种)。
根据学生的分析,由另外的同学(板演)写出三面旗子同时升起表示信号的所有情况。(包括每个位置情况)
第三个实例,让全体学生都参加设计,把所有情况(包括每个位置情况)写出来。
由数字1,2,3,4可以组成多少个没有重复数字的三位数?写出这些所有的三位数。
根据乘法原理,从四个不同的数字中,每次取出三个排成三位数的方法共有4×3×2=24(个)。
请板演的学生谈谈怎样想的?
第一步,先确定百位上的数字。在1,2,3,4这四个数字中任取一个,有4种取法。
第二步,确定十位上的数字。当百位上的数字确定以后,十位上的数字只能从余下的三个数字去取,有3种方法。
第三步,确定个位上的数字。当百位、十位上的数字都确定以后,个位上的数字只能从余下的两个数字中去取,有2种方法。
根据乘法原理,所以共有4×3×2=24种。
下面由教师提问,学生回答下列问题
(1)以上我们讨论了三个实例,这三个问题有什么共同的地方?
都是从一些研究的对象之中取出某些研究的对象。
(2)取出的这些研究对象又做些什么?
实质上按着顺序排成一排,交换不同的位置就是不同的情况。
(3)请大家看书,第×页、第×行。我们把被取的对象叫做双元素,如上面问题中的民航站、旗子、数字都是元素。
上面第一个问题就是从3个不同的元素中,任取2个,然后按一定顺序排成一列,求一共有多少种不同的排法,后来又写出所有排法。
第二个问题,就是从3个不同元素中,取出3个,然后按一定顺序排成一列,求一共有多少排法和写出所有排法。
第三个问题呢?
从4个不同的元素中,任取3个,然后按一定的顺序排成一列,求一共有多少种不同的排法,并写出所有的排法。
给出排列定义
请看课本,第×页,第×行。一般地说,从n个不同的元素中,任取m(m≤n)个元素(本章只研究被取出的元素各不相同的情况),按着一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
下面由教师提问,学生回答下列问题
(1)按着这个定义,结合上面的问题,请同学们谈谈什么是相同的排列?什么是不同的排列?
从排列的定义知道,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序(即元素所在的位置)也必须相同。两个条件中,只要有一个条件不符合,就是不同的排列。
如第一个问题中,北京?广州,上海?广州是两个排列,第三个问题中,213与423也是两个排列。
再如第一个问题中,北京?广州,广州?北京;第二个问题中,红黄绿与红绿黄;第三个问题中231和213虽然元素完全相同,但排列顺序不同,也是两个排列。
(2)还需要搞清楚一个问题,“一个排列”是不是一个数?
生:“一个排列”不应当是一个数,而应当指一件具体的事。如飞机票“北京?广州”是一个排列,“红黄绿”是一种信号,也是一个排列。如果问飞机票有多少种?能表示出多少种信号。只问种数,不用把所有情况罗列出来,才是一个数。前面提到的第三个问题,实质上也是这样的。
三、课堂练习
大家思考,下面的排列问题怎样解?
有四张卡片,每张分别写着数码1,2,3,4。有四个空箱,分别写着号码1,2,3,4。把卡片放到空箱内,每箱必须并且只能放一张,而且卡片数码与箱子号码必须不一致,问有多少种放法?(用投影仪示出)
分析:这是从四张卡片中取出4张,分别放在四个位置上,只要交换卡片位置,就是不同的放法,是个附有条件的排列问题。
解法是:第一步把数码卡片四张中2,3,4三张任选一个放在第1空箱。
第二步从余下的三张卡片中任选符合条件的一张放在第2空箱。
第三步从余下的两张卡片中任选符合条件的一张放在第3空箱。
第四步把最后符合条件的一张放在第四空箱。具体排法,用下面图表表示:
所以,共有9种放法。
四、作业
课本:P232练习1,2,3,4,5,6,7。
高三数学排列教案2
排列问题的应用题是学生学习的难点,也是高考的必考内容,笔者在教学中尝试将排列问题归纳为三种类型来解决:
下面就每一种题型结合例题总结其特点和解法,并附以近年的高考原题供读者参研.
一. 能排不能排排列问题(即特殊元素在特殊位置上有特别要求的排列问题)
解决此类问题的关键是特殊元素或特殊位置优先.或使用间接法.
例1.(1)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?
(2)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?
(3)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?
(4)7位同学站成一排,其中甲不能在排头、乙不能站排尾的排法共有多少种?
解析:(1)先考虑甲站在中间有1种方法,再在余下的6个位置排另外6位同学,共 种方法;
(2)先考虑甲、乙站在两端的排法有 种,再在余下的5个位置排另外5位同学的排法有 种,共 种方法;
(3) 先考虑在除两端外的5个位置选2个安排甲、乙有 种,再在余下的5个位置排另外5位同学排法有 种,共 种方法;本题也可考虑特殊位置优先,即两端的排法有 ,中间5个位置有 种,共 种方法;
(4)分两类乙站在排头和乙不站在排头,乙站在排头的排法共有 种,乙不站在排头的排法总数为:先在除甲、乙外的5人中选1人安排在排头的方法有 种,中间5个位置选1个安排乙的方法有 ,再在余下的5个位置排另外5位同学的排法有 ,故共有 种方法;本题也可考虑间接法,总排法为 ,不符合条件的甲在排头和乙站排尾的排法均为 ,但这两种情况均包含了甲在排头和乙站排尾的情况,故共有 种.
例2.某天课表共六节课,要排政治、语文、数学、物理、化学、体育共六门课程,如果第一节不排体育,最后一节不排数学,共有多少种不同的排课方法?
解法1:对特殊元素数学和体育进行分类解决
(1)数学、体育均不排在第一节和第六节,有 种,其他有 种,共有 种;
(2)数学排在第一节、体育排在第六节有一种,其他有 种,共有 种;
(3)数学排在第一节、体育不在第六节有 种,其他有 种,共有 种;
(4)数学不排在第一节、体育排在第六节有 种,其他有 种,共有 种;
所以符合条件的排法共有 种
解法2:对特殊位置第一节和第六节进行分类解决
(1)第一节和第六节均不排数学、体育有 种,其他有 种,共有 种;
(2)第一节排数学、第六节排体育有一种,其他有 种,共有 种;
(3)第一节排数学、第六节不排体育有 种,其他有 种,共有 种;
(4)第一节不排数学、第六节排体育有 种,其他有 种,共有 种;
所以符合条件的排法共有 种.
解法3:本题也可采用间接排除法解决
不考虑任何限制条件共有 种排法,不符合题目要求的排法有:(1)数学排在第六节有 种;(2)体育排在第一节有 种;考虑到这两种情况均包含了数学排在第六节和体育排在第一节的情况 种所以符合条件的排法共有 种
附:1、(20xx北京卷)五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有( )
(A) 种 (B) 种 (C) 种 (D) 种
解析:本题在解答时将五个不同的子项目理解为5个位置,五个工程队相当于5个不同的`元素,这时问题可归结为能排不能排排列问题(即特殊元素在特殊位置上有特别要求的排列问题),先排甲工程队有 ,其它4个元素在4个位置上的排法为 种,总方案为 种.故选(B).
2、(20xx全国卷Ⅱ)在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有 个.
解析:本题在解答时只须考虑个位和千位这两个特殊位置的限制,个位为1、2、3、4中的某一个有4种方法,千位在余下的4个非0数中选择也有4种方法,十位和百位方法数为 种,故方法总数为 种.
3、(20xx福建卷)从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有 ( )
A.300种 B.240种 C.144种 D.96种
解析:本题在解答时只须考虑巴黎这个特殊位置的要求有4种方法,其他3个城市的排法看作标有这3个城市的3个签在5个位置(5个人)中的排列有 种,故方法总数为 种.故选(B).
上述问题归结为能排不能排排列问题,从特殊元素和特殊位置入手解决,抓住了问题的本质,使问题清晰明了,解决起来顺畅自然.
二.相邻不相邻排列问题(即某两或某些元素不能相邻的排列问题)
相邻排列问题一般采用大元素法,即将相邻的元素捆绑作为一个元素,再与其他元素进行排列,解答时注意释放大元素,也叫捆绑法.不相邻排列问题(即某两或某些元素不能相邻的排列问题)一般采用插空法.
例3. 7位同学站成一排,
(1)甲、乙和丙三同学必须相邻的排法共有多少种?
(2)甲、乙和丙三名同学都不能相邻的排法共有多少种?
(3)甲、乙两同学间恰好间隔2人的排法共有多少种?
解析:(1)第一步、将甲、乙和丙三人捆绑成一个大元素与另外4人的排列为 种,
第二步、释放大元素,即甲、乙和丙在捆绑成的大元素内的排法有 种,所以共 种;
(2)第一步、先排除甲、乙和丙之外4人共 种方法,第二步、甲、乙和丙三人排在4人排好后产生的5个空挡中的任何3个都符合要求,排法有 种,所以共有 种;(3)先排甲、乙,有 种排法,甲、乙两人中间插入的2人是从其余5人中选,有 种排法,将已经排好的4人当作一个大元素作为新人参加下一轮4人组的排列,有 种排法,所以总的排法共有 种.
附:1、(20xx辽宁卷)用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有 个.(用数字作答)
解析:第一步、将1和2捆绑成一个大元素,3和4捆绑成一个大元素,5和6捆绑成一个大元素,第二步、排列这三个大元素,第三步、在这三个大元素排好后产生的4个空挡中的任何2个排列7和8,第四步、释放每个大元素(即大元素内的每个小元素在捆绑成的大元素内部排列),所以共有 个数.
2、 (20xx. 重庆理)某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,
二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰
好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为 ( )
A. B. C. D.
解析:符合要求的基本事件(排法)共有:第一步、将一班的3位同学捆绑成一个大元素,第二步、这个大元素与其它班的5位同学共6个元素的全排列,第三步、在这个大元素与其它班的5位同学共6个元素的全排列排好后产生的7个空挡中排列二班的2位同学,第四步、释放一班的3位同学捆绑成的大元素,所以共有 个;而基本事件总数为 个,所以符合条件的概率为 .故选( B ).
3、(20xx京春理)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为( )
A.42 B.30 C.20 D.12
解析:分两类:增加的两个新节目不相邻和相邻,两个新节目不相邻采用插空法,在5个节目产生的6个空挡排列共有 种,将两个新节目捆绑作为一个元素叉入5个节目产生的6个空挡中的一个位置,再释放两个新节目 捆绑成的大元素,共有 种,再将两类方法数相加得42种方法.故选( A ).
三.机会均等排列问题(即某两或某些元素按特定的方式或顺序排列的排列问题)
解决机会均等排列问题通常是先对所有元素进行全排列,再借助等可能转化,即乘以符合要求的某两(或某些)元素按特定的方式或顺序排列的排法占它们(某两(或某些)元素)全排列的比例,称为等机率法或将特定顺序的排列问题理解为组合问题加以解决.
例4、 7位同学站成一排.
(1)甲必须站在乙的左边?
(2)甲、乙和丙三个同学由左到右排列?
解析:(1)7位同学站成一排总的排法共 种,包括甲、乙在内的7位同学排队只有甲站在乙的左边和甲站在乙的右边两类,它们的机会是均等的,故满足要求的排法为 ,本题也可将特定顺序的排列问题理解为组合问题加以解决,即先在7个位置中选出2个位置安排甲、乙, 由于甲在乙的左边共有 种,再将其余5人在余下的5个位置排列有 种,得排法数为 种;
(2)参见(1)的分析得 (或 ).
高三数学排列教案3
教学目标
(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;
(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;
(3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数;
(4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;
(5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。
教学建议
一、知识结构
二、重点难点分析
本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题。难点是导出排列数的公式和解有关排列的'应用题。突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中。
从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取m个元素的一个排列。因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同。排列数是指从n个不同元素中任取m(m≤n)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数。排列与排列数是两个概念,前者是具有m个元素的排列,后者是这种排列的不同种数。从集合的角度看,从n个元素的有限集中取出m个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数。
公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解。要重点分析好的推导。
排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力。
在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用。
在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求。
三、教法建议
①在讲解排列数的概念时,要注意区分“排列数”与“一个排列”这两个概念。一个排列是指“从 n 个不同元素中,任取出 m 个元素,按照一定的顺序摆成一排”,它不是一个数,而是具体的一件事;排列数是指“从 n 个不同元素中取出 m 个元素的所有排列的个数”,它是一个数。例如,从3个元素 a , b , c 中每次取出2个元素,按照一定的顺序排成一排,有如下几种:
ab , ac , ba , bc , ca , cb ,
其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号表示排列数。
②排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”。
从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列。
在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别。
在排列的定义中,如果有的书上叫选排列,如果,此时叫全排列。
要特别注意,不加特殊说明,本章不研究重复排列问题。
③关于排列数公式的推导的教学。公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解。课本上用的是不完全归纳法,先推导,,…,再推广到,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的。
导出公式后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“ n ”、“ m ”比较复杂的时候把公式写错。这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是 n ,后面每个因数都比它前面一个因数少1,最后一个因数是,共 m 个因数相乘。”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘。
公式是在引出全排列数公式后,将排列数公式变形后得到的公式。对这个公式指出两点:
(1)在一般情况下,要计算具体的排列数的值,常用前一个公式,而要对含有字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;
(2)为使这个公式在时也能成立,规定,如同时一样,是一种规定,因此,不能按阶乘数的原意作解释。
④建议应充分利用树形图对问题进行分析,这样比较直观,便于理解。
⑤学生在开始做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实。随着学生解题熟练程度的提高,可以逐步降低这种要求。
高三数学排列教案4
内容提要:本文把常见的排列问题归纳成三种典型问题,并在排列的一般规定性下,对每一种类型的问题通过典型例题归纳出相应的解决方案,并附以近年的高考原题及解析,使我们对排列问题的认识更深入本质,对排列问题的解决更有章法可寻。
关键词: 特殊优先,大元素,捆绑法,插空法,等机率法
排列问题的应用题是学生学习的难点,也是高考的必考内容,笔者在教学中尝试将排列
问题归纳为三种类型来解决:
下面就每一种题型结合例题总结其特点和解法,并附以近年的高考原题供读者参研。
一、能排不能排排列问题(即特殊元素在特殊位置上有特别要求的排列问题)
解决此类问题的关键是特殊元素或特殊位置优先。或使用间接法。
例1:(1)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?
(2)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?
(3)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?
(4)7位同学站成一排,其中甲不能在排头、乙不能站排尾的排法共有多少种?
解析:
(1)先考虑甲站在中间有1种方法,再在余下的6个位置排另外6位同学,共 种方法;
(2)先考虑甲、乙站在两端的排法有 种,再在余下的5个位置排另外5位同学的排法有 种,共 种方法;
(3) 先考虑在除两端外的5个位置选2个安排甲、乙有 种,再在余下的5个位置排另外5位同学排法有 种,共 种方法;本题也可考虑特殊位置优先,即两端的排法有 ,中间5个位置有 种,共 种方法;
(4)分两类乙站在排头和乙不站在排头,乙站在排头的排法共有 种,乙不站在排头的排法总数为:先在除甲、乙外的5人中选1人安排在排头的方法有 种,中间5个位置选1个安排乙的方法有 ,再在余下的5个位置排另外5位同学的排法有 ,故共有 种方法;本题也可考虑间接法,总排法为 ,不符合条件的甲在排头和乙站排尾的排法均为 ,但这两种情况均包含了甲在排头和乙站排尾的情况,故共有 种。
例2。某天课表共六节课,要排政治、语文、数学、物理、化学、体育共六门课程,如果第一节不排体育,最后一节不排数学,共有多少种不同的排课方法?
解法1:对特殊元素数学和体育进行分类解决
(1)数学、体育均不排在第一节和第六节,有 种,其他有 种,共有 种;
(2)数学排在第一节、体育排在第六节有一种,其他有 种,共有 种;
(3)数学排在第一节、体育不在第六节有 种,其他有 种,共有 种;
(4)数学不排在第一节、体育排在第六节有 种,其他有 种,共有 种;
所以符合条件的排法共有 种
解法2:对特殊位置第一节和第六节进行分类解决
(1)第一节和第六节均不排数学、体育有 种,其他有 种,共有 种;
(2)第一节排数学、第六节排体育有一种,其他有 种,共有 种;
(3)第一节排数学、第六节不排体育有 种,其他有 种,共有 种;
(4)第一节不排数学、第六节排体育有 种,其他有 种,共有 种;
所以符合条件的排法共有 种。
解法3:本题也可采用间接排除法解决
不考虑任何限制条件共有 种排法,不符合题目要求的排法有:(1)数学排在第六节有 种;(2)体育排在第一节有 种;考虑到这两种情况均包含了数学排在第六节和体育排在第一节的情况 种所以符合条件的排法共有 种
附:
1、(20xx北京卷)五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有( )
(A) 种 (B) 种 (C) 种 (D) 种
解析:本题在解答时将五个不同的子项目理解为5个位置,五个工程队相当于5个不同的元素,这时问题可归结为能排不能排排列问题(即特殊元素在特殊位置上有特别要求的排列问题),先排甲工程队有 ,其它4个元素在4个位置上的排法为 种,总方案为 种。故选(B)。
2、(20xx全国卷Ⅱ)在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有 个。
解析:本题在解答时只须考虑个位和千位这两个特殊位置的限制,个位为1、2、3、4中的某一个有4种方法,千位在余下的4个非0数中选择也有4种方法,十位和百位方法数为 种,故方法总数为 种。
3、(20xx福建卷)从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有 ( )
A、300种 B、240种 C、144种 D、96种
解析:本题在解答时只须考虑巴黎这个特殊位置的要求有4种方法,其他3个城市的排法看作标有这3个城市的3个签在5个位置(5个人)中的排列有 种,故方法总数为 种。故选(B)。
上述问题归结为能排不能排排列问题,从特殊元素和特殊位置入手解决,抓住了问题的本质,使问题清晰明了,解决起来顺畅自然。
二、相邻不相邻排列问题(即某两或某些元素不能相邻的排列问题)
相邻排列问题一般采用大元素法,即将相邻的元素捆绑作为一个元素,再与其他元素进行排列,解答时注意释放大元素,也叫捆绑法。不相邻排列问题(即某两或某些元素不能相邻的排列问题)一般采用插空法。
例3:7位同学站成一排,
(1)甲、乙和丙三同学必须相邻的排法共有多少种?
(2)甲、乙和丙三名同学都不能相邻的排法共有多少种?
(3)甲、乙两同学间恰好间隔2人的排法共有多少种?
解析:
(1)第一步、将甲、乙和丙三人捆绑成一个大元素与另外4人的排列为 种,
第二步、释放大元素,即甲、乙和丙在捆绑成的大元素内的排法有 种,所以共 种;
(2)第一步、先排除甲、乙和丙之外4人共 种方法,第二步、甲、乙和丙三人排在4人排好后产生的.5个空挡中的任何3个都符合要求,排法有 种,所以共有 种;(3)先排甲、乙,有 种排法,甲、乙两人中间插入的2人是从其余5人中选,有 种排法,将已经排好的4人当作一个大元素作为新人参加下一轮4人组的排列,有 种排法,所以总的排法共有 种。
附:1、(20xx辽宁卷)用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有 个。(用数字作答)
解析:第一步、将1和2捆绑成一个大元素,3和4捆绑成一个大元素,5和6捆绑成一个大元素,第二步、排列这三个大元素,第三步、在这三个大元素排好后产生的4个空挡中的任何2个排列7和8,第四步、释放每个大元素(即大元素内的每个小元素在捆绑成的大元素内部排列),所以共有 个数。
2、 (20xx。 重庆理)某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,
二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰
好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为 ( )
A、B、C、D。
解析:符合要求的基本事件(排法)共有:第一步、将一班的3位同学捆绑成一个大元素,第二步、这个大元素与其它班的5位同学共6个元素的全排列,第三步、在这个大元素与其它班的5位同学共6个元素的全排列排好后产生的7个空挡中排列二班的2位同学,第四步、释放一班的3位同学捆绑成的大元素,所以共有 个;而基本事件总数为 个,所以符合条件的概率为 。故选( B )。
3、(20xx京春理)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目。如果将这两个节目插入原节目单中,那么不同插法的种数为( )
A、42 B、30 C、20 D、12
解析:分两类:增加的两个新节目不相邻和相邻,两个新节目不相邻采用插空法,在5个节目产生的6个空挡排列共有 种,将两个新节目捆绑作为一个元素叉入5个节目产生的6个空挡中的一个位置,再释放两个新节目 捆绑成的大元素,共有 种,再将两类方法数相加得42种方法。故选( A )。
三、机会均等排列问题(即某两或某些元素按特定的方式或顺序排列的排列问题)
解决机会均等排列问题通常是先对所有元素进行全排列,再借助等可能转化,即乘以符合要求的某两(或某些)元素按特定的方式或顺序排列的排法占它们(某两(或某些)元素)全排列的比例,称为等机率法或将特定顺序的排列问题理解为组合问题加以解决。
例4、 7位同学站成一排。
(1)甲必须站在乙的左边?
(2)甲、乙和丙三个同学由左到右排列?
解析:
(1)7位同学站成一排总的排法共 种,包括甲、乙在内的7位同学排队只有甲站在乙的左边和甲站在乙的右边两类,它们的机会是均等的,故满足要求的排法为 ,本题也可将特定顺序的排列问题理解为组合问题加以解决,即先在7个位置中选出2个位置安排甲、乙, 由于甲在乙的左边共有 种,再将其余5人在余下的5个位置排列有 种,得排法数为 种;
(2)参见(1)的分析得 (或 )。
本文通过较为清晰的脉络把排列问题分为三种类型,使我们对排列问题有了比较系统的认识。但由于排列问题种类繁多,总会有些问题不能囊括其中,也一定存在许多不足,希望读者能和我一起研究完善。
【高三数学排列教案】相关文章:
简单的排列教案03-02
排列组合教案04-02
简单的排列教案14篇03-03
排列组合教案13篇04-04
高三数学计划12-12
高三数学总结11-19
商务交往中的位次排列礼仪04-11
高三数学教学总结02-14
高三数学总结15篇12-06