高一数学教案

时间:2022-12-13 11:33:12 教案大全 我要投稿

高一数学教案(15篇)

  作为一名辛苦耕耘的教育工作者,通常需要准备好一份教案,教案是教材及大纲与课堂教学的纽带和桥梁。来参考自己需要的教案吧!以下是小编整理的高一数学教案,希望对大家有所帮助。

高一数学教案(15篇)

高一数学教案1

  教学目标

  (1)正确理解充分条件、必要条件和充要条件的概念;

  (2)能正确判断是充分条件、必要条件还是充要条件;

  (3)培养学生的逻辑思维能力及归纳总结能力;

  (4)在充要条件的教学中,培养等价转化思想.

  教学建议

  (一)教材分析

  1.知识结构

  首先给出推断符号“”,并引出的意义,在此基础上讲述了充要条件的初步知识.

  2.重点难点分析

  本节的重点与难点是关于充要条件的判断.

  (1)充分但不必要条件、必要但不充分条件、充要条件、既不充分也不必要条件是重要的数学概念,主要用来区分命题的条件和结论之间的因果关系.

  (2)在判断条件和结论之间的因果关系中应该:

  ①首先分清条件是什么,结论是什么;

  ②然后尝试用条件推结论,再尝试用结论推条件.推理方法可以是直接证法、间接证法(即反证法),也可以举反例说明其不成立;

  ③最后再指出条件是结论的什么条件.

  (3)在讨论条件和条件的关系时,要注意:

  ①若,但,则是的充分但不必要条件;

  ②若,但,则是的必要但不充分条件;

  ③若,且,则是的充要条件;

  ④若,且,则是的充要条件;

  ⑤若,且,则是的既不充分也不必要条件.

  (4)若条件以集合的形式出现,结论以集合的形式出现,则借助集合知识,有助于充要条件的理解和判断.

  ①若,则是的充分条件;

  显然,要使元素,只需就够了.类似地还有:

  ②若,则是的必要条件;

  ③若,则是的充要条件;

  ④若,且,则是的既不必要也不充分条件.

  (5)要证明命题的条件是充要条件,就既要证明原命题成立,又要证明它的逆命题成立.证明原命题即证明条件的充分性,证明逆命题即证明条件的必要性.由于原命题逆否命题,逆命题否命题,当我们证明某一命题有困难时,可以证明该命题的逆否命题成立,从而得出原命题成立.

  (二)教法建议

  1.学习充分条件、必要条件和充要条件知识,要注意与前面有关逻辑初步知识内容相联系.充要条件中的,与四种命题中的,要求是一样的.它们可以是简单命题,也可以是不能判断真假的语句,也可以是含有逻辑联结词或“若则”形式的复合命题.

  2.由于这节课概念性、理论性较强,一般的教学使学生感到枯燥乏味,为此,激发学生的学习兴趣是关键.教学中始终要注意以学生为主,让学生在自我思考、相互交流中去结概念“下定义”,去体会概念的本质属性.

  3.由于“充要条件”与命题的真假、命题的条件与结论的相互关系紧密相关,为此,教学时可以从判断命题的真假入手,来分析命题的条件对于结论来说,是否充分,从而引入“充分条件”的概念,进而引入“必要条件”的概念.

  4.教材中对“充分条件”、“必要条件”的定义没有作过多的解释说明,为了让学生能理解定义的合理性,在教学过程中,教师可以从一些熟悉的命题的条件与结论之间的关系来认识“充分条件”的概念,从互为逆否命题的等价性来引出“必要条件”的概念.

  教学设计示例

  充要条件

  教学目标

  (1)正确理解充分条件、必要条件和充要条件的概念;

  (2)能正确判断是充分条件、必要条件还是充要条件;

  (3)培养学生的逻辑思维能力及归纳总结能力;

  (4)在充要条件的教学中,培养等价转化思想.

  教学重点难点:

  关于充要条件的判断

  教学用具:

  幻灯机或实物投影仪

  教学过程设计

  1.复习引入

  练习:判断下列命题是真命题还是假命题(用幻灯投影):

  (1)若,则;

  (2)若,则;

  (3)全等三角形的面积相等;

  (4)对角线互相垂直的四边形是菱形;

  (5)若,则;

  (6)若方程有两个不等的实数解,则.

  (学生口答,教师板书.)

  (1)、(3)、(6)是真命题,(2)、(4)、(5)是假命题.

  置疑:对于命题“若,则”,有时是真命题,有时是假命题.如何判断其真假的?

  答:看能不能推出,如果能推出,则原命题是真命题,否则就是假命题.

  对于命题“若,则”,如果由经过推理能推出,也就是说,如果成立,那么一定成立.换句话说,只要有条件就能充分地保证结论的成立,这时我们称条件是成立的充分条件,记作.

  2.讲授新课

  (板书充分条件的定义.)

  一般地,如果已知,那么我们就说是成立的充分条件.

  提问:请用充分条件来叙述上述(1)、(3)、(6)的条件与结论之间的关系.

  (学生口答)

  (1)“,”是“”成立的充分条件;

  (2)“三角形全等”是“三角形面积相等”成立的充分条件;

  (3)“方程的有两个不等的实数解”是“”成立的充分条件.

  从另一个角度看,如果成立,那么其逆否命题也成立,即如果没有,也就没有,亦即是成立的必须要有的'条件,也就是必要条件.

  (板书必要条件的定义.)

  提出问题:用“充分条件”和“必要条件”来叙述上述6个命题.

  (学生口答).

  (1)因为,所以是的充分条件,是的必要条件;

  (2)因为,所以是的必要条件,是的充分条件;

  (3)因为“两三角形全等”“两三角形面积相等”,所以“两三角形全等”是“两三角形面积相等”的充分条件,“两三角形面积相等”是“两三角形全等”的必要条件;

  (4)因为“四边形的对角线互相垂直”“四边形是菱形”,所以“四边形的对角线互相垂直”是“四边形是菱形”的必要条件,“四边形是菱形”是“四边形的对角线互相垂直”的充分条件;

  (5)因为,所以是的必要条件,是的充分条件;

  (6)因为“方程的有两个不等的实根”“”,而且“方程的有两个不等的实根”“”,所以“方程的有两个不等的实根”是“”充分条件,而且是必要条件.

  总结:如果是的充分条件,又是的必要条件,则称是的充分必要条件,简称充要条件,记作.

  (板书充要条件的定义.)

  3.巩固新课

  例1(用投影仪投影.)

  (学生活动,教师引导学生作出下面回答.)

  ①因为有理数一定是实数,但实数不一定是有理数,所以是的充分非必要条件,是的必要非充分条件;

  ②一定能推出,而不一定推出,所以是的充分非必要条件,是的必要非充分条件;

  ③、是奇数,那么一定是偶数;是偶数,、不一定都是奇数(可能都为偶数),所以是的充分非必要条件,是的必要非充分条件;

  ④表示或,所以是成立的必要非充分条件;

  ⑤由交集的定义可知且是成立的充要条件;

  ⑥由知且,所以是成立的充分非必要条件;

  ⑦由知或,所以是,成立的必要非充分条件;

  ⑧易知“是4的倍数”是“是6的倍数”成立的既非充分又非必要条件;

  (通过对上述问题的交流、思辩,在争论中得到了正确答案,并加深了对充分条件、必要条件的认识.)

  例2已知是的充要条件,是的必要条件同时又是的充分条件,试与的关系.(投影)

  解:由已知得,

  所以是的充分条件,或是的必要条件.

  4.小结回授

  今天我们学习了充分条件、必要条件和充要条件的概念,并学会了判断条件A是B的什么条件,这为我们今后解决数学问题打下了等价转化的基础.

  课内练习:课本(人教版,试验修订本,第一册(上))第35页练习l、2;第36页练习l、2.

  (通过练习,检查学生掌握情况,有针对性的进行讲评.)

  5.课外作业:教材第36页 习题1.8 1、2、3.

高一数学教案2

  教学目标

  1、掌握平面向量的数量积及其几何意义;

  2、掌握平面向量数量积的重要性质及运算律;

  3、了解用平面向量的数量积可以处理垂直的问题;

  4、掌握向量垂直的条件、

  教学重难点

  教学重点:平面向量的数量积定义

  教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

  教学过程

  1、平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,

  则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b=|a||b|cosq,(0≤θ≤π)、

  并规定0向量与任何向量的数量积为0、

  ×探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?

  2、两个向量的数量积与实数乘向量的`积有什么区别?

  (1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定、

  (2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分、符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替、

  (3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0、因为其中cosq有可能为0、

高一数学教案3

  学习目标 1.函数奇偶性的概念

  2.由函数图象研究函数的奇偶性

  3.函数奇偶性的判断

  重点:能运用函数奇偶性的定义判断函数的奇偶性

  难点:理解函数的奇偶性

  知识梳理:

  1.轴对称图形:

  2中心对称图形:

  【概念探究】

  1、 画出函数 ,与 的图像;并观察两个函数图像的对称性。

  2、 求出 , 时的函数值,写出 , 。

  结论: 。

  3、 奇函数:___________________________________________________

  4、 偶函数:______________________________________________________

  【概念深化】

  (1)、强调定义中任意二字,奇偶性是函数在定义域上的整体性质。

  (2)、奇函数偶函数的定义域关于原点对称。

  5、奇函数与偶函数图像的对称性:

  如果一个函数是奇函数,则这个函数的图像是以坐标原点为对称中心的__________。反之,如果一个函数的图像是以坐标原点为对称中心的中心对称图形,则这个函数是___________。

  如果一个函数是偶函数,则这个函数的图像是以 轴为对称轴的__________。反之,如果一个函数的图像是关于 轴对称,则这个函数是___________。

  6. 根据函数的奇偶性,函数可以分为____________________________________.

  题型一:判定函数的奇偶性。

  例1、判断下列函数的奇偶性:

  (1) (2) (3)

  (4) (5)

  练习:教材第49页,练习A第1题

  总结:根据例题,你能给出用定义判断函数奇偶性的步骤?

  题型二:利用奇偶性求函数解析式

  例2:若f(x)是定义在R上的奇函数,当x0时,f(x)=x(1-x),求当 时f(x)的解析式。

  练习:若f(x)是定义在R上的奇函数,当x0时,f(x)=x|x-2|,求当x0时f(x)的解析式。

  已知定义在实数集 上的奇函数 满足:当x0时, ,求 的表达式

  题型三:利用奇偶性作函数图像

  例3 研究函数 的性质并作出它的图像

  练习:教材第49练习A第3,4,5题,练习B第1,2题

  当堂检测

  1 已知 是定义在R上的奇函数,则( D )

  A. B. C. D.

  2 如果偶函数 在区间 上是减函数,且最大值为7,那么 在区间 上是( B )

  A. 增函数且最小值为-7 B. 增函数且最大值为7

  C. 减函数且最小值为-7 D. 减函数且最大值为7

  3 函数 是定义在区间 上的偶函数,且 ,则下列各式一定成立的是(C )

  A. B. C. D.

  4 已知函数 为奇函数,若 ,则 -1

  5 若 是偶函数,则 的单调增区间是

  6 下列函数中不是偶函数的是(D )

  A B C D

  7 设f(x)是R上的偶函数,切在 上单调递减,则f(-2),f(- ),f(3)的.大小关系是( A )

  A B f(- )f(-2) f(3) C f(- )

  8 奇函数 的图像必经过点( C )

  A (a,f(-a)) B (-a,f(a)) C (-a,-f(a)) D (a,f( ))

  9 已知函数 为偶函数,其图像与x轴有四个交点,则方程f(x)=0的所有实根之和是( A )

  A 0 B 1 C 2 D 4

  10 设f(x)是定义在R上的奇函数,且x0时,f(x)= ,则f(-2)=_-5__

  11若f(x)在 上是奇函数,且f(3)_f(-1)

  12.解答题

  用定义判断函数 的奇偶性。

  13定义证明函数的奇偶性

  已知函数 在区间D上是奇函数,函数 在区间D上是偶函数,求证: 是奇函数

  14利用函数的奇偶性求函数的解析式:

  已知分段函数 是奇函数,当 时的解析式为 ,求这个函数在区间 上的解析表达式。

高一数学教案4

  知识结构

  重难点分析

  本节的重点是二次根式的化简.本章自始至终围绕着二次根式的化简与计算进行,而二次根式的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论.

  本节的难点是正确理解与应用公式.这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误.

  教法建议

  1.性质的引入方法很多,以下2种比较常用:

  (1)设计问题引导启发:由设计的问题

  1)、、各等于什么?

  2)、、各等于什么?

  启发、引导学生猜想出

  (2)从算术平方根的意义引入.

  2.性质的巩固有两个方面需要注意:

  (1)注意与性质进行对比,可出几道类型不同的题进行比较;

  (2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等.

  (第1课时)

  一、教学目标

  1.掌握二次根式的性质

  2.能够利用二次根式的.性质化简二次根式

  3.通过本节的学习渗透分类讨论的数学思想和方法

  二、教学设计

  对比、归纳、总结

  三、重点和难点

  1.重点:理解并掌握二次根式的性质

  2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.

  四、课时安排

  1课时

  五、教B具学具准备

  投影仪、胶片、多媒体

  六、师生互动活动设计

  复习对比,归纳整理,应用提高,以学生活动为主

  七、教学过程

  一、导入新课

  我们知道,式子()表示非负数的算术平方根.

  问:式子的意义是什么?被开方数中的表示的是什么数?

  答:式子表示非负数的算术平方根,即,且,从而可以取任意实数.

  二、新课

  计算下列各题,并回答以下问题:

  (1);(2);(3);

  1.各小题中被开方数的幂的底数都是什么数?

  2.各小题的结果和相应的被开方数的幂的底数有什么关系?

  3.用字母表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论.

高一数学教案5

  教学目标:

  (1)了解集合的表示方法;

  (2)能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

  教学重点:掌握集合的表示方法;

  教学难点:选择恰当的表示方法;

  教学过程:

  一、复习回顾:

  1.集合和元素的定义;元素的三个特性;元素与集合的关系;常用的数集及表示。

  2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?有何关系

  二、新课教学

  (一).集合的表示方法

  我们可以用自然语言和图形语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

  (1) 列举法:把集合中的元素一一列举出来,并用花括号“ ”括起来表示集合的方法叫列举法。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;

  说明:1.集合中的元素具有无序性,所以用列举法表示集合时不必考

  虑元素的顺序。

  2.各个元素之间要用逗号隔开;

  3.元素不能重复;

  4.集合中的元素可以数,点,代数式等;

  5.对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集N用列举法表示为

  例1.(课本例1)用列举法表示下列集合:

  (1)小于10的所有自然数组成的集合;

  (2)方程x2=x的所有实数根组成的集合;

  (3)由1到20以内的所有质数组成的集合;

  (4)方程组 的解组成的集合。

  思考2:(课本P4的思考题)得出描述法的定义:

  (2)描述法:把集合中的元素的公共属性描述出来,写在花括号{ }内。

  具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

  一般格式:

  如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;

  说明:

  1.课本P5最后一段话;

  2.描述法表示集合应注意集合的代表元素,如{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}是不同的`两个集合,只要不引起误解,集合的代表元素也可省略,例如:{x|整数},即代表整数集Z。

  辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

  例2.(课本例2)试分别用列举法和描述法表示下列集合:

  (1)方程x2—2=0的所有实数根组成的集合;

  (2)由大于10小于20的所有整数组成的集合;

  (3)方程组 的解。

  思考3:(课本P6思考)

  说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

  (二).课堂练习:

  1.课本P6练习2;

  2.用适当的方法表示集合:大于0的所有奇数

  3.集合A={x| ∈Z,x∈N},则它的元素是 。

  4.已知集合A={x|-3

  归纳小结:

  本节课从实例入手,介绍了集合的常用表示方法,包括列举法、描述法。

  作业布置:

  1. 习题1.1,第3.4题;

  2. 课后预习集合间的基本关系.

高一数学教案6

  数学课堂教学

  三维目标的具体内容和层次划分

  请阐述数学课堂教学三维目标的具体内容和层次划分

  知识与技能掌握应用,既是课堂教学的出发点,又是课堂教学的归宿。教与学,都要通过知识与技能来体现的。那么,什么是三维目标内容呢?

  所谓三维目标是是指:“知识与技能”,“过程和方法”、“情感、态度、价值观”。

  知识与技能:既是课堂教学的出发点,又是课堂教学的归宿。我们在教学过程中,需要学生掌握什么,哪些些问题需要重点掌握,哪些只需简单理解;技能是会与不会的问题。属显性范畴,具有可测性,大都采用定量分析与评价、知识与技能是传统教学合理的内核,是我国传统教育教学的'优势,应该从传统教学中继承与发扬。新课改不是不要双基,而是不要过度的强调双基,而舍弃弱化其它有价值的东西,导致非全面、不和蔼的发展。

  过程与方法:既是课堂教学的目标之一,又是课堂教学的操作系统。“过程和方法”维度的目标立足于让学生会学,新课程倡导对学与教的过程的体验、方法的选择,是在知识与能力目标基础上对教学目标的进一步开发。过程与方法是一个体验的过程、发现的过程,不但可以让学生体验到科学发展的过程,我们更多地要让学生掌握过程,不一定要统一的结果。

  情感、态度与价值观:既是课堂教学的目标之一,又是课堂教学的动力系统。“情感、态度和价值观”,目标立足于让学生乐学,新课程倡导对学与教的情感体验、态度形成、价值观的体现,是在知识与能力、过程与方法目标基础上对教学目标深层次的开拓,只有学生充分的认识到他们肩负的责任,就能够激发起他们的学习热情,他们才会有浓厚的学习兴趣,才能学有所成,将来回报社会。

  三维目标不是三个目标,也不是三种目标,是一个问题的三个方面。三维目标是三位一体不可分割的,他们是相辅相成的,相互促进的。

高一数学教案7

  教学目标

  1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路

  (1)分析,(2)建模,(3)求解,(4)检验;

  2、实际问题中的有关术语、名称:

  (1)仰角与俯角:均是指视线与水平线所成的角;

  (2)方位角:是指从正北方向顺时针转到目标方向线的夹角;

  (3)方向角:常见的`如:正东方向、东南方向、北偏东、南偏西等;

  3、用正弦余弦定理解实际问题的常见题型有:

  测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;

  教学重难点

  1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路

  (1)分析,(2)建模,(3)求解,(4)检验;

  2、实际问题中的有关术语、名称:

  (1)仰角与俯角:均是指视线与水平线所成的角;

  (2)方位角:是指从正北方向顺时针转到目标方向线的夹角;

  (3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;

  3、用正弦余弦定理解实际问题的常见题型有:

  测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;

  教学过程

  一、知识归纳

  1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路

  (1)分析,(2)建模,(3)求解,(4)检验;

  2、实际问题中的有关术语、名称:

  (1)仰角与俯角:均是指视线与水平线所成的角;

  (2)方位角:是指从正北方向顺时针转到目标方向线的夹角;

  (3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;

  3、用正弦余弦定理解实际问题的常见题型有:

  测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;

  二、例题讨论

  一)利用方向角构造三角形

  四)测量角度问题

  例4、在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东。

高一数学教案8

  一、教材

  首先谈谈我对教材的理解,《两条直线平行与垂直的判定》是人教A版高中数学必修2第三章3.1.2的内容,本节课的内容是两条直线平行与垂直的判定的推导及其应用,学生对于直线平行和垂直的概念已经十分熟悉,并且在上节课学习了直线的倾斜角与斜率,为本节课的学习打下了基础。

  二、学情

  教材是我们教学的工具,是载体。但我们的.教学是要面向学生的,高中学生本身身心已经趋于成熟,管理与教学难度较大,那么为了能够成为一个合格的高中教师,深入了解所面对的学生可以说是必修课。本阶段的学生思维能力已经非常成熟,能够有自己独立的思考,所以应该积极发挥这种优势,让学生独立思考探索。

  三、教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

  (一)知识与技能

  掌握两条直线平行与垂直的判定,能够根据其判定两条直线的位置关系。

  (二)过程与方法

  在经历两条直线平行与垂直的判定过程中,提升逻辑推理能力。

  (三)情感态度价值观

  在猜想论证的过程中,体会数学的严谨性。

  四、教学重难点

  我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:两条直线平行与垂直的判定。本节课的教学难点是:两条直线平行与垂直的判定的推导。

  五、教法和学法

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。

  六、教学过程

  下面我将重点谈谈我对教学过程的设计。

  (一)新课导入

  首先是导入环节,那么我采用复习导入,回顾上节课所学的直线的倾斜角与斜率并顺势提问:能否通过直线的斜率,来判断两条直线的位置关系呢?

  利用上节课所学的知识进行导入,很好的克服学生的畏难情绪。

  (二)新知探索

  接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、启发法等。

高一数学教案9

  教学目标:

  1、掌握对数的运算性质,并能理解推导这些法则的依据和过程;

  2、能较熟练地运用法则解决问题;

  教学重点:

  对数的运算性质

  教学过程:

  一、问题情境:

  1、指数幂的运算性质;

  2、问题:对数运算也有相应的运算性质吗?

  二、学生活动:

  1、观察教材P59的表2—3—1,验证对数运算性质、

  2、理解对数的运算性质、

  3、证明对数性质、

  三、建构数学:

  1)引导学生验证对数的运算性质、

  2)推导和证明对数运算性质、

  3)运用对数运算性质解题、

  探究:

  ①简易语言表达:“积的对数=对数的和”……

  ②有时逆向运用公式运算:如

  ③真数的取值范围必须是:不成立;不成立、

  ④注意:,

  四、数学运用:

  1、例题:

  例1、(教材P60例4)求下列各式的'值:

  (1);(2)125;(3)(补充)lg、

  例2、(教材P60例4)已知,,求下列各式的值(结果保留4位小数)

  (1);(2)、

  例3、用,,表示下列各式:

  例4、计算:

  (1);(2);(3)

  2、练习:

  P60(练习)1,2,4,5、

  五、回顾小结:

  本节课学习了以下内容:对数的运算法则,公式的逆向使用、

  六、课外作业:

  P63习题5

  补充:

  1、求下列各式的值:

  (1)6—3;(2)lg5+lg2;(3)3+、

  2、用lgx,lgy,lgz表示下列各式:

  (1)lg(xyz);(2)lg;(3);(4)、

  3、已知lg2=0、3010,lg3=0、4771,求下列各对数的值(精确到小数点后第四位)

  (1)lg6;(2)lg;(3)lg;(4)lg32、

高一数学教案10

  教学目标

  1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法.

  (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.

  (2)能从数和形两个角度认识单调性和奇偶性.

  (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.

  2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.

  3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.

  教学建议

  一、知识结构

  (1)函数单调性的概念。包括增函数、减函数的.定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.

  (2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.

  二、重点难点分析

  (1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明.

  (2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.

  三、教法建议

  (1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.

  (2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.

  函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.

高一数学教案11

  一、教材分析

  本节课选自《普通高中课程标准数学教科书—必修1》(人教A版)《1。2。1函数的概念》共3课时,本节课是第1课时。生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。

  二、学生学习情况分析

  函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段:

  (一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数;

  (二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数;

  (三)高中用导数工具研究函数的单调性和最值。

  1、有利条件

  现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。

  初中用运动变化的观点对函数进行定义的,它反映了历人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。也为我们用集合与对应的观点研究函数打下了一定的基础。

  2、不利条件

  用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的.理解能力是一个挑战,是本节课教学的一个不利条件。

  三、教学目标分析

  课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域。

  1、知识与能力目标:

  ⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性;

  ⑵理解函数的三要素的含义及其相互关系;

  ⑶会求简单函数的定义域和值域

  2、过程与方法目标:

  ⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型;

  ⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。

  3、情感、态度与价值观目标:

  感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。

  四、教学重点、难点分析

  1、教学重点:对函数概念的理解,用集合与对应的语言来刻画函数;

  重点依据:初中是从变量的角度来定义函数,高中是用集合与对应的语言来刻画函数。二者反映的本质是一致的,即“函数是一种对应关系”。但是,初中定义并未完全揭示出函数概念的本质,对y?1这样的函数用运动变化的观点也很难解释。在以函数为重要内容的高中阶段,课本应将函数定义为两个数集之间的一种对应关系,按照这种观点,使我们对函数概念有了更深一层的认识,也很容易说明y?1这函数表达式。因此,分析两种函数概念的关系,让学生融会贯通地理解函数的概念应为本节课的重点。

  突出重点:重点的突出依赖于对函数概念本质属性的把握,使学生通过表面的语言描述抓住概念的精髓。

  2、教学难点:

  第一:从实际问题中提炼出抽象的概念;

  第二:符号“y=f(x)”的含义的理解。

  难点依据:数学语言的抽象概括难度较大,对符号y=f(x)的理解会受到以前知识的负迁移。

  突破难点:难点的突破要依托丰富的实例,从集合与对应的角度恰当地引导,而对抽象符号的理解则要结合函数的三要素和小例子进行说明。

  五、教法与学法分析

  1、教法分析

  本节课我主要采用教师导学法、知识迁移法和知识对比法,从学生熟悉的丰富实例出发,关注学生的原有的知识基础,注重概念的形成过程,从初中的函数概念自然过度到函数的近代定我。

  2、学法分析

  在教学过程中我注意在教学中引导学生用模型法分析函数问题、通过自主学习法总结“区间”的知识。

高一数学教案12

  第二十四教时

  教材:倍角公式,推导和差化积及积化和差公式

  目的:继续复习巩固倍角公式,加强对公式灵活运用的训练;同时,让学生推导出和差化积和积化和差公式,并对此有所了解。

  过程:

  一、 复习倍角公式、半角公式和万能公式的`推导过程:

  例一、 已知 , ,tan = ,tan = ,求2 +

  (《教学与测试》P115 例三)

  解:

  又∵tan2 0,tan 0 ,

  2 + =

  例二、 已知sin cos = , ,求 和tan的值

  解:∵sin cos =

  化简得:

  ∵ 即

  二、 积化和差公式的推导

  sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )]

  sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )]

  cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )]

  cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )]

  这套公式称为三角函数积化和差公式,熟悉结构,不要求记忆,它的优点在于将积式化为和差,有利于简化计算。(在告知公式前提下)

  例三、 求证:sin3sin3 + cos3cos3 = cos32

  证:左边 = (sin3sin)sin2 + (cos3cos)cos2

  = (cos4 cos2)sin2 + (cos4 + cos2)cos2

  = cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2

  = cos4cos2 + cos2 = cos2(cos4 + 1)

  = cos22cos22 = cos32 = 右边

  原式得证

  三、 和差化积公式的推导

  若令 + = , = ,则 , 代入得:

  这套公式称为和差化积公式,其特点是同名的正(余)弦才能使用,它与积化和差公式相辅相成,配合使用。

  例四、 已知cos cos = ,sin sin = ,求sin( + )的值

  解:∵cos cos = , ①

  sin sin = , ②

  四、 小结:和差化积,积化和差

  五、 作业:《课课练》P3637 例题推荐 13

  P3839 例题推荐 13

  P40 例题推荐 13

高一数学教案13

  教学目标:

  1、理解对数的概念,能够进行对数式与指数式的互化;

  2、渗透应用意识,培养归纳思维能力和逻辑推理能力,提高数学发现能力。

  教学重点:

  对数的概念

  教学过程:

  一、问题情境:

  1、(1)庄子:一尺之棰,日取其半,万世不竭、①取5次,还有多长?②取多少次,还有0、125尺?

  (2)假设20xx年我国国民生产总值为a亿元,如果每年平均增长8%,那么经过多少年国民生产总值是20xx年的2倍?

  抽象出:1、=?,=0、125x=?2、=2x=?

  2、问题:已知底数和幂的值,如何求指数?你能看得出来吗?

  二、学生活动:

  1、讨论问题,探究求法、

  2、概括内容,总结对数概念、

  3、研究指数与对数的关系、

  三、建构数学:

  1)引导学生自己总结并给出对数的概念、

  2)介绍对数的表示方法,底数、真数的`含义、

  3)指数式与对数式的关系、

  4)常用对数与自然对数、

  探究:

  ⑴负数与零没有对数、

  ⑵,、

  ⑶对数恒等式(教材P58练习6)

  ①;②、

  ⑷两种对数:

  ①常用对数:;

  ②自然对数:、

  (5)底数的取值范围为;真数的取值范围为、

  四、数学运用:

  1、例题:

  例1、(教材P57例1)将下列指数式改写成对数式:

  (1)=16;(2)=;(3)=20;(4)=0、45、

  例2、(教材P57例2)将下列对数式改写成指数式:

  (1);(2)3=—2;(3);(4)(补充)ln10=2、303

  例3、(教材P57例3)求下列各式的值:

  ⑴;⑵;⑶(补充)、

  2、练习:

  P58(练习)1,2,3,4,5、

  五、回顾小结:

  本节课学习了以下内容:

  ⑴对数的定义;

⑵指数式与对数式互换;

⑶求对数式的值(利用计算器求对数值)、

  六、课外作业:P63习题1,2,3,4、

高一数学教案14

  一、教材分析

  函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。

  本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。

  二、重难点分析

  根据对上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。

  三、学情分析

  1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。

  2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。

  四、目标分析

  1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。

  2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。

  3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。

  五、教法学法

  本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参与者,我一方面精心设计问题情景,引导学生主动探索。另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。

  学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。

  高一必修二数学教案41、教材(教学内容)

  本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用、

  2、设计理念

  本堂课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的引导作用。整堂课先通过问题引导学生梳理已有的'知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而引导学生带着问题阅读和钻研教材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函数的定义”这一新的概念,最后通过例题与练习,将任意角三角函数的定义,内化为学生新的认识结构,从而达成教学目标、

  3、教学目标

  知识与技能目标:形成并掌握任意角三角函数的定义,并学会运用这一定义,解决相关问题、

  过程与方法目标:体会数学建模思想、类比思想和化归思想在数学新概念形成中的重要作用、

  情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美、

  4、重点难点

  重点:任意角三角函数的定义、

  难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、

  5、学情分析

  学生已有的认知结构:函数的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念、在教学过程中,需要先将学生的以直角三角形为载体的锐角三角函数的概念改造为以象限角为载体的锐角三角函数,并形成以角的终边与单位园的交点的坐标来表示的锐角三角函数的概念,再拓展到任意角的三角函数的定义,从而使学生形成新的认知结构、

  6、教法分析

  “问题解决”教学法,是以问题为主线,引导和驱动学生的思维和学习活动,并通过问题,引导学生的质疑和讨论,充分展示学生的思维过程,最后在解决问题的过程中形成新的认知结构、这种教学模式能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的主体作用、

  7、学法分析

  本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标。

高一数学教案15

  教学目标

  1.理解分数指数幂的含义,了解实数指数幂的意义。

  2.掌握有理数指数幂的运算性质,灵活的运用乘法公式进行有理数指数幂的运算和化简,会进行根式与分数指数幂的相互转化。

  教学重点

  1.分数指数幂含义的理解。

  2.有理数指数幂的运算性质的理解。

  3.有理数指数幂的运算和化简。

  教学难点

  1.分数指数幂含义的理解。

  2.有理数指数幂的运算和化简。

  教学过程

  一.问题情景

  上节课研究了根式的意义及根式的性质,那么根式与指数幂有什么关系?整数指数幂有那些运算性质?

  二.学生活动

  1.说出下列各式的意义,并指出其结果的指数,被开方数的指数及根指数三者之间的关系

  (1)=(2)=

  2.从上述问题中,你能得到的结论为

  3.(a0)及(a0)能否化成指数幂的形式?

  三.数学理论

  正分数指数幂的意义:=(a0,m,n均为正整数)

  负分数指数幂的意义:=(a0,m,n均为正整数)

  1.规定:0的正分数指数幂仍是0,即=0

  0的'负分数指数幂无意义。

  3.规定了分数指数幂的意义后,指数的概念从整数指数推广到了有理数指数,因而整数指数幂的运算性质同样适用于有理数指数幂。

  即=(1)

  =(2)其中s,tQ,a0,b0

  =(3)

  四.数学运用

  例1求值:

  (1)(2)(3)(4)

  例2用分数指数幂的形式表示下列各式(a0)

  (1)(2)

  例3化简

  (1)

  (2)(3)

  例4化简

  例5已知求(1)(2)

  五.回顾小结

  1.分数指数幂的意义。=(0,m,n)

  无意义

  2.有理数指数幂的运算性质

  3.整式运算律及乘法公式在分数指数幂运算中仍适用

  4.指数概念从整数指数幂推广到有理数指数幂,同样可以推广到实数指数幂,请同学们阅读P47的阅读部分

  练习P47-48练习1,2,3,4

  六.课外作业

  P48习题2.2(1)2,4

【高一数学教案】相关文章:

高一数学教案12-08

高一数学教案数列12-30

高一数学教案15篇12-11

高一数学教案精选15篇02-06

高一数学教案 15篇04-19

高一数学教案(通用15篇)12-26

高一数学教案(汇编15篇)12-19

高一数学教案汇编15篇12-21

高一数学教案合集15篇12-21