范文资料网>书稿范文>总结>《二次函数知识点总结

二次函数知识点总结

时间:2022-12-19 17:53:23 总结 我要投稿
  • 相关推荐

二次函数知识点总结

  总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,它能使我们及时找出错误并改正,因此我们要做好归纳,写好总结。总结怎么写才不会千篇一律呢?下面是小编为大家整理的二次函数知识点总结,仅供参考,欢迎大家阅读。

二次函数知识点总结

二次函数知识点总结1

  当h>0时,y=a(_-h)^2的图象可由抛物线y=a_^2向右平行移动h个单位得到,

  当h<0时,则向左平行移动|h|个单位得到.

  当h>0,k>0时,将抛物线y=a_^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(_-h)^2+k的图象;

  当h>0,k<0时,将抛物线y=a_^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(_-h)^2+k的图象;

  当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(_-h)^2+k的图象;

  当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(_-h)^2+k的图象;

  因此,研究抛物线y=a_^2+b_+c(a≠0)的图象,通过配方,将一般式化为y=a(_-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

  2.抛物线y=a_^2+b_+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线_=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

  3.抛物线y=a_^2+b_+c(a≠0),若a>0,当_≤-b/2a时,y随_的增大而减小;当_≥-b/2a时,y随_的增大而增大.若a<0,当_≤-b/2a时,y随_的增大而增大;当_≥-b/2a时,y随_的增大而减小.

  4.抛物线y=a_^2+b_+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c);

  (2)当△=b^2-4ac>0,图象与_轴交于两点A(_?,0)和B(_?,0),其中的_1,_2是一元二次方程a_^2+b_+c=0

  (a≠0)的`两根.这两点间的距离AB=|_?-_?|

  当△=0.图象与_轴只有一个交点;

  当△<0.图象与_轴没有交点.当a>0时,图象落在_轴的上方,_为任何实数时,都有y>0;当a<0时,图象落在_轴的下方,_为任何实数时,都有y<0.

  5.抛物线y=a_^2+b_+c的最值:如果a>0(a<0),则当_=-b/2a时,y最小(大)值=(4ac-b^2)/4a.

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

  6.用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知_、y的三对对应值时,可设解析式为一般形式:

  y=a_^2+b_+c(a≠0).

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(_-h)^2+k(a≠0).

  (3)当题给条件为已知图象与_轴的两个交点坐标时,可设解析式为两根式:y=a(_-_?)(_-_?)(a≠0).

  7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

二次函数知识点总结2

  教学目标:

  (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  (2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

  教学重点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  教学难点:求出函数的自变量的取值范围。

  教学过程:

  一、问题引新

  1.设矩形花圃的垂直于墙(墙长18)的一边AB的长为_m,先取_的一些值,算出矩形的另一边BC的长,进而得出矩形的'面积ym2.试将计算结果填写在下表的空格中,

  AB长_(m) 1 2 3 4 5 6 7 8 9

  BC长(m) 12

  面积y(m2) 48

  2._的值是否可以任意取?有限定范围吗?

  3.我们发现,当AB的长(_)确定后,矩形的面积(y)也随之确定,y是_的函数,试写出这个函数的关系式,教师可提出问题,(1)当AB=_m时,BC长等于多少m?(2)面积y等于多少? y=_(20-2_)

  二、提出问题,解决问题

  1、引导学生看书第二页问题一、二

  2、观察概括

  y=6_2 d= n /2 (n-3) y= 20 (1-_)2

  以上函数关系式有什么共同特点? (都是含有二次项)

  3、二次函数定义:形如y=a_2+b_+c(a、b、、c是常数,a≠0)的函数叫做_的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

  4、课堂练习

  (1) (口答)下列函数中,哪些是二次函数?

  (1)y=5_+1 (2)y=4_2-1

  (3)y=2_3-3_2 (4)y=5_4-3_+1

  (2).P3练习第1,2题。

  五、小结叙述二次函数的定义.

  第二课时:26.1二次函数(2)

  教学目标:

  1、使学生会用描点法画出y=a_2的图象,理解抛物线的有关概念。

  2、使学生经历、探索二次函数y=a_2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯。

  教学重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=a_2的图象

  教学难点:用描点法画出二次函数y=a_2的图象以及探索二次函数性质。

二次函数知识点总结3

  I.定义与定义表达式

  一般地,自变量_和因变量y之间存在如下关系:y=a_^2+b_+c

  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为_的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:y=a_^2+b_+c(a,b,c为常数,a≠0)

  顶点式:y=a(_-h)^2+k[抛物线的顶点P(h,k)]

  交点式:y=a(_-_?)(_-_?)[仅限于与_轴有交点A(_?,0)和B(_?,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2a k=(4ac-b^2)/4a _?,_?=(-b±√b^2-4ac)/2a

  III.二次函数的图像

  在平面直角坐标系中作出二次函数y=_^2的'图像,可以看出,二次函数的图像是一条抛物线。

  IV.抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线_=-b/2a。

  对称轴与抛物线的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线_=0)

  2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在_轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6.抛物线与_轴交点个数

  Δ=b^2-4ac>0时,抛物线与_轴有2个交点。

  Δ=b^2-4ac=0时,抛物线与_轴有1个交点。

  Δ=b^2-4ac<0时,抛物线与_轴没有交点。

  _的取值是虚数(_=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

  V.二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=a_^2+b_+c,

  当y=0时,二次函数为关于_的一元二次方程(以下称方程),即a_^2+b_+c=0

  此时,函数图像与_轴有无交点即方程有无实数根。函数与_轴交点的横坐标即为方程的根。

二次函数知识点总结4

  二次函数概念

  一般地,把形如y=ax2+bx+c(其中a、b、c是常数,a≠0,b,c可以为0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。二次函数图像是轴对称图形。

  注意:“变量”不同于“自变量”,不能说“二次函数是指变量的最高次数为二次的多项式函数”。“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在实数范围内任意取值。在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别,如同函数不等于函数的关系。

  二次函数公式大全

  二次函数

  I.定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:

  y=ax2+bx+c(a,b,c为常数,a≠0)

  则称y为x的二次函数。

  二次函数表达式的.右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:y=ax2;+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)2;+k [抛物线的顶点P(h,k)]

  交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2a k=(4ac-b2;)/4a x1,x2=(-b±√b2;-4ac)/2a

  III.二次函数的图象

  在平面直角坐标系中作出二次函数y=x??的图象,

  可以看出,二次函数的图象是一条抛物线。

  IV.抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线

  x = -b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为

  P [ -b/2a ,(4ac-b2;)/4a ]。

  当-b/2a=0时,P在y轴上;当Δ= b2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6.抛物线与x轴交点个数

  Δ= b2-4ac>0时,抛物线与x轴有2个交点。

  Δ= b2-4ac=0时,抛物线与x轴有1个交点。

  Δ= b2-4ac<0时,抛物线与x轴没有交点。

  V.二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=ax2;+bx+c,

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),

  即ax2;+bx+c=0

  此时,函数图象与x轴有无交点即方程有无实数根。

  函数与x轴交点的横坐标即为方程的根。

【二次函数知识点总结】相关文章:

二次函数教案07-31

《二次函数》教案02-21

二次函数教案15篇02-20

高中数学三角函数知识点总结06-08

正弦函数、余弦函数图像教案02-25

高一数学函数知识总结12-02

《函数的应用》教案02-26

《幂函数》教案11-04

初中数学函数教案02-23