- 相关推荐
2022苏教版六年级数学下册教案
作为一名无私奉献的老师,就有可能用到教案,教案是备课向课堂教学转化的关节点。那么问题来了,教案应该怎么写?下面是小编为大家收集的2022苏教版六年级数学下册教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
2022苏教版六年级数学下册教案1
教学目标
1.复习正反比例的意义,练习判断两种相关联的量成正比例还是成反比例。
2.复习用正比例方法解答应用题。
3.复习用反比例方法解答应用题。
教学重点和难点
判断两种相关联的量成什么比例;确定解答应用题的方法。
教学过程设计
(一)复习数量关系
判断两种相关联的量成不成比例,确定解答应用题的方法。
1.被除数一定,除数和商。
2.一条路,已修的和未修的。
3.梯形的上、下底长度一定,梯形的面积和它的高度。
4.每块砖的面积一定,砖的块数和铺地面积。
5.挖一条水渠,参加的人数和所需要的时间。
6.从甲地到乙地所需的时间和所行走的速度。
7.单位面积一定,播种面积和总产量。
8.时间一定,速度和距离。
9.订阅《北京儿童》的份数和所需钱数。
(二)复习应用题
1.某工厂八月份计划造一批机床,开工8天就造了56台,照这样速度到月底可生产多少台?
第一步,先找对应关系:
8天56台
31天?台
第二步,判断成什么比例?(每天生产的台数一定,成正比例。)
请你在对应关系的旁边写上正字,决定用正比例方法做。
解 设到月底可生产x台。
x=217
答:照这样速度月底可生产217台。
2.一批纸张,钉成20页一本的练习本,能钉600本。如果钉成24页一本的练习本,能钉多少本?
第一步,先找对应关系:
20页600本
24页?本
第二步,判断成什么比例?(纸张总页数一定,成反比例。)
请你在对应关系的旁边写上反字,决定用反比例方法做。
解 钉成24页一本的练习本,可钉x本。
24x=20600
x=500
答:如果钉成24页一本的练习本可钉500本。
学生独立地用老师教的.分析应用题的思路和方法在本上做两道题。
(1)火车3小时行135千米,用同样的速度5小时可以行多少千米?
(2)有一批砖,25人去搬,6小时搬完,如果30人去搬,需要多少小时搬完?
(三)练习解答两步的比例应用题
1.李涛读一本书,每天读6页,30天可以读完。如果每天多读4页,多少天可以读完?
黑板上的对应关系变成:
解 设x天读完。
(6+4)x=630
10x=630
x=18
答:18天可以读完。
2.在第1题的基础上,改变问题。
李涛读一本书,每天读6页,30天可以读完,如果每天多读4页,提前几天读完?
对应关系:
解 设如果每天多读4页,x天读完。
(6+4)x=630
10x=630
x=18
30-18=12(天)
答:提前12天读完。
(指导学生分析、比较。)
以上两道题,什么发生了变化?什么没有变?(条件和问题发生了变化,使原来的题复杂了一步,但用反比例解的方法没有变。)
练习(学生独立分析,做题。)
1.一辆汽车从甲城开往乙城,3小时行驶105km。用同样的速度又行驶了1.2h到达乙城,甲城到乙城有多少千米?
解 设甲城到乙城有x千米。
3x=105(3+1.2)
x=147
答:甲城到乙城有147km。
2.光明乡有144公顷水稻,5天收割了90公顷,照这样计算,剩下的几天可以收割完?
解 设剩下的x天可以收割完。
90x=554
x=3
答:剩下的3天可以收割完。
(再用间接设的方法做两道题。)
1.纺织厂的织布车间过去每人看16台织布机,每班需要42人,现在改进操作方法,每人看24台。每班可以节约几人?
1642=24x
42-x
2.某机器厂原计划每天生产机器48台,15天可以完成任务,现在要12天完成任务,每天应增产多少台?
12x=4815
x-48
(四)总结
这节课我们主要复习了解正、反比例应用题的分析、思考方法。拿到应用题不要急于先做,要先读题,找出对应关系,判断是正比例还是反比例,就可以正确解答了。
课堂教学设计说明
解答正、反比例应用题是有其独特的思考方法的,所以在教案的设计上重点放在指导、解答正反比例应用题的思考方法上。
第一层次,先做判断练习,判断两个相关联的量是否成比例,成什么比例,因为这是正确解答正反比例应用题的基础。
第二层次,进行最基本的正反比例应用题的训练,着重训练学生怎样找对应关系,如何正确判断,然后再动笔做题,目的是培养学生良好的学习习惯和学习方法。
第三层次,进行间接设的正、反比例应用题的训练,目的是在原来分析问题的基础上,使学生的思维更高一步。
2022苏教版六年级数学下册教案2
教学目标
1.使学生掌握分析分数应用题的方法,会分析关系句,找准单位1。
2.使学生弄清题中的数量关系,掌握解题思路,正确列式解答。
3.培养学生分析、解决问题的能力,以及知识迁移的能力。
4.培养学生良好的审题习惯。
教学重点和难点
1.会分析数量关系,掌握解题思路,正确解答。
2.找准单位1;根据问题需要的条件,把间接条件转化为直接条件。
教学过程
导语:前边我们已经学过了简单的分数应用题,今天继续学习分数应用题。(板书课题:分数乘法应用题)
(一)复习铺垫
1.说图意填空。(投影)
问:谁是单位1?
2.说图意回答问题。(投影)
问:①谁和谁比,谁是单位1?
3.准备题:
(做在练习本上,画图列式计算,一个学生到黑板板演。)
教师订正讲评。
提问:①谁是单位1?
③要求用去多少吨就是求什么?
少。)
④根据什么用乘法计算?
(根据分数乘法的意义,求一个数的几分之几是多少用乘法计算。)
师:如果把问改成还剩多少吨应该怎样计算呢?这就是今天要研究的稍复杂的分数应用题。(在课题板书前加上稍复杂的。)
(二)学习新课
1.学习例4。
(1)读题找出条件和问题,并问:问题变了,现在?应画在哪?(在线段图中把?号移动。)
(2)分析数量关系。(同桌互相说。)
提问:单位1变了吗?单位1是谁?
请同学们认真观察线段图,再根据刚才复习的有关知识讨论这道题如何解答,试着做一做。
学生汇报结果,让学生说解题思路,老师一边把图补充完整。
=2500-1500
=1000(吨)
答:还剩1000吨。
生:把原有煤的总数看作单位1,先求出用去多少吨,就可以求出还剩多少吨。
师追问:求用去多少吨你是怎么想的?
答:还剩1000吨。
生:把原有煤的总数看作单位1,欲求剩下多少吨,就要先求
(3)引导学生比较:这两种解法在思路上有什么相同点和不同点?
相同点:两种解法都是经过两步计算。
不同点:第一种解法是先求出用去了多少吨,再用总吨数减去用去的吨数,得到的就是剩下多少吨。
第二种解法是先求出剩下的占总吨数的几分之几,再求剩下的是多少吨。
(4)练习做一做(1):
昆虫标本有多少件?
(做完让学生说解题思路、投影订正。)
2.学习例5。
六月份捕鱼多少吨?
(1)读题找出条件、问题。
(2)师生合作画出线段图,并分析数量关系。(让学生说画图过程)
问:①谁和谁比,谁是单位1?
(3)列式解答。
师:请同学们认真观察线段图,分析数量关系。小组讨论如何解答,并考虑可用几种方法解答。
学生汇报结果。(老师板书列式)
答:六月份捕鱼3000吨。
师追问:你是怎么想的?
生:要想求六月份捕鱼多少吨,就得先求出六月份比五月份多捕鱼多少吨。
师再追问:怎样求六月份比五月份多捕的`吨数?
捕的吨数。
答:六月份捕鱼3000吨。
师追问:怎么想的?
生:把五月份的吨数看作单位1,先求出六月份捕的相当于五月份捕的几分之几,就可以求出六月份捕鱼多少吨。
师问:这两种解法有什么联系和区别?
(联系:两种解法都利用了分数乘法的意义求已知数的几分之几。区别:解题思路不同。)
(4)练习做一做(2)。
答。
(三)巩固练习
1.补充问题并列式解答。(复合投影片)
________?
2.选择正确答案的序号填在( )里。
包?列式是
[ ]
[ ]
A.乙队修了多少米?
B.乙队比甲队多修多少米?
C.甲队比乙队多修多少米?
D.乙队比甲队少修多少米?
(3)根据条件和问题列出算式。
已知一袋大米重40千克。
(四)课堂总结
今天我们学习了较复杂的分数应用题,复杂在哪?解题的关键是什么?
(复杂在问题所需要的条件没有直接给出,解题关键必须先把这个条件求出来。)
课堂教学设计说明
(1)在简单分数应用题的基础上进行本节课教学,学生已有了一定基础,因此首先设计三道复习题,为学生学习新知识做好辅垫。尤其从准备题过渡到例4,给学生搭了从旧知识迁移到新知识的桥梁,学生容易接受。同时使学生悟出新知识是在原有知识基础上发展起来的规律。
(2)老师围绕重点难点精心设计提问,并充分利用线段图引导学生分析题中数的关系,抓住解题关键,明确解题思路,掌握解题方法。并通过两次对两种不同的解法对比及课后小结,进一步突出本节课的重点、难点。
(3)因为学生有了学习简单分数应用题的基础,因此老师大胆放手,让学生同桌或小组讨论、分析、试做,做完后让学生自己说解题思路。学生充分参与了课堂教学过程,成为学习的主人,调动了积极性。同时培养了学生的口头表达、分析和与人合作的能力。
2022苏教版六年级数学下册教案3
教学内容:
教材第4页的例2和“试一试”、“练一练”,练习二第1-4题。
教学目标:
1.使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。
2.培养解决简单实际问题的能力,体会生活中处处有数学。
3.进一步体会知识间的内在联系,感受数学知识和方法的应用价值,获得一些成功的体验,增强学好数学的信心。
教学重点:
掌握百分数在实际生活中的应用。
教学难点:
正确、熟练地运用百分数的知识进行纳税的计算。
预习题:弄清什么是纳税?怎样纳税?纳税的意义是什么?(课前布置学生上网查询相关信息)
教学准备:
教师准备有关纳税的一些资料;教学光盘及多媒体设备
教学过程:
一、认识、了解纳税
纳税是根据国家税法的规定,按照一定的比率把集体或个人收入的一部分缴纳给国家,用于发展经济、国防、科学、文化、卫生、教育和社会福利事业,以不断提高人民的物质和文化生活水平,保卫国家安全。因此,任何集体和个人,都有依法纳税的义务。
税收是国家财政收入的主要来源之一。税收的种类主要有增值税、消费税、营业税和所得税等几种。我国的税收逐年增长,到20xx年,全年税收收入已达到30866亿元。(进行纳税意识教育)
提问:你知道生活中到税务部门纳税的事吗?那么究竟什么是纳税,纳税额应该怎样计算?今天我们就来学习纳税的有关知识。板书:纳税
二、教学新课
1.教学例2.
出示例2:星光书店去年十二月份的.营业额约为50万元。如果按营业额的 6%缴纳营业税,这个书店去年十二月份应缴纳营业税约多少万元?学生读题。
提问:想一想,题里的营业额的6%缴纳营业税,实际上就是求什么?怎样列式计算?你们会做吗?试试看!
学生尝试练习,集体订正,教师板书算式。
强调:求应纳税额实际上就是求一个数的百分之几是多少,也就是把应该纳税部分的总收入乘以税率百分之几,就求出了应纳税额。
2.我们怎样计算呢?
方法1:引导学生将百分数化成分数来计算。
方法2:引导学生将百分数化成小数来计算。
3.做“试一试”
提问:这道题先求什么?再求什么?
生:先求5200元的10%是多少?再加上5200元就是买摩托车共付的钱。
学生板演与齐练同时进行,集体订正。
4.学生在课本上完成练一练。
三、同步练习
1.练习二的第1、2题。
指名学生读题,让学生说明算式里的每个数据的意思。
学生独立思考后练习,交流时请学生说说解题思路,教师及时了解学生解答情况。
2.练习二第3题。
学生读题后,教师简单介绍个人所得税的知识。
学生独立思考并列算式计算,然后交流。
四、拓展提高
1.练习二的第4题。
我国20xx年10月公布的个人所得税征收标准:个人收入1600元以下不征税。月收入超过1600元,超过部分按下面的标准征税。
不超过500元的 5%
超过500元~20xx元的 10%
超过20xx元~5000元的 15%
------
李明的妈妈月收入1800元,爸爸月收入2500元,他们各应缴纳个人所得税多少元?
在这道题中,李明的妈妈应纳税的收入是1800元吗?为什么?全班展开讨论李明妈妈的纳税的收入应为多少元?税率是多少?那么爸爸的收入是2500元,应纳税额为多少?他的税率又是多少呢?
介绍分段纳税,最后让学生分别求出李明的爸爸妈妈各应缴纳的个人所得税。
将三段不同的收税看作三个档次,先用总收入减去1600,看超过的部分是属于哪个档次,如果超过的部分少于500,属第一档次,用超出的部分乘以5%;如果超过的部分大于500小于20xx就属第二档次,第一档次的税肯定要交,用500乘5%,再用(超出部分-500)乘10%,然后相加;如果超过的部分大于20xx小于5000就属第三档次,第一、二档次的税肯定要交,用500乘5%,1500乘10%,(超出部分-20xx)乘15%,再相加。
关键是这里第一、二档次的,要全额交税。
五、课堂回顾
提问:通过本节课的学习你学会了什么内容?认识到什么?如果没有纳税,国家就筹集不到必要的资金为大家办事。因此,我国宪法规定每个集体和公民都有依法纳税的义务。希望同学们长大了争当纳税先锋,为祖国的繁荣贡献力量!
六、布置作业
课内作业:补充习题
板书设计:
纳税问题
营业额×5%=营业税
60×5%=3(万元)
答:应缴纳营业税3万元。
爸爸月收入2500元,应分两段来纳税:
2500-1600=900元
500×5%=25元
(900-500)×10%=40元
25+40=65元
答:爸爸应缴纳个人所得税65元
2022苏教版六年级数学下册教案4
教学目标
1.使学生从整体上把握平面图形的计算公式;能够比较熟练地运用公式计算有关平面图形的面积。
2.进一步培养空间观念和提高学生的推理能力,灵活运用公式的能力及计算能力。
3.进行辩证唯物主义教育。
教学重点
面积公式及各种图形的内在联系。
教学过程设计
(一)基本概念
1.我们都学习过哪些平面图形?
2.用字母公式表示出这些平面图形的面积公式。
3.填空。(复习平面图形公式推导过程)
因为S长=___________,而正方形是( )和( )相等的长方形,所以S正=________;平行四边形可以割补成长方形,它的底相当于( ),高相当于( ),所以S平=___________;两个形状、大小相同的三角形,可以拼成一个( ),所以S三=___________;两个形状、大小相同的梯形,可以拼成一个( ),所以S梯=____________;圆可以割补成一个近似的长方形,这个长方形的长相当于圆的( ),长方形的'宽相当于圆的( ),所以S圆=___________,最后推出S圆=___________。
4.填表。
(二)动手操作
请在下面的方格图中再画一个三角形,使它的面积是已知三角形面积的2倍。
(三)综合练习
1.判断。(对的打,错的打。)
(1)把一个长方形的木框拉成平行四边形,面积一定比长方形小。 ( )
(2)一个三角形和一个平行四边形面积相等,底边也相等。那么平行四边形的高是三角形高的2倍。 ( )
(3)两个面积相等的梯形一定可以拼成一个平行四边形。 ( )
(4)两个等底等高的三角形,它们的形状不一定相同,但面积一定相等。 ( )
(5)一个正方形和一个长方形的周长相等,那么正方形的面积一定大于长方形的面积。 ( )
2.选择题。(将正确答案的字母填入括号)
(1)一个长方形的长和宽各增加4cm,它增加的面积________cm2。 [ ]
A.等于16
B.小于16
C.大于16
(2)一个梯形的面积是32m2,上底与下底的和是8m,那么高是_______m。 [ ]
A.2
B.4
C.8
(3)小学阶段学过的基本图形的面积公式都可以用______的面积公式来表示。 [ ]
A.长方形
B.平行四边形
C.三角形
D.梯形
(4)如图,这个梯形的面积是240cm2,ABCD是正方形,并且BC是CE的2倍,那么阴影部分面积的求法是[ ]
A.2404
B.2403
C.2405
(5)如图,阴影部分的环宽恰好等于较小圆的半径,阴影部分面积是较大圆的 [ ]
3.求下列图形的面积。
(1)求下面图形的面积(图中单位:cm)
(2)求下面图形阴影部分的面积(图中单位:m)
课堂教学设计说明
本节课主要通过复习基本平面形的面积公式和公式推导过程,使学生明白各种图形之间的内在联系,即在小学阶段所学面积公式都是由长方形面积公式推导出来的。并通过基本练习,使学生掌握基本图形的面积计算。在综合练习中,出了一些稍难题,以使学生有所提高,并通过选择题中的(3),使学生明白,梯形面积公式可以表示小学阶段所有面积公式,从而使学生对几何图形的认识有了新的提高。另外,通过动手操作题,使学生能够灵活地掌握面积公式。
2022苏教版六年级数学下册教案5
第一课时
教学目标:
1、经历自主回顾和整理“数的认识”的过程。
2、能对学过的数进行较系统的整理,进一步掌握数的知识,发展数感。
3、积极参加自主整理的活动,获得成功的学习体验。
课前预习:
小组合作,交流整理:
回顾以前学过那些数,各举五例。分析不同类数之间有何关系。
教学过程:
一、结合实例,引导学生回忆数的认识
1、回顾数的意义。
师:你学过那些数?
(生回答)
师出示卡片,生齐读。师:举例说明这些数可表示什么?
(生回答)
2、数的分类。
完成问题(1)。
师:把上面的数填到合适的位置
(生回答)
师:每种类型的数,除了上面几种类型,你还能举出其它的吗?
(生回答)
3、数的互化
呈现表格,完成数的互化,交流做法。
4、数的大小比较。
学生自主完成。
5、适时小结。
师:通过刚才的练习,我们复习到数的哪些知识?
(生回答)
二、整理回顾有关倍数和因数的知识
1、引出问题。
师:小明的爸爸年龄数的十位上是最小的合数,个位上的数既不是质数也不是合数,且年龄是小明的五倍,同学们能猜出小明和他爸爸的年龄吗?
(生回答)
以上问题,我们运用了哪些数学知识呢?(倍数和因数)
明确:我们一起回顾和整理倍数和因数。
2、小组合作,梳理知识。
师:以小组为单位,将学过的“倍数和因数”知识整理下来。同学们认真讨论,由组长记录,一会儿我们要比一比,看一看哪一个小组整理的更加完整、科学合理。全班交流。
整理完善知识结构。
师:在这一部分中我们为什么先学因数和倍数?
组织学生讨论和交流
师:倍数和因数是基础,他们是相互依存的关系,今天整理出来的倍数和因数脉络图使这部分知识更加条理化和系统化。
三、复习正数和负数
师出示亮亮家4月份收支情况记录。
学生阅读题目内容。
出示问题(1)。
提醒学生估算时要注意的问题。(生回答)师:(生回答)师:(生回答)
出示问题(2)。
让学生举例说明什么是正数和负数。
学生自主完成问题(2)。
全班交流。
交流时重点关注怎样用正负号表示收支情况,以及怎样基数按每次结余。
四、人民币上的.号码
1、让学生拿出自己身上的人民币。
2、提出兔博士的问题,鼓励学生根据自己你的经验大胆回答。
五、课堂小结
这节课我们复习了哪些内容?,你想提醒大家注意哪些问题?
六、课堂作业
第二课时
教学目标
1、经历自主回顾和整理整数、小数、分数四则运算的过程。
2、能对四则运算及它们之间的关系和运算定律进行归纳和整理,能选择合适的估算方法。
3、体验自主整理数学知识的乐趣,提高计算能力。
课前回顾:
我们学过那些计算?分别写出整数、小数、分数的加、减、乘、除的算式各一道,并计算出结果。小组内交流计算的结果。
教学过程:
一、引导学生回顾和整理四则运算
1、师:回想一下我们学过哪些计算?
生回答。
小组长汇报本组在课前练习中出现的问题。
2、议一议
出示问题(1)生归纳整理。
出示问题(2)生举例说明0和1在四则运算中的一些特殊情况。
生整理汇报。(注意提示0不能做除数)
3、各部分间的关系。
师:加法各部分间有什么关系?
生回答。
引导学生自己总结减法各部分间的关系。
师归纳出加减法互为逆运算。
同样的方法总结乘除法的关系。
说一说
师:上述关系在计算中有哪些应用?
启发学生回答,(进行验算、解方程等)
二、复习四则运算和运算律
1、师:我们学过的运算律有哪些?
小组讨论,自主总结,并写出字母表达式。
先说出运算顺序再计算。计算后交流做法,注意能简算的要简算。
3、估算。
先让生独立思考并判断,再回答是如何判断的。
师生共同讨论怎样想,需要几个步骤。
计算问题(2)时可用竞赛的方式,看谁算得又对又快。
三、课堂总结
师:这节课我们整理和回顾了什么内容?需要注意什么?
2022苏教版六年级数学下册教案6
教学目的:
1、让学生学会运用转化的策略,用简便的方法解决有关分数的实际问题。
2、让学生在学习过程中加深对转化策略的认识,增强策略意识,培养的灵活性。
教学重点:
掌握用转化的策略解决分数问题的方法,增强策略意识。
教学难点:
根据具体问题,确定转化后要实现的目标和转化的具体方法。
教学过程:
一、看谁的联想最多?
出示:男生人数是女生的2/3 看到含有分率的句子,你能想到些什么?
学生可能说:
(1)把女生人数看作“1” ——找单位“1”
(2)男生人数有这样的2份,女生人数有这样的3份。
(3)一共有这样的5份
(4)女生比男生多1份 ——份数
(5)男生人数占全班人数的2/5,女生人数占全班人数的3/5
(6)女生是男生的3/2 ——分数
小结:看到含有分率的信息,我们可以找单位“1”的量,也可从分数、份数等方面来考虑。
二、新授
1、完整例题2:在这个信息前加上条件“六3班一共有50人”和问题“六3班女生有多少人?”
2、说明:这是一道分数问题,解决分数问题的常规思路是怎样的?请你用常规思路来解决这个问题。
3、学生独立完成,教师巡视指导。
4、指名交流解题思路。
5、提问:除了常规思路,这题还可以怎样解决?你是怎样想的?
6、学生独立完成,小组交流。指名交流。
学生可能想到:
(一)将关键句转化成份数来理解“女生有3份,男生有2份,一共是5份”
50÷(3+2)=10(人) 10×3=30(人)
(二)将关键句转化成分数来理解“女生占全班人数的3/5”
50×3/5=30(人)
7、结合学生回答追问:为什么要将关键句转化成“一共有5份”、“女生是总人数的3、5”?而不转化成别的?体会不管转化成份数理解还是分数来理解,都要转化成和已知条件有关的信息。
8、小结:我们原来解题时,是把女生人数看做单位“1”,所以只能用方程(或除法)解答。今天我们学习了转化策略,就可以把单位“1”转化成题目中的已知量,这样就变成了一道求一个数的几分之几是多少的应用题,可以用乘法计算。(美术组人数是已知的,要求的是女生人数,找到女生人数和总人数之间的关系,就可以直接用乘法计算了)
三、巩固练习
1、练一练:学校美术组有35人,是合唱组人数的 5/8 。学校合唱组有多少人?
(1)你打算怎样转化?(合唱组的人数是美术组的几分之几?可以怎样列式解答?)
(2)反思:为什么把美术组人数是合唱组的 5/8转化为合唱组的人数是美术组的8/5。
(3)小结:在解决有关分数的实际问题时,只要把题目中的问题转化成已知条件的几分之几,就可以直接用乘法计算,使解题的方法变得简单。
板书:问题转化成已知条件的几分之几。
2、练习十四5:
(1)看图填空。
绿彩带
红彩带
绿彩带比红彩带短 2/7 ,红彩带比绿彩带长 ()/() 。
(2)一杯果汁,已经喝了 2/5 ,
喝掉的是剩下的 ()/() ,剩下的是喝掉的 ()/() 。
3、练习十四6
(1)白兔和黑兔共有40只,黑兔的'只数是白兔的 3/5 。黑兔有多少只?
黑兔只数占白兔、黑兔总只数的 ()/() 。
(2) 小明看一本故事书,已经看了全书的 3/7 ,还有48页没有看。 小明已经看了多少页?
已经看的页数是没有看的页数的 ()/() 。
4、只列式,不计算。(说说你是怎样转化的)
(1)修一条长30千米的路,已经修的占剩下的 2/3 ,已经修了多少千米?
(2)山羊有120只,比绵羊少 1/6 ,绵羊有多少只?
(3)甲数是乙数的2/3,乙数是丙数的3/4,甲、乙、丙三数的和是180,甲、乙、丙三个数各是多少?
5、有3堆围棋子,每堆60枚。第一堆的黑子和第二堆的白子同样多,第三堆有 1/3是白子。这三堆棋子一共有白子多少枚?
6、思考题:
有两枝蜡烛。当第一枝燃去4/5 ,第二枝燃去 2/3 时,他们剩下的部分一样长。这两枝蜡烛原来的长度比是( ):( )。
全课小结:今天这节课,我们学习了什么知识?你有哪些收获?
板书设计:
用转化思路解答分数除法应用题
繁 简
用方程解答: 用乘法解答:
解:设女生有x人。
x+2/3 x=35
5/3x=35 35×3/5=21(人)
x=21
答:女生有21人
2022苏教版六年级数学下册教案7
教学内容:教科书94页“练习与实践”的第7~10题。
教学目标:
1、使学生进一步理解比的意义和基本性质以及比与分数、除法的关系的理解。
2、能运用比和比例的知识解决一些简单实际问题,积累解决问题的经验。
教学重点:
使学生加深认识比例的意义和基本性质。
教学难点:
能判断两个比能能不能组成比例,能比较熟练地解比例。
教学准备:多媒体
教学过程:
一、与反思
今天我们一起来复习正比例和反比例相关知识。
怎样判断两种量是否成正比例或反比例关系?
学生交流
二、练习与实践
1.完成“练习与实践”第7题
让学生先独立完成,再点评。
2.完成“练习与实践”第8题
引导学生列举几组对应的数值
再分析每组中两个数的关系,再判断。
3.完成“练习与实践”第9题
第1小题让学生根据图中标出的点的位置算出相应的耗油量与行驶路程的比值,再作判断。(行驶75千米的耗油量是6升。)
第2小题让学生在教材的方格图上描点、连线,
引导学生联系画出的图象判断汽车在市区行驶时,行驶的路程与耗油量成不成正比例。
体会数形结合在解决问题方面的价值。
4.完成“练习与实践”第10题
什么叫比例尺?比例尺有几种类型?举例说说它的'意思?(重点是线段比例尺)
怎样求图上距离?怎样求实际距离
学生量出的图上距离。
利用的线段比例尺,求出相应的实际距离
三、
通过学习你有什么收获?
学生交流
四、作业
完成《练习与测试》相关作业。
板书设计
关于正比例和反比例的复习
2022苏教版六年级数学下册教案8
复习内容:第12册P92—93“练习与实践”7—9题。
复习目标:
1.使学生进一步理解商品打折出售的含义,进一步掌握分析数量关系的方法,熟练掌握列方程解答稍复杂的百分数实际问题的方法,理解不同形式的打折问题之间的联系,并能熟练解答。注重知识间的联系与融会贯通。
2.在分析问题、解决问题的`活动中,发展学生的数学思考能力,提高用方程表示数量关系的能力,进一步积累解决问题的经验,增强数学应用意识。
3.让学生在学习和游戏中获得成功体验,提高学生的学习兴趣和爱好。
教学准备:课件
课时安排:第二课时
课前设计:
1.出示习题。一种图书打八折后售价是20元,这种图书原价是多少元?
2.学生练习、交流、检验。
3.练习P93第7、8两题。指导学生理解“降价10%”的含义。第8题提醒学生注意:两种衬衫的原价是相同的,但由于打的折扣不同所以现在售价是不同的;所花的108元是两种衬衣现价的和。
4.练习P93第9题。
学生通过自主探索和合作探索发现规律,并运用规律求出所框的4个数。
2022苏教版六年级数学下册教案9
教学目标
1.使学生理解、掌握四则运算的五大定律和两个性质。
2.掌握积、商的变化规律。
3.能运用这些定律、性质和规律进行简便计算,提高计算能力。
教学重点
运用定律、性质和规律进行简算。
教学难点
如何灵活运用。
教具与学具准备
投影仪、投影片、判断牌、选择牌。
教学过程设计
(一)揭示课题
提问:请同学们回忆一下,我们在学习整数四则运算时,已经学过了哪些运算定律?哪些运算性质?(指名回答)
(板书)
加法交换律 减法的性质
结合律
乘法交换律 除法的性质
结合律
分配律
很好,今天我们就来复习这些定律和性质及其应用。(板书:四则运算的定律和性质复习)
(二)复习五大定律
1.提问:这些定律用字母怎样表示?用语言怎么叙述?(学生边回答教师边板书字母公式。)
2.判断下面应用运算定律的过程有没有错误,没错举,有错举,并指出错误所在,改正过来。
投影出示:
(1)(43+25)4=434254
(2)(700+1)68=70068+68
(3)153(220+57)=153220+57
(4)45+(54+55)=54+(45+55)
(5)638+378=(63+37)(8+8)
3.小结:我们运用这些定律时要注意正确。
(三)复习两大性质
1.提问:我们还学习了哪些运算性质?你能把它们用字母表示出来吗?说说它们表示的意思。(学生边说老师边板书。)
减法运算性质:a-(b+c)=a-b-c
除法运算性质:(a+b)c=ac+bc(c0)
强调除法性质中的a,b都要能被c整除,且除数c不能是0。
2.做一做:在等号后面的横线上填数,○里填运算符号。
(1)157-(27+68)=157-27○_________
(2)3214-537-463=3214-(537○463)
(3)(945+63)9=945________○63
(4)156102=156(100○_______)
指名一人做胶片,其他同学做印好的练习片子,然后投影说结果,并说明根据什么性质。
(四)积、商的变化规律
1.提问:我们在学习多位数乘、除法时,还学过积、商的哪些变化规律?谁还记得?
(1)投影:在乘法里,如果一个因数扩大10倍,另一个因数不变,那么积就________倍;如果一个因数缩小100倍,另一个因数不变,那么积就________倍;或者,一个因数扩大10倍,另一个因数缩小10倍,积________。
想一想:这是什么道理?(是乘法交换律和结合律的具体体现。)
投影说明:
(a10)b=a10b=ab10=(ab)10
(a100)b=a100b=ab100=(ab)100
(a10)(b10)=a10b10
=ab1010=(ab)1=ab
(2)投影回答:在除法里,被除数和除数___________扩大(或缩小)___________的倍数,_______________。
问:你能联系乘、除法的关系和乘法运算定律来说明其中的道理吗?(根据除法是乘法的逆运算关系,这也是乘法运算定律的具体体现。)
说明:整数四则运算的定律和性质,对小数四则运算同样适用。(只有除法的性质略有变化,a,b都要能被c除尽。)
2.练习。
口答:
(1)一个因数扩大100倍,另一个因数扩大10倍,原来的积就____________倍。
(2)把除数扩大100倍,要使商不变,被除数应该____________倍。
(3)在下面的横线上填上适当的数,○里填运算符号。
①3.6+0.85+6.4+0.15=(_______○______)○(______○_______)
②4.53-1.64-0.36=_____○(______○0.36)
③7.85.3+7.84.7=______○(_____○_____)
④4.20.7+2.80.7=(______○______)○______
(五)课堂总结
我们掌握四则运算的五大定律和两个性质主要是为了应用,使计算简便,而且要灵活运用。
(六)课堂练习
1.选择题:(投影出示,学生举选择牌。)
(1)被减数不变,减数增加5,得到的差 [ ]。
①增加5
②减少5
③不变
(2)对于2548,小明想了以下几种计算方法,分别应用了( )知识。
2548=25(40+8)=2540+258=1000+200=1200
应用了( )知识。
2548=25(68)=6(258)=6200=1200
应用了( )知识。
2548=25(50-2)=2550-252=1250-50=1200
应用了( )知识。
2548=(254)(484)=10012=1200
应用了( )知识。
①积的变化规律 ②乘法交换律和结合律
③乘法结合律 ④乘法分配律
⑤乘法交换律
追问:哪种最简便?
2.简算,在片子上完成,指名两个同学用胶片做。
① 1.252.5645
=1.252.5(88)5
=(1.258)(2.585)
=10100=1000
② 5.80.7+0.420.07+407
=587+427+407
=(58+42+40)7=1407=20
集体在投影上订正。
(七)课堂总结
今天这节课我们上得很好。在今后的学习和实践中要注意应用我们所学过的.定律和性质,使计算简便,提高效率。
课堂教学设计说明
四则运算的定律和性质是学生进行简便运算的依据。灵活地运用四则运算的定律和性质,不但能提高计算的速度,还能培养学生思维的灵活性。所以在复习中,注重学生对四则运算定律和性质的理解、记忆,再加以灵活运用,从而达到培养学生计算能力的目的,这是非常必要的。因此,在复习中首先要让学生搞清所学过的运算定律和性质有哪些,分别用字母怎么表示,语言怎么叙述,达到全面巩固理解的目的。其间,分别插入适当判断、填空练习,以帮助学生理解及灵活运用。另外,利用积、商的变化规律培养学生思维的灵活性和深刻性,使学生在观察推导中理解积、商的变化规律实际上就是乘法运算定律的具体体现,同时,也为简便计算打开多种途径。然后,在学生全面掌握的基础上出现一组选择题,综合地培养学生运用定律和性质的能力,反馈面也扩展到全班,便于了解多数学生的情况。最后出示两道简算题,让每个学生动手动脑,以考查学生是否掌握了四则运算的定律,是否能灵活地运用。
2022苏教版六年级数学下册教案10
教学目标
1.结合丰富的实例,认识反比例。
2.能根据反比例的意义,判断两个相关联的量是不是成反比例。
3.利用反比例解决一些简单的生活问题,感受反比例关系在生活中的广泛应用。
教学重点
认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。
教学难点
认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。
教学过程
一、复习
1.什么是正比例的量?
2.判断下面各题中的两种量是否成正比例?为什么?
(1)工作效率一定,工作时间和工作总量。
(2)每头奶牛的产奶量一定,奶牛的头数和产奶总量。
(3)正方形的边长和它的面积。
二、导入新课
利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。
三、进行新课
认识加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每
两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考。
同桌交流,用自己的语言表达。
写出关系式:速度×时间=路程(一定)
观察思考并用自己的语言描述变化关系乘积(路程)一定。
把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系。
写出关系式:每杯果汁量×杯数=果汗总量(一定)
以上两个情境中有什么共同点?
4.反比例意义
引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。
教学内容:
苏教版义务教育课程标准实验教科书第60-61页
教材分析:
在本节课之前,学生们已经基本掌握了“用方向和距离描述、画出相关物体位置和描述简单的行走路线”方法。“实际测量”是一次实践与综合应用,主要目的是让学生通过一些测量活动,掌握简单的室外工具测量和估测的方法,并把所学知识运用到生活中去,解决一些实际问题,进一步发展空间观念。
“实际测量”的主要内容包括:用工具测量两点间的距离,步测和目测。
在“用工具测量两点间的距离”的内容中,先学习在地面上测量两点间的距离,再用卷尺或测绳分段测量出相应的距离;“步测和目测”的内容中,介绍了得到步长的方法以及用步测的方法测定一段距离;目测重在介绍目测的方法。
教学目标:
⑴使学生会用工具测量两点间的距离、步测和目测的方法。
⑵在用工具测量两点间的距离、步测和目测的过程中,进一步感受所学知识在生活中的应用价值,发展空间观念。
⑶使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察日常生活现象,解决日常生活问题的意识。
教学重点:
掌握“用工具测量两点间的距离、步测和目测”的方法。
教学难点:
掌握“用工具测量两点间的距离、步测和目测”的方法。
教学具准备:
卷尺、标杆、50米跑道。
教学流程:
一、揭示课题,明确学习内容。
⑴揭示课题。
板书课题——实际测量。让学生说说对课题的理解。
⑵了解测量工具。
让学生说说知道的测量工具;预设:卷尺、测量仪、标杆等。
⑶明确学习内容。
测量地面上相隔较远的两点间的距离;步测和目测。
二、了解测量知识,为实践活动作准备。
⑴测量相隔较远的两点间的距离。
理解测定直线的意义:如果不先测定直线就去测量相隔较远的两点间的距离,分段测量时容易偏离两点间的连线,从而降低测量结果的精确程度。
理解测定直线的方法:把相隔较远的两点间的连线分成若干小段,以便于工具测量;
观察教材上的图片,让学生说说怎样在A、B两点间测定直线的?(2根以上的标杆成一线时)
掌握测定直线的步骤:测定直线;分段量出;记录计算。
⑵学习步测的方法。
理解步测在实际生活中应用:在没有测量工具或对测量要求不十分精确是,可以用步测。
掌握步测的方法:用步数×每一步的距离。
理解步测的关键:确定平均步长。
掌握确定平均步长的方法:让学生说说确定平均步长的方法,形成一般测定平均步长的过程,量出一段距离(50米),反复走几次,记录数据,计算步长。
理解实践活动的内容和方法:测定平均步长;步测篮球场的长和宽。
⑶学习目测的方法。
观察黑板,说说黑板的长和宽,交流得到黑板的长和宽的思考过程。预设:一米一米数出;比较得到;等等。
目测较短距离:人书本的长和宽;课桌的长和宽等等;
理解目测较长距离的方法:先量出一段距离(50米),每隔10米插上标杆,观察、理解;用目测发方法测定教学楼的长度。
三、实践活动。
⑴测定直线。
⑵确定平均步长。
⑶步测篮球场的长和宽。
⑷目测教学楼的长度。
第三单元分数除法
第10课时按比例分配的实际问题
教学内容:
课本第59--60页例11,“试一试”和“练一练”,完成练习十第1-3题。
教学目标:
1、使学生理解按比例分配实际问题的意义。
2、使学生通过运用比的意义和基本性质解答有关按比例分配的实际问题。
教学重难点:
理解按比例分配实际问题的意义,掌握解题的关键。
课前准备:
课件
教学过程:
一、创设情境、引入新知
根据信息填空:
(1)男生有31人,女生有21人,男生人数是女生人数的。
(2)红花的朵数与黄花朵数的比是3:2。你能联想到什么?
师:数学与生活是密切联系的,今天这节课就来研究前两节所学的比在生活的运用。
二、探究新知
1、出示例11中的实物图及例题。
(1)让学生阅读题目后说说你知道哪些信息?
(2)让学生说说你是怎样理解红色与黄色方格比这句话?(先同桌相互说一说)然后全班交流,学生可能有以下两种想法:
①红色与黄色方格数的比是3:2,就是把30个方格平均分成5份,其中3份涂红色,2份涂黄色;
②红色与黄色方格数的比是3:2,红色方格占总格数的3/5,黄色方格占2/5。
③红色与黄色方格数的比是3:2,也就是红色方格数是黄色方格数的3/2,或是黄色方格数是红色方格数的2/3。
师说明:在实际生活中,很多情况下,并不只是把一个数量平均分,使每一部分都一样多,而是在平均的基础上,按一定的比进行分配,这一题就是把30按3:2进行分配。
学生尝试解答,用你学过的知识来解答例2,并在学生小组内说说你是怎样想的?
说说你是怎样做的?
方法一:3+2=530÷5×330÷5×2
方法二:30×3/530×2/5
2、比较一下这几种方法中你理解的哪种方法,你是怎样理解的讲给同桌听一听?
说说这种方法的思路?(红色与黄色方格数的比是3:2,就是说,在30个方格里,红色方格数占3份,黄色方格数占2份,一共是5份,也就是说红色方格占总格数的,黄色方格占)
如何进行检验?自己检验请你检验一下同组同学做得对不对?(可以把求得的红色和黄色方格数相加,看是不是等于总方格数。或者可以把求得的红色和黄色方格数写成比的形式,看比简后是不是等于3:2)
3、完成练一练第1题。
4、完成试一试。
出示试一试。
提问:“按各小组人数的比分配”是什么意思?你想到了什么?
5、归纳(讨论)。
(1)比较例题与试一试题目在解答方法上有什么共同特点?
(2)怎么解答?
求总份数,各部分量占总数量的几分之几,最后求各部分量。
(3)教师指出:用这种特定方法解答的分配问题叫做“按比例分配”问题(板书课题)
三、应用比的知识解决实际问题
1、练一练第2题。
独立完成后进行交流
指出:把180块巧克力按照三个班的人数来分配,就是按怎样的比进行分配?
2、练一练第3题。
独立填表,完成后集体核对。
3、练习十第1题。
四、课堂总结
这节课学过以后,你有什么收获?
五、布置作业:
练习十第2、3题。
教学反思:
教学过程:
(一)导引探究,由表及里
教学例1,认识成正比例的量。
1.谈话引出例1的表格。一辆汽车在公路上行驶,行驶的时间和路程如下表。
时间(时)123456……路程(千米)80160240320400480……
在让学生说一说表中列出了哪两种量之后,教师引导学生逐步探究:行驶的时间和路程有关系吗?行驶的时间是怎样随着路程的变化而变化的?行驶的时间和路程的变化有什么规律?(学生探究第3个问题时,教师可进行适当的引导,如引导学生写出几组路程和时间对应的比,并要求学生求出比值。)
2.引导学生交流并聚焦以下内容:路程和时间是两种相关联的`量,路程随着时间的变化而变化;时间扩大、路程也扩大,时间缩小、路程也缩小;路程和时间的比值总是一定的,也就是“路程/时间=速度(一定)”(板书关系式)。
3.教师对两种量之间的关系给予具体说明:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间咸正比例(板书“路程和时间成正比例”),行驶的路程和时间是成正比例的量。
4.让学生根据板书完整地说一说表中路程和时间成什么关系。
[数学概念是客观现实中数量关系和空间形式的本质属性在人脑中的反映。数学概念的来源一般有两个方面:一是直接从实际经验中概括得出;二是在原有的初级概念基础上通过新旧概念的相互作用而获得。正比例概念的形成属于前者,因此例1的教学可以充分利用表格,让学生通过对表中数据的观察和分析,由浅入深,由表及里,逐步认识成正比例的量的特点。本环节先让学生观察例题中的表格,说一说表中列出的是哪两种量;接着用三个引探性的问题逐步引导学生在探究学习活动中发现路程与时间之间的关系及变化趋势;最后,聚焦、明晰这两种量之间的关系,让学生初步认识正比例的特点。这样的教学有利于学生经历正比例概念的形成过程。]
(二)自主探究,尝试归纳
出示例2:汽车从甲地开往乙地,行驶的速度和所用时间如下表,它们之间有什么规律?
速度(千米/时)406080100120……时间(时)3020151210……
1.出示供学生自主探究的问题:当速度变化时,时间是否也随着变化?这种变化与例1中两种量的变化有什么不同?速度和时间的变化有什么规律?
2.引导学生在自主探究、交流中认识成反比例的量的特点:速度和时间是两种相关联的量,速度变化,时间也随着变化;例2中两种量的变化规律是:一种量扩大,另一种量反而缩小;速度和时间的变化规律是它们的乘积一定,可以表示为“速度×时间=路程(一定)”(板书关系式)。
3.在发现变化规律的基础上,让学生仿照正比例的意义,尝试归纳反比例的意义,引出反比例概念(板书“速度和时间成反比例”)。
[从生活原型中逐步抽象,从已有概念中衍生,从数学概念的学习中迁移等,都是建构数学概念的有效方法。有了学习正比例的基础,反比例意义的学习应更加体现学生的学习自主性。本环节除了让学生发现成反比例的量之间的关系,还让学生仿照正比例的意义,尝试归纳反比例的意义。这样能真正发挥学生的学习主动性,让学生在自主探究过程中经历反比例概念的形成过程。]
(三)对比探究,把握本质规律
1.将例1、例2教学时探究发现的内容用多媒体呈现出来,揭示正比例、反比例的内涵本质。
多媒体呈现:
例1路程/时间=速度(一定)
路程和时间成正比例
例2速度×时间;路程(一定)
速度和时间成反比例
2.探究活动。
(1)让学生仿照例1完成教材第62页“试一试”(题略),仿照例2完成教材第65页“试一试”(题略)。
(2)引导学生将成正比例的量与成反比例的量进行对比探究,找出它们的相同点与不同点。
[例1中路程和时间相依互变,速度不变,例2中速度和时间相依互变,路程不变,这样的对比有利于学生从变中看到不变;例1中速度是不变量,例2中路程是不变量,同样都有不变量,例1中路程和时间成正比例,而例2中速度和时间成反比例,这样的对比有利于学生从不变中看到变。变与不变关键要抓住本质——“比值一定”还是“积一定”。对比探究活动旨在让学生把握概念内在的联系与区别,形成正比例、反比例概念的认知结构。]
(3)引导学生尝试用字母表达式对正比例的意义和反比例的意义进行抽象概括。
启发学生思考:①如果用字母x和y分别表示两种相关联的量、用k表示它们的比值,正比例关系可以怎样表示?②如果用字母x和y表示两种相关联的量,用k表示它们的积,反比例关系可以怎样表示?
根据学生的回答,板书关系式“正比例y/x=k(一定)”,“反比例x×y=k(一定)”。
[概念符号化在概念教学中很重要。《数学课程标准》明确指出,符号感主要表现之一是能从具体情境中抽象出数量关系和变化规律,并用符号来表示。学生概念形成的主要过程为:感知具体对象阶段、尝试建立表象阶段、抽象本质属性阶段、符号表征阶段、概念运用阶段。在符号表征阶段,学生尝试用语言或符号对同类对象的本质属性进行概括。本阶段教学是概念符号表征阶段,在这个阶段之前,学生对正比例、反比例的本质属性及特征有一定的认识,可以开始尝试用符号对正比例、反比例进行概括。“y/x=k(一定)”,“x×y=k(一定)”,是对正比例、反比例意义的抽象表达,是揭示正比例、反比例数量关系及其变化规律的数学模型。]
3.组织对比性练习。
(1)成正比例、反比例的对比练习。笔记本的单价、购买的数量和总价如下表:
表1
数量/本2030405060……总价/元3045607590……
表2
单价/元1。52456……数量/本4030151210……
在表1中,相关联的量是和,随着变化,是一定的。因此,数量和总价成关系。!
在表2中,相关联的量是和,随着变化,是一定的。因此,单价和数量成关系。
[将获得的新概念推广到其他的同类对象中去,是概念运用的过程,也是进一步理解概念的过程。表1是成正比例的量,表2是成反比例的量,这种正比例与反比例的对比,有利于学生进一步加深对正比例、反比例意义的认识,对正比例或反比例中两种量变化趋势和规律的把握。]
(2)成比例与不成比例的对比练习。
下面每题中的两个量哪些成正比例,哪些成反比例?哪些既不成正比例也不成反比例?
①圆的直径和周长。
②小麦每公顷产量一定,小麦的公顷数和总产量。
③书的总页数一定,已经看的页数和未看的页数。
[这一类型题比较抽象,学生只有对正比例、反比例的意义有了较深刻的理解,才能正确地作出判断。这样的练习有助于学生从整体上把握各种量之间的关系,有助于进一步提高学生判断成正比例、反比例的量的能力。此题型在新授课上还只是让学生初步接触,重点训练还要放在练习课。]
(3)从生活中寻找成正比例、反比例的量的实例,进行对比练习。
[举例练习是概念巩固阶段的重要组成部分。如果让学生独立找生活中成正比例、反比例的量的实例,可能有一定难度,我们可采用小组讨论的形式进行。此练习还可以让学生感受到数学与生活的联系。
2022苏教版六年级数学下册教案11
教学目标
1.使学生理解按比例分配问题的意义。
2.使学生掌握按比例分配应用题的结构及解答方法。
3.掌握解题关键:根据比算出总份数及各部分量占总数量的几分之几。
教学重点和难点
1.理解按比例分配问题的意义。
2.掌握怎样根据比算出总份数及各部分量占总数量的几分之几的解题方法。
教学过程设计
(一)复习准备
1.复习比的有关知识,为学习新知识做准备。
已知六年级1班男生人数和女生人数的比是3∶4。
男生人数与全班人数的比是( )∶( )。
女生人数与全班人数的比是( )∶( )。
2.创设情境,提出课题。
(1)妈妈有10块糖,平均分给哥哥和弟弟。每人可以得到几块糖?(每人可分到5块糖。)
提问:妈妈是怎样分的?(平均分)
(2)如果妈妈分给弟弟6块,分给哥哥4块,弟弟和哥哥糖数的比是多少?(弟弟和哥哥糖数的比是3∶2。)
提问:这样分还是平均分吗?
日常生活中,很多分配问题并不是平均分配,那么,你们想知道还可以按照什么分配吗?好,今天我们继续研究有关分配的问题。
(二)学习新课
1.讲解例2。
例2 一个农场计划在100公顷的地里种大豆和玉米,播种面积的比是3∶2。两种作物各播种多少公顷?
(1)这道题是一道分配问题的应用题,想一想:分谁?按照什么分?求的是什么?
(2)分析思考:看到播种大豆和玉米面积的比是3∶2这句话你想到了哪些倍数关系?小组讨论。
④玉米的面积与播种总面积的比是2∶5,玉米面积是播种面积的
各小组选代表汇报,教师提前把学生要汇报的`内容制成活动投影片,逐步出现。
(3)解答例2。
①试试看,用你学过的知识来解答例2,并在学习小组内说说你是怎样想的?
②说说你是怎样做的?
方法a:3+2=5
播种大豆的面积 10053=60(公顷)
播种玉米的面积 10052=40(公顷)
方法b:总面积平均分成的份数为
3+2=5
③比较一下这几种方法中哪种方法更好一些?为什么?(第二种方法好,好想好算。)
说说这种方法的思路?(播种大豆和玉米面积的比是3∶2,就是说,在100公顷的地里,大豆地占3份,玉米地占2份,一共是5份,也就
(4)这道题做得对不对?如何进行检验?请你检验一下同组同学做得对不对?(可以把求得的大豆和玉米的总面积相加,看是不是等于播种的总面积。或者可以把求得的大豆和玉米写成比的形式,看化简后是不是等于3∶2。)
2.练习:第62页中的做一做(1)。
六一班和六二班订《少年科学》的人数比是3∶4,两个班共订了49份。两个班各订了多少份?
(1)弄懂题意。
(2)提问:这道题分配的是什么?按照什么进行分配?(这道题分配的是49份报纸,按照3∶4的比例分给六一班和六二班。)
(3)独立完成。组员之间互相检验。
3.学习例3。
例3 学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?
(1)小组讨论:这道题分配的是什么?按照什么来分配?(分配的是280棵树,按照一班、二班、三班的人数的比来分配。)
(2)提问:根据一班、二班、三班人数怎样算出各班栽的棵数占总棵数的几分之几?
(3)请你在练习本上独立完成。
①三个班的总人数:
47+45+48=140(人)
②一班应栽的棵数:
③二班应栽的棵数:
④三班应栽的棵数:
答:一班、二班、三班分别栽树94棵、90棵、96棵。
(4)同组同学互相检验。
4.练习:第62页中的做一做(2)。
一种什锦糖是由奶糖、水果糖和酥糖按照3∶5∶2混合成的。要配制这样的水果糖500千克,需要奶糖、水果糖和酥糖各多少千克?
(1)在练习本上独立完成。
(2)同组同学互相检验。
(三)课堂总结
今天这节课我们学习了什么知识?(板书课题:按比例分配应用题)想想看这种应用题有什么特点?(已知总数量和部分量的比,求部分量是多少。)解答这种应用题怎样想?(把一个总数量按照一定的比来进行分配,就要先求出总份数,再看各部分量占总数量的几分之几,接着就可以求出各部分量。)
回到准备题,问:平均分按几比几分配的?是不是按比例分配的应用题?指出平均分应用题是按比例分配的应用题的一种特殊情况。
(四)巩固反馈
1.填空练习:
①把35千克苹果平均分成7份,每份( )千克,2份( )千克,5份是( )千克。
2.专业户王大伯共养鸡和鸭2100只。鸡和鸭只数的比是4∶3。王大伯各养了多少只鸡和鸭?
3.第62页的做一做(3)。
一个三角形三条边的长度比是3∶5∶4,这个三角形的周长是36厘米。三条边的长度分别是多少厘米?
与练习题2有什么区别?
如果求它的最短边、最长边怎么求?
4.判断练习:(正确举,错误举)
一个长方形的周长是20分米,长与宽的比是3∶2,这个长方形的长和宽各是多少分米?
(五)布置作业
第63页第1,2,3,4题。
课堂教学设计说明
本节课的复习分为两部分:首先是复习比的有关知识,为学习新知识做准备,接着通过与学生生活实际密切联系的题目为学习新知识创设情境,从而提出课题。学习新课部分中,例2、例3的教学有扶有放,例2侧重于引导、讲解;例3则是先让学生分小组讨论,之后独立完成,最后说说怎么想的,从而掌握解题关键。巩固反馈部分由易到难,逐步提高。第4题是学生很容易错的一道题,所以采用了判断的方法,指出易错的地方,引起学生注意。
本节课采用小组协作学习的教学方法,课堂气氛活跃,调动了学生学习的积极性和主动性。
2022苏教版六年级数学下册教案12
教学内容:
课本第79——80页例3和“练一练”,练习十三第3-5题。
教学目标:
1、让学生理解并掌握用分数乘法和加、减法解决一些稍复杂的实际问题的思考方法,能正确解决类似问题。
2、让学生进一步积累解决问题的策略,培养学生运用策略解决问题的习惯,
增强学生应用数学的意识。
教学重难点:
用分数乘法和减法解决一些稍复杂的实际问题。
课前准备:
课件
教学过程:
一、复习导入
王芳看一本120页的故事书,已经看了全书的1/3,还有多少页没有看?
全校的三好学生共有96人,其中男生占3/8,女生有多少人?
学生独立解答后,让学生说说想的过程。
二、教学例3
出示题目,要求学生默读。
指名学生读题,问:题目中的已知条件是什么?我们要解决什么问题?指名回答。
从“今年的班级数比去年增加了1/6”这句话中你看出是哪两个量在比较?比较的结果怎样?
问:今年的`班级数比去年多谁的1/6呢?那么应该把什么时候的班级数看作单位“1”?
教师指导学生画线段图。
教师再根据线段图引导学生分析题意。
“要求今年有多少班,可以先算什么?
请你试着把这道题做一下。
教师找出不同的解法进行板演,并让学生说说思路。
三、完成”练一练“
1、做第1题。
(1)引导学生画线段图理解题意
(2)看线段图分析
(3)学生独立完成,指名板演,集体评讲。
2、做第2、3题。
(1)让学生独立完成,指名板演,集体评讲。
(2)让学生说说自己的想法。
四、巩固提高
1、完成练习十三第3题。
学生直接把结果写在书上,集体核对。
2、练习十三第4题。
3、学生读题后,要求学生画出线段图进行分析,然后列式解答。
集体评讲。
五.本课总结。
通过这节课的学习,你有什么收获呢?
六、布置作业
练习十三第5题。
2022苏教版六年级数学下册教案13
教学目标:
1.学生加深对分数和百分数的认识,进一步理解分数的基本性质以及分数与除法的关系,进一步掌握小数、分数和百分数的互相改写,以及求百分数的方法。
2.学生经历知识整理和应用的过程,进一步了解分数、百分数相关知识之间的内在联系,提高观察比较、分析判断能力和解决问题的能力,进一步发展数感。
3.学生进一步体会分数和百分数在日常生活中的应用以及作用,增强数学应用意识;感受数学学习的乐趣,树立学好数学的信心。
重点难点:
加深理解分数、百分数的意义。分数、百分数在实际生活中的应用。
教学过程:
一、揭示课题
谈话:前几节课我们一起复习了整数和小数的相关知识,这节课我们要对分数和百分数的相关知识进行整理和复习。
通过复习,要进一步认识分数和百分数的意义,体会它们之间的'联系与区别,并能运用分数和百分数的相关知识解决一些实际问题。
二、回顾整理
1.回顾讨论。
提问:你了解分数和百分数的哪些知识?请大家联系下面的问题自己回顾整理,并且在小组里交流。
呈现以下四个问题
(1) 什么叫分数?什么叫百分数?
(2) 分数和除法有什么联系?请你举例说明。
(3) 分数的基本性质是什么?你能用它来说明小数的性质吗?
(4) 小数、分数和百分数怎样互相改写?
让学生围绕上面四个问题先独立思考,再在小组里讨论、交流。
2.组织交流,回答上面四个问题。
三、基本练习
1.做练习与实践第1题。
学生独立填写后指名口答,说明理由。
强调:分数是看平均分成多少份,表示这样的几分;小数是看表示的十分之几、百分之几、千分之几百分数是看这个数量占整体的百分之几。
2.做练习与实践第2题。
学生填写在书上,然后集体校对,让学生说说思考过程。
追问:第(2)题把一根绳子平均分成8段,为什么两次填写的结果不同?
3.做练习与实践第3题。学生独立填写。
集体交流,让学生说说是怎样想的,说一说每个百分数表示的意义。
4.做练习与实践第5题。
学生先尝试填写,再集体交流。
提问:这两组数分别会越来越接近几?
指出:这两组数按规律可以无限地填下去,这样填写第一组数会越来越接近1,第二组数会越来越接近0.
四、应用练习
1.做练习与实践第6题。
学生读题,理解题意,先独立估计。
提问:估计哪块花圃种玫瑰的面积所占的百分比最大?说说理由。
指出:估计时,可以先想出相应的分数,再估计大小。
学生写出相应的百分数,并交流是怎样想的,再和估计的比一比。
2.做练习与实践第7、8题。
学生读题后独立解答,再集体交流。
提问:你能说说种子发芽率的具体含义吗?折扣表示什么?发芽率和折扣各是怎样求的?
3.做练习与实践第9题。
学生读题后,提问:你能根据所给信息,在图中表示出李华家上个月的支出情况吗?先独立思考并在图中表示。
五、课堂总结
1.交流小结。
提问:这节课我们复习了哪些内容?你有什么收获或体会?
2.布置作业。
课堂作业:练习与实践第4题,第9题第(2)小题,第10题。
2022苏教版六年级数学下册教案14
教学内容:
课本第78——79页例2和“练一练”,练习十三第1、2题。
教学目标:
1、让学生用分数乘法和减法解决一些稍复杂的实际问题(不超过两步),进一步积累解决问题的策略,增强数学应用的意识。
2、发展思维、提高分析问题、解决问题的'能力,进一步体会数学知识之间的内在联系。
教学重难点:
用分数乘法和减法解决一些稍复杂的实际问题。
课前准备:
课件
教学过程:
一、谈话导入
谈话,并出示例题。
学生自由读题,了解题意。
二、探索新知
1、出示例2,问:从题中你知道了什么?要我们解决什么问题?
说出题目的已知条件和所求问题。
谈话:为了使已知条件之间、条件和问题之间的关系更清楚,可以先画线段图。
教师一边讲解一边示范画线段图的过程,学生和教师一起操作,完善线段图。
2、问:要求女运动员有多少人,可以先算什么?在图上指出来。
各自列式解答,指名板演,期于学生同时列式解答。
集体评讲。
探讨其他算法
设问:想一想还可以怎样算?
学生思考后交流。教师适当评讲。
三、巩固深化
1、完成“练一练”第1题。
让学生先说出自己的想法,然后再列式解答。
集体评讲。
2、完成“练一练”第2、3题。
学生弄清题意后独立解答。(要求学生画出线段图)
集体评讲。
四、课堂总结
通过今天的学习,你有什么收获呢?
五.布置作业
练习十三第1、2题。
教学反思:
2022苏教版六年级数学下册教案15
教学内容:教科书第90页例2及练习二十一第1~4题。
教学目标:
1.掌握稍复杂的求一个数比另一个数多(或少)百分之几的问题的解答方法。
2.提高学生迁移类推和分析、解决问题的能力。
教学过程:
一、复习准备
1.把下面各数化成百分数。
0.63 1.08 7 0.044 1/4 3/5 7/20 5/8
2.说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位“1”。)
某种花生的出油率是36%。
实际用电量占计划用电量的80%。
李家今年荔枝产量是去年的120%。
二、学习新课
1.根据数学信息提问题。
出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。
学生可能提出以下问题:
①计划造林是实际造林百分之几?
②实际造林是计划造林百分之几?
③实际造林比计划造林增加百分之几?
④计划造林比实际造林少百分之几?
2.让学生先解决前两个问题。
通过这两个问题的解决,提醒学生注意:解决这类问题一定先弄清楚哪两个数相比,哪个数是单位“1”,哪一个数与单位“1”相比。为学生学习新课解决数量关系稍复杂的求一个数比另一个数多(或少)百分之几的问题做好知识迁移的准备。
3.让学生自主解决“实际造林比计划增加了百分之几”的问题。
(1)分析数量关系。
让学生自己尝试把数量关系用线段图表示出来。
让学生说说是怎样理解“实际造林比原计划增加百分之几”的。
通过讨论,让学生明确求实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数与原计划造林的公顷数相比的`百分率,原计划造林的公顷数是单位“1”。
(2)确定解决问题的方法。
①让学生根据分析确定解决问题的方法,并列式计算出结果。
②让学生交流自己的方法,教师作适当的板书。
方法一:(14-12)÷12 = 2÷12≈0.167 = 16.7%
方法二:14÷12 ≈1.167=116.7%
116.7% - 100% = 16.7%
问:还有其他方法吗?
③让学生总结,像这样的百分数问题有什么特点?解决它时要注意什么?
使学生明确:这是求一个数比另一个数增加百分之几的问题,它的解题思路和刚才同学们提出的第①、②个问题的分析思路基本相同,都要分清哪两个量在比较,谁是单位“1”,但这里比较的两个量中有一个条件没有直接告诉,必须先求出。
4.改变问题。
师:如果问题是:计划造林比实际造林少百分之几?又怎么解决呢?
让学生列出算式,教师板书:
(14-12)÷ 14
5.观察比较。
将例2的第一种算式与改变后的问题的解答算式相比较:
(14-12)÷12(14-12)÷14
师:不同点是什么?为什么除数不一样?
通过学生的讨论,再次强调两个问题中谁和谁比,谁是单位“1”。使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位“1”。
6.概括应用。
让学生读一读课本例2后面一段话,结合生活实际举例说一说“增加百分之几”、“减少百分之几”“节约百分之几”……等话的含义。
三、巩固练习
1.提问:解决求一个数比另一个数多(或少)百分之几的问题,应注意什么?
2.独立完成课本90页“做一做”的题目。
四、布置作业
课堂作业:练习二十二第1、第2题。
课外作业:练习二十二的第3、4题。
五、课堂总结反思
1.学了这节课你还有什么疑问吗?
2.能谈谈你的收获吗?
【六年级数学下册教案】相关文章:
六年级数学下册教案09-30
人教版数学六年级下册教案11-10
数学六年级下册教学教案01-06
苏教版六年级数学下册教案02-27
六年级下册数学教案11-07
苏教版六年级下册数学教案02-06
人教版六年级下册数学教案11-28
人教版小学六年级数学下册教案01-05
小学人教版数学下册教案11-25