- 数学定理的教案 推荐度:
- 数学定理的教案 推荐度:
- 相关推荐
数学定理的教案(15篇)
作为一无名无私奉献的教育工作者,通常会被要求编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。写教案需要注意哪些格式呢?以下是小编帮大家整理的数学定理的教案,希望对大家有所帮助。
数学定理的教案1
[教学分析]
勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活”正是这章书所体现的主要思想。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比较、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。
本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。
[教学目标]
一、知识与技能
1、探索直角三角形三边关系,掌握勾股定理,发展几何思维。
2、应用勾股定理解决简单的实际问题
3学会简单的合情推理与数学说理
二、过程与方法
引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步发展合作交流能力和数学表达能力,并感受勾股定理的应用知识。
三、情感与态度目标
通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。
四、重点与难点
1、探索和证明勾股定理
2、熟练运用勾股定理
[教学过程]
一、创设情景,揭示课题
1、教师展示图片并介绍第一情景
以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。
周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度.夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘.得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”
2、教师展示图片并介绍第二情景
毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。
二、师生协作,探究问题
1、现在请你也动手数一下格子,你能有什么发现吗?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢?
3、你能得到什么结论吗?
三、得出命题
勾股定理:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么,即直角三角形两直角边的平方和等于斜边的平方。解释:由于我国古代把直角三角形中较短的直角边称为勾,较长的边称为股,斜边称为弦,所以,把它叫做勾股定理。
四、勾股定理的证明
赵爽弦图的证法(图2)
第一种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为的直角三角形围在外面形成的。因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式,化简得。
第二种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为的
角三角形拼接形成的(虚线表示),不过中间缺出一个边长为的正方形“小洞”。
因为边长为的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式,化简得。
这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的`骄傲。
五、应用举例,拓展训练,巩固反馈。
勾股定理的灵活运用勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。
例题:小明妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘长和46厘米宽,他觉得一定是售货员搞错了,你同意他的想法吗?你能解释这是为什么吗?
六、归纳总结
1、内容总结:探索直角三角形两直角边的平方和等于斜边的平方,利于勾股定理,解决实际问题
2、方法归纳:数方格看图找关系,利用面积不变的方法。用直角三角形三边表示正方形的面积观察归纳注意画一个直角三角形表示正方形面积,再次验证自己的发现。
七、讨论交流
让学生发表自己的意见,提出他们模糊不清的概念,给他们一个梳理知识的机会,通过提示性的引导,让学生对勾股定理的概念豁然开朗,为后面勾股定理的应用打下基础。
我们班的同学很聪明。大家很快就通过数格子发现了勾股定理的规律。还有什么地方不懂的吗?跟大家一起来交流一下。请同学们课后在反思天地中都发表一下自己的学习心得。
数学定理的教案2
教学目标:
一知识技能
1.理解勾股定理的逆定理的证明方法和证明过程;
2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是直角三角形;
二数学思考
1.通过勾股定理的逆定理的探索,经历知识的发生发展与形成的过程;
2.通过三角形三边的数量关系来判断三角形的形状,体验数形结合法的应用.
三解决问题
通过勾股定理的逆定理的证明及其应用,体会数形结合法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题.
四情感态度
1.通过三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一关系;
2.在探究勾股定理的逆定理的证明及应用的活动中,通过一系列富有探究性的问题,渗透与他人交流合作的意识和探究精神.
教学重难点:
一重点:勾股定理的逆定理及其应用.
二难点:勾股定理的逆定理的证明.
教学方法
启发引导分组讨论合作交流等。
教学媒体
多媒体课件演示。
教学过程:
一复习孕新,引入课题
问题:
(1) 勾股定理的内容是什么?
(2) 求以线段ab为直角边的直角三角形的斜边c的长:
① a=3,b=4
② a=2.5,b=6
③ a=4,b=7.5
(3) 分别以上述abc为边的三角形的形状会是什么样的'呢?
二动手实践,检验推测
1.把准备好的一根打了13个等距离结的绳子,按3个结4个结5个结的长度为边摆放成一个三角形,请观察并说出此三角形的形状?
学生分组活动,动手操作,并在组内进行交流讨论的基础上,作出实践性预测.
教师深入小组参与活动,并帮助指导部分学生完成任务,得出勾股定理的逆命题.在此基础上,介绍:古埃及和我国古代大禹治水都是用这种方法来确定直角的.
2.分别以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边画出两个三角形,请观察并说出此三角形的形状?
3.结合三角形三边长度的平方关系,你能猜一猜三角形的三边长度与三角形的形状之间有怎样的关系吗?
三探索归纳,证明猜想
问题
1.三边长度分别为3 cm4 cm5 cm的三角形与以3 cm4 cm为直角边的直角三角形之间有什么关系?你是怎样得到的?
2.你能证明以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边长的三角形是直角三角形吗?
3.如图18.2-2,若△ABC的三边长
满足
,试证明△ABC是直角三角形,请简要地写出证明过程.
教师提出问题,并适时诱导,指导学生完成问题3的证明.之后,归纳得出勾股定理的逆定理.
四尝试运用,熟悉定理
问题
1例1:判断由线段
组成的三角形是不是直角三角形:
(1)
(2)
2三角形的两边长分别为3和4,要使这个三角形是直角三角形,则第三条边长是多少?
教师巡视,了解学生对知识的掌握情况.
特别关注学生在练习中反映出的问题,有针对性地讲解,学生能否熟练地应用勾股定理的逆定理去分析和解决问题
五类比模仿,巩固新知
1.练习:练习题13.
2.思考:习题18.2第5题.
部分学生演板,剩余学生在课堂练习本上独立完成.
小结梳理,内化新知
六1.小结:教师引导学生回忆本节课所学的知识.
2.作业:
(1)必做题:习题18.2第1题(2)(4)和第3题;
(2)选做题:习题18.2第46题.
数学定理的教案3
一、教材分析
《正弦定理》是人教版教材必修五第一章《解三角形》的第一节内容,也是三角形理论中的一个重要内容,与初中学习的三角形的边和角的基本关系有密切的联系。在此之前,学生已经学习过了正弦函数和余弦函数,知识储备已足够。它是后续课程中解三角形的理论依据,也是解决实际生活中许多测量问题的工具。因此熟练掌握正弦定理能为接下来学习解三角形打下坚实基础,并能在实际应用中灵活变通。
二、教学目标
根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:
知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。
能力目标:探索正弦定理的证明过程,用归纳法得出结论,并能掌握多种证明方法。
情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的`实际应用价值。
三、教学重难点
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
四、教法分析
依据本节课内容的特点,学生的认识规律,本节知识遵循以教师为主导,以学生为主体的指导思想,采用与学生共同探索的教学方法,命题教学的发生型模式,以问题实际为参照对象,激发学生学习数学的好奇心和求知欲,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化,并且运用例题和习题来强化内容的掌握,突破重难点。即指导学生掌握“观察——猜想——证明——应用”这一思维方法。学生采用自主式、合作式、探讨式的学习方法,这样能使学生积极参与数学学习活动,培养学生的合作意识和探究精神。
五、教学过程
本节知识教学采用发生型模式:
1、问题情境
有一个旅游景点,为了吸引更多的游客,想在风景区两座相邻的山之间搭建一条观光索道。已知一座山A到山脚C的上面斜距离是1500米,在山脚测得两座山顶之间的夹角是450,在另一座山顶B测得山脚与A山顶之间的夹角是300。求需要建多长的索道?
可将问题数学符号化,抽象成数学图形。即已知AC=1500m,∠C=450,∠B=300。求AB=?
此题可运用做辅助线BC边上的高来间接求解得出。
提问:有没有根据已提供的数据,直接一步就能解出来的方法?
思考:我们知道,在任意三角形中有大边对大角,小边对小角的边角关系。那我们能不能得到关于边、角关系准确量化的表示呢?
2、归纳命题
我们从特殊的三角形直角三角形中来探讨边与角的数量关系:
在如图Rt三角形ABC中,根据正弦函数的定义
数学定理的教案4
复习第一步::
勾股定理的有关计算
例1:(20xx年甘肃省定西市中考题)下图阴影部分是一个正方形,则此正方形的面积为.
析解:图中阴影是一个正方形,面积正好是直角三角形一条直角边的平方,因此由勾股定理得正方形边长平方为:172-152=64,故正方形面积为6
勾股定理解实际问题
例2.(20xx年吉林省中考试题)图①是一面矩形彩旗完全展平时的尺寸图(单位:cm).其中矩形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为矩形绸缎旗面,将穿好彩旗的旗杆垂直插在操场上,旗杆旗顶到地面的`高度为220cm.在无风的天气里,彩旗自然下垂,如图②.求彩旗下垂时最低处离地面的最小高度h.
析解:彩旗自然下垂的长度就是矩形DCEF
的对角线DE的长度,连接DE,在Rt△DEF中,根据勾股定理,
得DE=h=220-150=70(cm)
所以彩旗下垂时的最低处离地面的最小高度h为70cm
与展开图有关的计算
例3、(20xx年青岛市中考试题)如图,在棱长为1的正方体ABCD—A’B’C’D’的表面上,求从顶点A到顶点C’的最短距离.
析解:正方体是由平面图形折叠而成,反之,一个正方体也可以把它展开成平面图形,如图是正方体展开成平面图形的一部分,在矩形ACC’A’中,线段AC’是点A到点C’的最短距离.而在正方体中,线段AC’变成了折线,但长度没有改变,所以顶点A到顶点C’的最短距离就是在图2中线段AC’的长度.
在矩形ACC’A’中,因为AC=2,CC’=1
所以由勾股定理得AC’=.
∴从顶点A到顶点C’的最短距离为
复习第二步:
1.易错点:本节同学们的易错点是:在用勾股定理求第三边时,分不清直角三角形的斜边和直角边;另外不论是否是直角三角形就用勾股定理;为了避免这些错误的出现,在解题中,同学们一定要找准直角边和斜边,同时要弄清楚解题中的三角形是否为直角三角形.
例4:在Rt△ABC中,a,b,c分别是三条边,∠B=90°,已知a=6,b=10,求边长c.
错解:因为a=6,b=10,根据勾股定理得c=剖析:上面解法,由于审题不仔细,忽视了∠B=90°,这一条件而导致没有分清直角三角形的斜边和直角边,错把c当成了斜边.
正解:因为a=6,b=10,根据勾股定理得,c=温馨提示:运用勾股定理时,一定分清斜边和直角边,不能机械套用c2=a2+b2
例5:已知一个Rt△ABC的两边长分别为3和4,则第三边长的平方是
错解:因为Rt△ABC的两边长分别为3和4,根据勾股定理得:第三边长的平方是32+42=25
剖析:此题并没有告诉我们已知的边长4一定是直角边,而4有可能是斜边,因此要分类讨论.
正解:当4为直角边时,根据勾股定理第三边长的平方是25;当4为斜边时,第三边长的平方为:42-32=7,因此第三边长的平方为:25或7.
温馨提示:在用勾股定理时,当斜边没有确定时,应进行分类讨论.
例6:已知a,b,c为⊿ABC三边,a=6,b=8,bc,且c为整数,则c=.
错解:由勾股定理得c=剖析:此题并没有告诉你⊿ABC为直角三角形
数学定理的教案5
同学们认真学习,下面是老师对平行线的特征定理公式的内容学习哦。
平行线的特征:
①两直线平行,同位角相等;
②两直线平行,内错角相等;
③两直线平行,同旁内角互补;
平行公理:经过直线外一点有且只有一条直线平行于已知直线。
以上对数学中平行线的特征定理公式的内容讲解学习,希望同学们都能很好的掌握,相信同学们会学习的很好的哦。
初中数学正方形定理公式
关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。
正方形定理公式
正方形的特征:
①正方形的四边相等;
②正方形的四个角都是直角;
③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;
正方形的'判定:
①有一个角是直角的菱形是正方形;
②有一组邻边相等的矩形是正方形。
平行四边形
平行四边形的性质:
①平行四边形的对边相等;
②平行四边形的对角相等;
③平行四边形的对角线互相平分;
平行四边形的判定:
①两组对角分别相等的四边形是平行四边形;
②两组对边分别相等的四边形是平行四边形;
③对角线互相平分的四边形是平行四边形;
④一组对边平行且相等的四边形是平行四边形。
上面对数学公式知识的讲解学习,同学们都能很好的掌握了吧,相信同学们会从中学习的更好的哦。
数学定理的教案6
一、教学目标
1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理.
2.探究勾股定理的逆定理的证明方法.
3.理解原命题、逆命题、逆定理的概念及关系.
二、重点、难点
1.重点:掌握勾股定理的逆定理及证明.
2.难点:勾股定理的逆定理的证明.
3.难点的突破方法:
先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法.充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受.
为学生搭好台阶,扫清障碍.
⑴如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角.
⑵利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决.
⑶先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证.
三、课堂引入
创设情境:⑴怎样判定一个三角形是等腰三角形?
⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想.
四、例习题分析
例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?
⑴同旁内角互补,两条直线平行.
⑵如果两个实数的平方相等,那么两个实数平方相等.
⑶线段垂直平分线上的点到线段两端点的距离相等.
⑷直角三角形中30°角所对的直角边等于斜边的一半.
分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用.
⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假.
解略.
本题意图在于使学生了解命题,逆命题,逆定理的概念,及它们之间的关系.
例2(P82探究)证明:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.
分析:⑴注意命题证明的格式,首先要根据题意画出图形,然后写已知求证.
⑵如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角.
⑶利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决.
⑷先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证.
⑸先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法.充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受.
证明略.
通过让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的`兴趣和求知欲,锻炼学生的动手操作能力,再通过探究理论证明方法,使实践上升到理论,提高学生的理性思维.
例3(补充)已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1)
求证:∠C=90°.
分析:⑴运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大.②分别用代数方法计算出a2+b2和c2的值.③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形.
⑵要证∠C=90°,只要证△ABC是直角三角形,并且c边最大.根据勾股定理的逆定理只要证明a2+b2=c2即可.
⑶由于a2+b2=(n2-1)2+(2n)2=n4+2n2+1,c2=(n2+1)2= n4+2n2+1,从而a2+b2=c2,故命题获证.
本题目的在于使学生明确运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大.②分别用代数方法计算出a2+b2和c2的值.③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形.
数学定理的教案7
一、学生知识状况分析
学生技能基础:学生在以前的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,也熟悉三角形内角和定理的内容,而本节课是建立在学生掌握了平行线的性质及严格的证明等知识的基础上展开的,因此,学生具有良好的基础。
活动经验基础: 本节课主要采取的 活动形式是学生非常熟悉的自主探究与合作交流的学习方式,学生具有较熟悉的活动经验.
二、教学任务分析
上一节课的学习中,学生对于平行线的判定定理和性质定理以及与平行线相关的简单几何证明是比较熟悉的,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力,本节课安排《三角形内角和定理的证明》旨在利用平行线的相关知识来推导出新的定理以及灵活运用新的定理解决相关问题。为此,本节课的教学目标是:
知识与技能:(1)掌握三角形内角和定理的证明及简单应用。
(2)灵活运用三角形内角和定理解决相关问题。
数学能力:用多种方法证明三角形定理,培养一题多解的能力。
情感与态度:对比过去撕纸等探索过程,体会思维实验和符号化 的理性作用.
三、教学过程分析
本节课的设计分为四个环节:情境引入探索新知反馈练习课堂小结
第一环节:情境引入
活动内容:(1)用折纸的方法验证三角形内角和定理.
实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果
(1) (2) (3) (4)
试用自己的语言说明这一结论的证明思路。想一想,还有其它折法吗?
(2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。
试用自己的语言说明这一结论的证明思路。想一想,如果只剪下一个角呢?
活动目的:
对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明.
教学效果:
说理过程是学生所熟悉的,因此,学生能比较熟练地说出用撕纸的方法可以验证三角形内角和定理的原因。
第二环节:探索新知
活动内容:
① 用严谨的证明来论证三角形内 角和定理.
② 看哪个同学想的方法最多?
方法一:过A点作DE∥BC
∵DE∥BC
DAB=B,EAC=C(两直线平行,内错角相等)
∵DAB+BAC+EAC=180
BAC+ C=180(等量代换)
方法二:作BC的延长线CD,过点C作射线CE∥BA.
∵CE∥BA
ECD(两直线平行,同位角相等)
ACE(两直线平行,内错角相等)
∵BCA+ACE+ECD=180
B+ACB=180(等量代换)
活动目的:
用平行线的判定定理及性质定理来推导出新的定理,让学生再次体会几何证明的.严密性和数学的严谨,培养 学生的逻辑推理能力。
教学效果:
添辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到 证明的目的.
第三环节:反馈练习
活动内容:
(1)△ABC中可以有3个锐角吗? 3个直角呢? 2个直角呢?若有1个直角另外两角有什么特点?
(2)△ABC中 ,C=90,A=30,B=?
(3)A=50,C,则△ABC中B=?
(4)三角形的三个内角中,只能有____个直角或____个钝角.
(5)任何一个三角形中,至少有____个锐角;至多有____个锐角.
(6)三角形中三角之比 为1∶2∶3,则三个角各为多少度?
(7)已知:△ABC中,B=2A。
(a)求B的度数;
(b)若BD是AC边上的高,求 DBC的度数?
活动目的:
通过学生的 反馈练习,使教师能全面了解学生对三角形内角和定理的概念是否清楚,能否灵活运用三角形内角和定理,以便教师能及时地进行查缺补漏.
教学效果:
学生对于三角形内角和定理的掌握是非常熟练,因此,学生能较好地解决与三角形内角和定理相关的问题。
第四环节:课堂小结
活动内容:
① 证明三角形内角和定理有哪几种方法?
② 辅助线的作法技巧.
③ 三 角形内角和定理的简单应用.
活动目的:
复习巩固本课知识,提高学生的掌握程度.
教学效果:
学生对于三角形内角和定理的几种不同的证明方法的理解比较深刻,并能熟练运用三角形内角和定理进行相关证明.
课后练习:课本第239页随堂练习;第241页习题6.6第1,2,3题
四、教学反思
三角形的有关知识是空间与图形中最为核心、最为重要的内容,它不仅是最基本的直线型平面图形,而且几乎是研究所有其它图形的工具和基础.而三角形内角和定理又是三角形中最为基础的知识,也是学生最为熟悉且能与小学、中学知识相关联的知识,看似简单,但如果处理不好,会导致学生有厌烦心理,为此,本节课的设计力图实现以下特点:
(1) 通过折纸与剪纸等操作让学生获得直接经验,然后从学生的直接经验出发,逐步转到符号化处理,最后达到推理论证的要求。
(2) 充分展示学生的个性,体现学生是学习的主人这一主题。
(3) 添加辅助线是教学中的一个难点, 如何添加辅助线则应允许学生展开思考并争论,展示学生的思维过程,然后在老师的引导下达成共识。
数学定理的教案8
一、教材分析
“解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验 “观察——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。
二、学情分析
我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。
三、教学目标
1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。
过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。
情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立“数学与我有关,数学是有用的,我要用数学,我能用数学”的理念。
2、教学重点、难点
教学重点:正弦定理的发现与证明;正弦定理的简单应用。
教学难点:正弦定理证明及应用。
四、教学方法与手段
为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用“问题教学法”,即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。
五、教学过程
为了很好地完成我所确定的`教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:
(一)创设情景,揭示课题
问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?
1671年两个法国天文学家首次测出了地月之间的距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗?
问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题, 其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》)
[设计说明]引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。
(二)特殊入手,发现规律
问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗?
引导启发学生发现特殊情形下的正弦定理。
(三)类比归纳,严格证明
问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的Rt⊿ABC不小心写成了锐角⊿ABC,其它没有变,你说这个结论还成立吗?
[设计说明]此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。
数学定理的教案9
1、教材分析
(1)知识结构
(2)重点、难点分析
重点:及其应用。因再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点。
难点:与有关的证明和计算问题。如120页练习题中第3题,它不仅应用,还用到解方程组的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来。
2、教法建议
本节内容需要一个课时。
(1)在教学中,组织学生自主观察、猜想、证明,并深刻剖析的基本图形;对重要的结论及时总结;
(2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学。
教学目标
1、理解切线长的概念,掌握;
2、通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想。
3、通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度。
教学重点:
教学难点 :
教学过程
设计:
(一)观察、猜想、证明,形成定理
1、切线长的概念。
如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB叫做点P到⊙O的切线长。
引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量。
2、观察
利用电脑变动点P 的位置,观察图形的特征和各量之间的关系。
3、猜想
引导学生直观判断,猜想图中PA是否等于PB。 PA=PB。
4、证明猜想,形成定理。
猜想是否正确。需要证明。
组织学生分析证明方法。关键是作出辅助线OA,OB,要证明PA=PB。
想一想:根据图形,你还可以得到什么结论?
∠OPA=∠OPB(如图)等。
:从圆外一点引圆的两条切线,它们的'切线长相等,圆心和这一点的连线平分两条切线的夹角。
5、归纳:
把前面所学的切线的5条性质与一起归纳切线的性质
6、的基本图形研究
如图,PA,PB是⊙O的两条切线,A,B为切点。直线OP交⊙O于点D,E,交AP于C
(1)写出图中所有的垂直关系;
(2)写出图中所有的全等三角形;
(3)写出图中所有的相似三角形;
(4)写出图中所有的等腰三角形。
说明:对基本图形的深刻研究和认识是在学习几何中关键,它是灵活应用知识的基础。
(二)应用、归纳、反思
例1、已知:如图,P为⊙O外一点,PA,PB为⊙O的切线,
A和B是切点,BC是直径。
求证:AC∥OP。
分析:从条件想,由P是⊙O外一点,PA、PB为⊙O的切线,A,B是切点可得PA=PB,∠APO=∠BPO,又由条件BC是直径,可得OB=OC,由此联想到与直径有关的定理“垂径定理”和“直径所对的圆周角是直角”等。于是想到可能作辅助线AB。
从结论想,要证AC∥OP,如果连结AB交OP于O,转化为证CA⊥AB,OP ⊥AB,或从OD为△ABC的中位线来考虑。也可考虑通过平行线的判定定理来证,可获得多种证法。
证法一。如图。连结AB。
PA,PB分别切⊙O于A,B
∴PA=PB∠APO=∠BPO
∴ OP ⊥AB
又∵BC为⊙O直径
∴AC⊥AB
∴AC∥OP (学生板书)
证法二。连结AB,交OP于D
PA,PB分别切⊙O于A、B
∴PA=PB∠APO=∠BPO
∴AD=BD
又∵BO=DO
∴OD是△ABC的中位线
∴AC∥OP
证法三。连结AB,设OP与AB弧交于点E
PA,PB分别切⊙O于A、B
∴PA=PB
∴ OP ⊥AB
∴ =
∴∠C=∠POB
∴AC∥OP
反思:教师引导学生比较以上证法,激发学生的学习兴趣,培养学生灵活应用知识的能力。
例2、 圆的外切四边形的两组对边的和相等。
(分析和解题略)
反思:(1)例3事实上是圆外切四边形的一个重要性质,请学生记住结论。(2)圆内接四边形的性质:对角互补。
P120练习:
练习1 填空
如图,已知⊙O的半径为3厘米,PO=6厘米,PA,PB分别切⊙O于A,B,则PA=_______,∠APB=________
练习2 已知:在△ABC中,BC=14厘米,AC=9厘米,AB=13厘米,它的内切圆分别和BC,AC,AB切于点D,E,F,求AF,AD和CE的长。
分析:设各切线长AF,BD和CE分别为x厘米,y厘米,z厘米。后列出关于x , y,z的方程组,解方程组便可求出结果。
(解略)
反思:解这个题时,除了要用三角形内切圆的概念和之外,还要用到解方程组的知识,是一道综合性较强的计算题。通过对本题的研究培养学生的综合应用知识的能力。
(三)小结
1、提出问题学生归纳
(1)这节课学习的具体内容;
(2)学习用的数学思想方法;
(3)应注意哪些概念之间的区别?
2、归纳基本图形的结论
3、学习了用代数方法解决几何问题的思想方法。
(四)作业
教材P131习题7。4A组1。(1),2,3,4。B组1题。
探究活动
图中找错
你能找出(图1)与(图2)的错误所在吗?
在图2中,P1A为⊙O1和⊙O3的切线、P1B为⊙O1和⊙O2的切线、P2C为⊙O2和⊙O3的切线。
提示:在图1中,连结PC、PD,则PC、PD都是圆的直径,从圆上一点只能作一条直径,所以此图是一张错图,点O应在圆上。
在图2中,设P1A=P1B=a,P2B=P2C=b,P3A=P3C=c,则有
a=P1A=P1P3+P3A=P1P3+ c ①
c=P3C=P2P3+P3A=P2P3+ b ②
a=P1B=P1P2+P2B=P1P2+ b ③
将②代人①式得
a =P1P3+(P2P3+ b)=P1P3+P2P3+ b,
∴a-b=P1P3+P2P3
由③得a-b=P1P2得
∴P1P2=P2P3+ P1P3
∴P1、P 2 、P3应重合,故图2是错误的。
数学定理的教案10
一、教学目标
1、灵活应用勾股定理及逆定理解决实际问题、
2、进一步加深性质定理与判定定理之间关系的认识、
二、重点、难点
1、重点:灵活应用勾股定理及逆定理解决实际问题、
2、难点:灵活应用勾股定理及逆定理解决实际问题、
3、难点的突破方法:
三、课堂引入
创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法、
四、例习题分析
例1(p83例2)
分析:⑴了解方位角,及方位名词;
⑵依题意画出图形;
⑶依题意可得pr=12×1。5=18,pq=16×1。5=24,qr=30;
⑷因为242+182=302,pq2+pr2=qr2,根据勾股定理的逆定理,知∠qpr=90°;
⑸∠prs=∠qpr—∠qps=45°、
小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识、
例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状、
分析:⑴若判断三角形的形状,先求三角形的三边长;
⑵设未知数列方程,求出三角形的三边长5、12、13;
⑶根据勾股定理的`逆定理,由52+122=132,知三角形为直角三角形
本题帮助培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识
数学定理的教案11
教学目标
1、知识与技能目标
学会观察图形,勇于探索图形间的关系,培养学生的空间观念.
2、过程与方法
(1)经历一般规律的探索过程,发展学生的抽象思维能力.
(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.
3、情感态度与价值观
(1)通过有趣的问题提高学习数学的兴趣.
(2)在解决实际问题的过程中,体验数学学习的实用性.
教学重点:
探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.
教学难点:
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.
教学准备:
多媒体
教学过程:
第一环节:创设情境,引入新课(3分钟,学生观察、猜想)
情景:
如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?
第二环节:合作探究(15分钟,学生分组合作探究)
学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算.
学生汇总了四种方案:
(1) (2) (3)(4)
学生很容易算出:情形(1)中A→B的路线长为:AA’+d,情形(2)中A→B的路线长为:AA’+πd/2所以情形(1)的路线比情形(2)要短.
学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA’剪开圆柱得到矩形,前三种情形A→B是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)最短.
如图:
(1)中A→B的路线长为:AA’+d;
(2)中A→B的路线长为:AA’+A’B>AB;
(3)中A→B的路线长为:AO+OB>AB;
(4)中A→B的路线长为:AB.
得出结论:利用展开图中两点之间,线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,具体观察.接下来后提问:怎样计算AB?
在Rt△AA′B中,利用勾股定理可得,若已知圆柱体高为12c,底面半径为3c,π取3,则.
第三环节:做一做(7分钟,学生合作探究)
教材23页
李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,
(1)你能替他想办法完成任务吗?
(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?
(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?
第四环节:巩固练习(10分钟,学生独立完成)
1.甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6/h的'速度向正东行走,1小时后乙出发,他以5/h的速度向正北行走.上午10:00, 甲、乙两人相距多远?
2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.
3.有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒有多长?
第五环节 课堂小结(3分钟,师生问答)
内容:
1、如何利用勾股定理及逆定理解决最短路程问题?
第六 环节:布置作业(2分钟,学生分别记录)
内容:
作业:1.课本习题1.5第1,2,3题.
要求:A组(学优生):1、2、3
B组(中等生):1、2
C组(后三分之一生):1
板书设计:
教学反思:
数学定理的教案12
一、教学目标
【知识与技能】
理解并掌握勾股定理的逆定理,会应用定理判定直角三角形;理解勾股定理与勾股定理逆定理的区别与联系;理解原命题和逆命题的概念,知道二者的关系及二者真假性的关系。
【过程与方法】
经历得出猜想、推理证明的过程,提升自主探究、分析问题、解决问题的能力。
【情感、态度与价值观】
体会事物之间的联系,感受几何的.魅力。
二、教学重难点
【重点】勾股定理的逆定理及其证明。
【难点】勾股定理的逆定理的证明。
三、教学过程
(一)导入新课
复习勾股定理,分清其题设和结论。
提问学生画直角三角形的方法(可用尺类工具),然后要求不能用绳子以外的工具。
出示古埃及人利用等长的3、4、5个绳结间距画直角三角形的方法,以其中蕴含何道理为切入点引出课题。
(二)讲解新知
请学生思考3,4,5之间的关系,结合勾股定理的学习经验明确
出示数据2.5cm,6cm,6.5cm,请学生计算验证数据满足上述平方和关系,并画出相应边长的三角形检验是否为直角三角形。
学生活动:同桌两人一组,将三边换成其他满足上述平方和关系的数据,如4cm,7.5cm,8.5cm,画出相应边长的三角形检验是否为直角三角形。
数学定理的教案13
一、全章要点
1、勾股定理 直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2)
2、勾股定理的逆定理 如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。
3、勾股定理的证明 常见方法如下:
方法一: , ,化简可证.
方法二:
四个直角三角形的面积与小正方形面积的和等于大正方形的面积.
四个直角三角形的面积与小正方形面积的和为
大正方形面积为 所以
方法三: , ,化简得证
4、勾股数 记住常见的勾股数可以提高解题速度,如 ; ; ; ;8,15,17;9,40,41等
二、经典训练
(一)选择题:
1. 下列说法正确的是( )
A.若 a、b、c是△ABC的三边,则a2+b2=c2;
B.若 a、b、c是Rt△ABC的三边,则a2+b2=c2;
C.若 a、b、c是Rt△ABC的三边, ,则a2+b2=c2;
D.若 a、b、c是Rt△ABC的三边, ,则a2+b2=c2.
2. △ABC的三条边长分别是 、 、 ,则下列各式成立的是( )
A. B. C. D.
3.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )
A.121 B.120 C.90 D.不能确定
4.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为( )
A.42 B.32 C.42 或 32 D.37 或 33
(二)填空题:
5.斜边的边长为 ,一条直角边长为 的直角三角形的面积是 .
6.假如有一个三角形是直角三角形,那么三边 、 、 之间应满足 ,其中 边是直角所对的边;如果一个三角形的三边 、 、 满足 ,那么这个三角形是 三角形,其中 边是 边, 边所对的角是 .
7.一个三角形三边之比是 ,则按角分类它是 三角形.
8. 若三角形的三个内角的比是 ,最短边长为 ,最长边长为 ,则这个三角形三个角度数分别是 ,另外一边的平方是 .
9.如图,已知 中, , , ,以直角边 为直径作半圆,则这个半圆的面积是 .
10. 一长方形的一边长为 ,面积为 ,那么它的一条对角线长是 .
三、综合发展:
11.如图,一个高 、宽 的大门,需要在对角线的顶点间加固一个木条,求木条的长.
12.一个三角形三条边的长分别为 , , ,这个三角形最长边上的.高是多少?
13.如图,小李准备建一个蔬菜大棚,棚宽4m,高3m,长20m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积.
14.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?
15.如图,长方体的长为15,宽为10,高为20,点 离点 的距离为5,一只蚂蚁如果要沿着长方体的表面从点 爬到点 ,需要爬行的最短距离是多少?
16.中华人民共和国道路交通管理条例规定:小汽车在城街路上行驶速度不得超过 km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方 m处,过了2s后,测得小汽车与车速检测仪间距离为 m,这辆小汽车超速了吗?
数学定理的教案14
教学目标
1、知识与技能目标:探索并理解直角三角形的三边之间的数量关系,通过探究能够发现直角三角形中两个直角边的平方和等于斜边的平方和。
2、过程与方法目标:经历用测量和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理能力。
3、情感态度与价值观目标:通过本节课的学习,培养主动探究的习惯,并进一步体会数学与现实生活的紧密联系。
教学重点
了解勾股定理的由来,并能用它来解决一些简单的问题。
教学难点
勾股定理的探究以及推导过程。
教学过程
一、创设问题情景、导入新课
首先出示:投影1(章前的图文)并介绍我国古代在勾股定理研究方面的贡献,结合课本第六页谈一谈我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。
出示课件观察后回答:
1、观察图1—2,正方形A中有_______个小方格,即A的`面积为______个单位。
正方形B中有_______个小方格,即B的面积为______个单位。
正方形C中有_______个小方格,即C的面积为______个单位。
2、你是怎样得出上面的结果的?
3、在学生交流回答的基础上教师进一步设问:图1—2中,A,B,C面积之间有什么关系?学生交流后得到结论:A+B=C。
二、层层深入、探究新知
1、做一做
出示投影3(书中P3图1—3)
提问:(1)图1—3中,A,B,C之间有什么关系?(2)从图1—2,1—3中你发现什么?
学生讨论、交流后,得出结论:以三角形两直角边为边的正方形的面积和,等于以斜边为边的正方形面积。
2、议一议
图1—2、1—3中,你能用三角形的边长表示正方形的面积吗?
(1)你能发现直角三角形三边长度之间的关系吗?在同学交流的基础上,共同探讨得出:直角三角形两直角边的平方和等于斜边的平方。这就是著名的“勾股定理”。也就是说如果直角三角形的两直角边为a,b,斜边为c那么。我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。
(2)分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?
3、想一想
我们常见的电视的尺寸:29英寸(74厘米)的电视机,指的是屏幕的长吗?还是指的是屏幕的宽?那他指什么呢?能否运用刚才所学的知识,检验一下电视剧的尺寸是否合格?
三、巩固练习。
1、在图1—1的问题中,折断之前旗杆有多高?
2、错例辨析:△ABC的两边为3和4,求第三边
解:由于三角形的两边为3、4
所以它的第三边的c应满足
=25即:c=5辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题三角形ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。(2)若告诉△ABC是直角三角形,第三边C也不一定是满足,题目中并未交待C是斜边。
综上所述这个题目条件不足,第三边无法求得
四、课堂小结
鼓励学生自己总结、谈谈自己本节课的收获,以及自己对勾股定理的理解,老师加以纠正和补充。
五、布置作业
数学定理的教案15
一、内容和内容解析
1。内容
应用勾股定理及勾股定理的逆定理解决实际问题。
2。内容解析
运用勾股定理的逆定理可以从三角形边的数量关系来识别三角形的形状,它是用代数方法来研究几何图形,也是向学生渗透“数形结合”这一数学思想方法的很好素材。综合运用勾股定理及其逆定理能帮助我们解决实际问题。
基于以上分析,可以确定本课的教学重点是灵活运用勾股定理的逆定理解决实际问题。
二、目标和目标解析
1。目标
(1)灵活应用勾股定理及逆定理解决实际问题。
(2)进一步加深性质定理与判定定理之间关系的认识。
2。目标解析
达成目标(1)的标志是学生通过合作、讨论、动手实践等方式,在应用题中建立数学模型,准确画出几何图形,再熟练运用勾股定理逆定理判断三角形状及求边长、面积、角度等;
目标(2)能先用勾股定理的逆定理判断一个三角形是直角三角形,再用勾股定理及直角三角形的性质进行有关的计算和证明。
三、教学问题诊断分析
对于大部分学生将实际问题抽象成数学模型并进行解析与应用,有一定的困难,所以在教学时应该注意启发引导学生从实际生活中所遇到的`问题出发,鼓励学生以勾股定理及逆定理的知识为载体建立数学模型,利用数学模型去解决实际问题。
本课的教学难点是灵活运用勾股定理及逆定理解决实际问题。
四、教学过程设计
1。复习反思,引出课题
问题1 通过前面的学习,我们对勾股定理及其逆定理的知识有一定的了解,请说出勾股定理及其逆定理的内容。
师生活动:学生回答勾股定理的内容“如果直角三角形的两条直角边长分别为,斜边长为,那么;勾股定理的逆定理“如果三角形的三边长满足,那么这个三角形是直角三角形。
追问:你能用勾股定理及逆定理解决哪些问题?
师生活动:学生通过思考举手回答,教师板书课题。
【设计意图】通过复习勾股定理及其逆定理来引入本课时的学习任务——应用勾股定理及逆定理解决有关实际问题。
2。 点击范例,以练促思
问题2 某港口位于东西方向的海岸线上。“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里。它们离开港口一个半小时后相距30海里。如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?
师生活动:学生读题,理解题意,弄清楚已知条件和需解决的问题,教师通过梯次性问题的展示,适时点拨,学生尝试画图、估测、交流中分化难点完成解答。
追问1:请同学们认真审题,弄清已知是什么?解决的问题是什么?
师生活动:学生通过思考举手回答,教师在黑板上列出:已知两种船的航速,它们的航行时间以及相距的路程, “远航”号的航向——东北方向;解决的问题是“海天”号的航向。
追问2:你能根据题意画出图形吗?
师生活动:学生尝试画图,教师在黑板上或多媒体中画出示意图。
追问3:在所画的图中哪个角可以表示“海天”号的航向?图中知道哪个角的度数?
师生活动:学生小组讨论交流回答问题“海天”号的航向只要能确定∠QPR的大小即可。组内讨论解答,小组代表展示解答过程,教师适时点评,多媒体展示规范解答过程。
解:根据题意,
因为
,即
,所以
由“远航”号沿东北方向航行可知
。因此
,即“海天”号沿西北方向航行。
课堂练习1。 课本33页练习第3题。
课堂练习2。 在
港有甲、乙两艘渔船,若甲船沿北偏东
方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度前进,1小时后甲船到达
岛,乙船到达
岛,且
岛与
岛相距17海里,你能知道乙船沿哪个方向航行吗?
【设计意图】学生在规范化的解答过程及练习中,提升对勾股定理逆定理的认识以及实际应用的能力。
3。 补充训练,巩固新知
问题3 实验中学有一块四边形的空地
若每平方米草皮需要200元,问学校需要投入多少资金购买草皮?
师生活动:先由学生独立思考。若学生有想法,则由学生先说思路,然后教师追问:你是怎么想到的?对学生思路中的合理成分进行总结;若学生没有思路,教师可引导学生分析:从所要求的结果出发是要知道四边形的面积,而四边形被它的一条对角线分成两个三角形,求出两个三角形的面积和即可。启发学生形成思路,最后由学生演板完成。
【设计意图】引导学生利用辅助线解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。
4。 反思小结,观点提炼
教师引导学生参照下面两个方面,回顾本节课所学的主要内容,进行相互交流:
(1)知识总结:勾股定理以及逆定理的实际应用;
(2)方法归纳:数学建模的思想。
【设计意图】通过小结,梳理本节课所学内容,总结方法,体会思想。
5。布置作业
教科书34页习题17。2第3题,第4题,第5题,第6题。
五、目标检测设计
1。小明在学校运动会上负责联络,他先从检录处走了75米到达起点,又从起点向东走了100米到达终点,最后从终点走了125米,回到检录处,则他开始走的方向是(假设小明走的每段都是直线) ( )
A。南北 B。东西 C。东北 D。西北
【设计意图】考查运用勾股定理的逆定理解决实际生活问题。
2。甲、乙两船同时从
港出发,甲船沿北偏东
的方向,以每小时9海里的速度向
岛驶去,乙船沿另一个方向,以每小时12海里的速度向
岛驶去,3小时后两船同时到达了目的地。如果两船航行的速度不变,且
两岛相距45海里,那么乙船航行的方向是南偏东多少度?
【设计意图】考查建立数学模型,准确画出几何图形,运用勾股定理的逆定理解决实际生活问题。
3。如图是一块四边形的菜地,已知
求这块菜地的面积。
【设计意图】考查利用勾股定理及逆定理将不规则图形转化为直角三角形,巧妙地求解。
【数学定理的教案】相关文章:
数学定理的教案11-18
数学定理的教案15篇11-18
余弦定理教案01-11
人教版高二数学第一学期公式定理总结11-19
数学的教案10-16
数学活动教案02-26
小学数学的教案03-29
数学优秀教案11-05
数学新教案11-05