范文资料网>反思报告>教案大全>《数学六年级下册教案

数学六年级下册教案

时间:2022-11-10 10:49:37 教案大全 我要投稿

人教版数学六年级下册教案

  作为一名优秀的教育工作者,时常会需要准备好教案,教案有利于教学水平的提高,有助于教研活动的开展。那么什么样的教案才是好的呢?以下是小编为大家收集的人教版数学六年级下册教案,希望能够帮助到大家。

人教版数学六年级下册教案

人教版数学六年级下册教案1

  教学目标:

  1、加深对圆锥体积计算公式的理解,能应用有关知识解决生活实际问题。

  2、进一步理解等底等高的圆柱和圆锥之间的关系。

  3、进一步培养学生的思维能力和综合应用所学知识解决实际问题的能力。

  教学重难点:综合应用所学知识解决实际问题。

  教学过程:

  一、复习回顾

  1、等底等高的圆柱与圆锥体积之间有怎样的关系?

  2、圆锥的体积怎样计算?

  二、基本练习

  1、填空

  (1)等底等高的圆柱和圆锥的体积相差12立方分米,这个圆锥的体积是()立方分米,圆柱的体积是()立方分米。

  (2)等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆锥的体积是()立方分米,圆柱的体积是()立方分米。

  (3)把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是()立方厘米,削去()立方厘米。

  (4)一个圆柱的体积、底面积与一个圆锥相等,圆锥的高是9厘米,圆柱的高是()厘米。

  (5)圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是()厘米。

  2、判断。

  (1)圆锥的底面半径扩大3倍,体积也扩大3倍。()

  (2)一个正方体和一个圆锥的底面积和高相等,这个正方体的体积是是圆锥体积的3倍。()

  (3)圆锥的底面周长是12.56分米,高是4分米,它的体积是(12.56×4×1/3)立方分米。()

  三、综合应用

  1、一块圆锥形巧克力,体积是6立方厘米,底面积是4立方厘米,它的高是多少?

  2、一个圆锥体积是640立方厘米,高是20厘米,它的底面积是多少平方厘米?

  第八课时教学反思

  教材中圆锥体积的`相对练习较少,但在实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。

  教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或4/3个圆柱的体积),而它们的体积相差2个圆锥的体积(或2/3个圆柱的体积)……。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘2/3(1—1/3)从而使计算简便。

  教学中,我也遇到一些阻力——就是学生不愿用方程去解答需要逆向思考的问题,可用算术方法列式又常常对“1/3”发憷。为了更好与初中衔接,我在本节课综合应用环节俨然是一位“推销员”,不断给学生强化方程解法的优势,但在实际应用中全班不足五人愿意采纳这种方法。而用算术方法解答,则必须首先明确:若圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆锥的3倍。

  [再教建议]针对学生思维习惯,在教学填空第4小题时不仅要讲清原因,而且应要举一反三,促使学生在深入理解的基础上切实掌握体积相等的圆柱与圆锥之间的联系。

人教版数学六年级下册教案2

  教学内容:

  人教版《义务教育课程标准实验教科书数学》六年级下册第2~4页例

  1、例2。

  教学目标:

  1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。

  2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。

  3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。

  教学重、难点:

  负数的意义。

  教学过程:

  一、谈话交流

  谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?

  二、教学新知

  1.表示相反意义的量。

  (1)引入实例。

  谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。

  ①六年级上学期转来6人,本学期转走6人。

  ②张阿姨做生意,二月份盈利1500元,三月份亏损200元。

  ③与标准体重比,小明重了千克,小华轻了千克。

  ④一个蓄水池夏季水位上升米,冬季水位下降米。

  指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)

  (2)尝试。

  怎样用数学方式来表示这些相反意义的.量呢?

  请同学们选择一例,试着写出表示方法。

  ……

  (3)展示交流。

  ……

  2.认识正、负数。

  (1)引入正、负数。

  谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6-6),这种表示方法和数学上是完全一致的。

  介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。

  “-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。

  像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。

  (2)试一试。

  请你用正、负数来表示出其它几组相反意义的量。

  写完后,交流、检查。

  3.联系实际,加深认识。

  (1)说一说存折上的数各表示什么?(教学例2。)

  (2)联系生活实际举出一组相反意义的量,并用正、负数来表示。

  ①同桌交流。

  ②全班交流。根据学生发言板书。

  这样的正、负数能写完吗?(板书:… …)

  强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。

  4.进一步认识“0”。

  (1)看一看、读一读。

  谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。

  哈尔滨:-15 ℃~-3 ℃

  北京:-5 ℃~5 ℃

  深圳:12 ℃~23 ℃

  温度中有正数也有负数,请把负数读出来。

  (2)找一找、说一说。

  我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5 ℃又表示什么?

  你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么?

  现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)

  说一说,你怎么这么快就找到了?

  (课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)

  你能很快找到12 ℃、-3 ℃吗?

  (3)提升认识。

  请学生观察温度计,说一说有什么发现?

  在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)

  “0”是正数,还是负数呢?

  在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。

  (4)总结归纳。

  如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:

  (完善板书。)

  5.练一练。

  读一读,填一填。(练习一第1题。)

  6.出示课题。

  同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?

  根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。

  7.负数的历史。

  (1)介绍。

  其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(课件配音播放):

  “中国是世界上最早认识和运用负数的国家,早在20xx多年前,我国古代数学著作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:‘两算得失相反,要令正负以名之。’古代用算筹表示数,这句话的意思是:‘两种得失相反的数,分别叫做正数和负数。’并且规定用红色算筹表示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!”

  (2)交流。

  简单了解了负数的历史,你有什么感受?

  三、练习应用

  今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。

  课件逐一出示:

  1.表示海拔高度。(“做一做”第2题。)

  通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高米,可以记作xxxxxxxxxxxxx;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作xxxxxxxxxxxxx。

  2.表示温度。(练习一第2题。)

  月球表面白天的平均温度是零上126℃,记作xxxxxxxxx℃,夜间的平均温度为零下150℃,记作xxxxxxxxxxxxx℃。

  3.(出示电梯按钮图)小红的家在五楼,储藏室在地下一楼。如果她要回家,按哪个按钮?如果到储藏室取东西呢?

  4.表示时间。(练习一第3题。)

  5.“净含量:10±”表示什么意思?

  四、总结延伸

  1.学生交流收获。

  2.总结。

  简要、具体地评价学生的收获,并强调:关于负数,生活中还有更广泛的应用;走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。

人教版数学六年级下册教案3

  教学目标

  1.使学生认识圆柱的底面,侧面和高,掌握圆柱的基本特征,发展学生的空间观念。

  2.让学生经历探索圆柱基本特征的过程,提高学生观察、操作、分析、概括的能力。

  重点掌握圆柱的基本特征。

  难点圆柱的侧面积和它的展开图之间的关系。

  教学方法观察法、分析法、归纳法。

  学情分析

  圆柱是人们在生产、生活中经常遇到的几何形体,学生对于圆柱体并不陌生,只是没有深刻的.认识,教学这一部分内容,有利于发展学生的空间观念,为进一步应用几何知识解决实际问题打下基础。

  教学过程

  一、创设情景,导入新课

  问题:你学过那些立体图形?(长方体、正方体)。

  今天老师要教同学们认识一个新的立体图形----圆柱体,简称圆柱。

  请同学们拿出你准备的圆柱,老师检查。

  老师也收集了一些圆柱的图片,请大家欣赏。

  你还见过生活中那些物体的形状是圆柱体。

  从一年级我们就知道圆柱体,你认为什么样的图形是圆柱体?说说看。

  二、探究新知

  1.从圆柱的图片中抽象出圆柱的立体图形。

  教师:如果把它们画成立体图形是怎样的?想看吗?

  课件演示:从图片中抽象出圆柱。

  问:长方体和正方体最多看到几个面?圆柱我们能看到几个面?

  2、探究圆柱的基本特征

  (1)思考:圆柱的上下两个面是什么样的?叫做什么?

  学生观察后得出结论。

  教师:小组合作,动手动脑

  圆柱两底面的大小怎样?你用什么方法证明?

  画、剪、比等等方法。

  (2)比较胖瘦两个圆柱,它们有什么不同?是什么原因?

  让学生相互讨论,思考。得出:因为圆柱的底面半径不同,所以在高相等的情况下,半径大的圆柱就胖些。

  (3)思考:用手摸圆柱周围的面,你有什么发现?

  结论:是一个光滑的曲面。

  (4)思考:圆柱两个底面之间的距离叫做什么?在哪里?有几条?

  学生先用手比划下圆柱的高,在用彩笔画出圆柱的高。试试看,你能画几条。

  白板演示,圆柱的高有无数条,

  3、拓展应用,发展新知

  在生活中,圆柱的高也有不同的称呼,你知道吗?(白板展示)

  硬币是厚,井是深、钢管是长。

  三、巩固提高,

  1、完成P18的第1题

  学生独立完成,老师检查。

  2、完成P18的第2题

  分析:分别以长方形的那条边为轴旋转而成,底面半径和高分别是多少,引导学生用一张长方形的纸来帮助理解

  课题总结

  通过今天的学习,你认识到了什么?请用“1、2、3、无数”来总结今天学习的内容,你会吗?说说看。

  作业能力练习册第13-14页内容,回家体会理解记忆公式。

  板书设计

  圆柱体的认识

  底面侧面高

  2个1个无数条

  大小一样的圆曲面

  教学反思

  圆柱是一种常见的立体图形。在实际生活中,圆柱形状的物体很多,学生对圆柱都有初步的感性认识。在教学中,我注重与学生的生活实际相结合,为发展学生的空间观念和解决实际问题打下基础。教学中,重点理解圆柱的高有无数条,而不仅仅是两个底面圆心的连线这一条。还让学生认识到圆柱的立体图形只有两个面。

人教版数学六年级下册教案4

  教学目标:

  1.在课前实际调研的基础上,交流常用的理财方式及其利弊,了解各种理财方式在生活中的应用价值。

  2.在探究各种储蓄方式收益情况的活动中,体会数学知识在解决实际问题中的实际应用

  的价值。

  3.在分析、比较各数据的活动中,培养数据分析的能力,推理辨析,反思调整的意识。

  4.在课前活动及课上探究的活动中,感受数学源自于生活,数学在生活中的广泛应用。

  教学重点:

  1.初步了解多种理财的基本方式,感受理财方式的优化。

  2.在解决问题、辨析策略的过程中,体会数学在解决实际问题中的价值。

  教学难点:能在自觉应用数学知识解决问题的过程中,提高分析数据、推理辨析、反思调整的意识。

  学科德育、习惯培养、学科教学改进建议:在活动中培养学生解决问题策略的多样化以及分析数据、推理辨析、反思调整的意识。

  教具准备:教学课件、根据学生的调查情况制作的各种图表。

  教学过程:

  一、谈话引入,组织交流

  (一)以压岁钱为话题,引入要研究的问题

  1.谈话引入:同学们,每到过新年的时候你们最高兴的一件事是什么?

  师:对!得到压岁钱,这是我国古代留下来的一种民族习俗,其寓意是祝收到压岁钱的人在新的一年里顺利、健康,平安。

  2.提问:那你们得到的压岁钱一般又是怎么处理的呢?

  3.小结:看来我们大多数同学都是把压岁钱进行合理的储蓄,使其获得更大的收益,这就是基本的理财意识。(板书课题:理财)

  4.交流汇报:咱班理财意识强的同学,走访了银行,采访了银行的专业人士,了解到了一些相关的信息想与我们大家分享。(课件上出现实践活动的照片)

  (二)借助课前调研,了解理财知识

  下面有请赵新莹同学与我们进行知识分享。

  学生用自己制作的ppt介绍自己知道的理财知识,并且进行简单的说明。

  二、结合调研结果,提出研究的`问题

  1.谈话过渡:看来,将钱放入银行进行合理储蓄的方式是比较可靠的,那如果让你用这种方法来掌管你的压岁钱,你最关心什么?

  2.要想帮助大家解决这个问题你有什么需求呢?

  3.师:为了满足大家的需求,老师给大家准备了一份学习资料,大家认真阅读,看看能找到哪些信息帮我们解决问题?(拿出学习资料1--浦发银行储蓄知识单)

  预设:

  (1)20xx年浦发银行定期存款利率

  (2)复利计息方式:每次储蓄后将本息都取出来再进行储蓄。

  第二年的本金=第一年的本金+第一年的利息

  三、小组合作计算,尝试解决问题

  (一)组织讨论,探究存储方式

  1.通过阅读学习资料你都知道哪些信息?(学生汇报)现在能解决刚才的问题了吗?怎么还不能呢?

  预设:

  (1)还不知道本金呢?

  (2)存多长时间呢?

  2.学生思考存储方式,猜想验证收益最高的方式

  (1)那存三年,都可以怎么存呢?

  出示要求:先独立思考,然后将你想到的存储方式写在纸上,并贴在黑板上。

  (2)在这几种存储方式中,你们猜猜哪种存储方式的收益会最大呢?说说你的想法。

  (3)是不是像大家所猜想的这样呢?我们需要--验证(算一算)

  (二)小组合作,借助计算器进行计算,并发现规律。

  1.小组合作,自由计算3年后的本息,验证猜测是否正确。

  (1)1+1+1;(2)1+2;(3)2+1(4)3;

  2.学生交流、汇报

  3.发现规律

  (1)提问:通过计算、交流你有什么发现或疑惑吗?

  (2)交流发现

  预设1:直接存三年收益最大,1年1年1年的存收益最小。

  预设2:1年+2年和2年+1年的收益是一样的。

  4.讨论:在刚才自己模拟的理财过程中,你获得了哪些经验?(学生随意表达自己的想法)

  四、拓展知识,发散思维

  1.提出问题

  如果这6000元钱我们想作为上大学的一笔基金,你们觉得这回又该存几年呢?(六年)是啊,存六年,怎样存收益会最大呢?说说你的想法?

  2.学生独立思考后,交流想法。

  师:是不是像大家所说的这样呢?咱们课下可以试着来验证一下。

  3.小结:上完这节课后,相信我们每位同学都成为了是一名小小的理财家。(板书课题)课前,通过调研发现还有众多的理财方式,但无论选择哪一种理财方式,老师都有一句话送给大家----投资有风险,入市需谨慎!

  五、板书设计

  小小理财家

  1+1+1 1+2 1+3 2+1

  利率

  存期

  本金

人教版数学六年级下册教案5

  一、学习目标

  (一)学习内容

  《义务教育教科书数学》(人教版)六年级下册第五单元第68~69页的例1、2。“抽屉原理”是一类较为抽象和艰涩的数学问题,对全体学生而言具有一定的挑战性。为此,教材选择了一些常见的、熟悉的事物作为学习内容,经历将具体问题“数学化”的过程。

  (二)核心能力

  经历将具体问题“数学化”的过程,初步形成模型思想,发展抽象能力、推理能力和应用能力。

  (三)学习目标

  1.理解“鸽巢原理”的基本形式,并能初步运用“鸽巢原理”解决相关的实际问题或解释相关的现象。

  2.通过操作、观察、比较、说理等数学活动,经历鸽巢原理的形成活动,初步形成模型思想,发展抽象能力、推理能力和应用能力。

  (四)学习重点

  了解简单的鸽巢问题,理解“总有”和“至少”的含义。

  (五)学习难点

  运用“鸽巢原理”解决相关的实际问题或解释相关的现象。

  (六)配套资源

  实施资源:《鸽巢原理》名师教学课件

  二、学习设计

  (一)课堂设计

  1.谈话导入

  师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请一位同学任意抽5张,不要让我看到你抽的是什么牌。但是老师却知道,其中至少有两张牌是同种花色的,再找一个学生再次证明。

  师:看来我两次都猜对了。谢谢你们。老师为什么能料事如神呢?到底有什么秘诀呢?学习完这节课以后大家就知道了。

  2.问题探究

  (1)呈现问题,引出探究

  出示例1:小明说“把4支铅笔放进3个笔筒里。不管怎么放,总有一个笔筒里至少放进2支铅笔”,他说得对吗?请说明理由。

  师:“总有”是什么意思?“至少”有2支是什么意思?

  学生自由发言。

  预设:一定有

  不少于两只,可能是2支,也可能是多于2支。

  就是不能少于2支。

  (2)体验探究,建立模型

  师:好的,看来大家已经理解题目的意思了。那么把4支铅笔放进3个笔筒里,可以怎样放?有几种不同的摆法?(我们用小棒和纸杯分别表示铅笔和笔筒)请大家摆摆看,看有什么发现?

  小组活动:学生思考,摆放。

  ①枚举法

  师:大部分同学都摆完了,谁能说说你们是怎么摆的。能不能边摆边给大家说。

  预设1:可以在第一个笔筒里放4支铅笔,其它两个空着。

  师:这种放法可以记作:(4,0,0),这4支铅笔一定要放在第一个笔筒里吗?

  (不一定,也可能放在其它笔筒里。)

  师:对,也可以记作(0,4,0)或者(0,0,4),但是,不管放在哪个笔筒里,总有一个笔筒里放进4支铅笔。还可以怎么放?

  预设2:第一个笔筒里放3支铅笔,第二个笔筒里放1支,第三个笔筒空着。

  师:这种放法可以记作(3,1,0)

  师:这3支铅笔一定要放在第一个笔筒里吗?

  (不一定)

  师:但是不管怎么放——总有一个笔筒里放进3支铅笔。

  预设3:还可以在第一个笔筒里放2支,第二个笔筒里也放2支,第三个笔筒空着,记作(2,2,0)。

  师:这2支铅笔一定要放在第一个和第二个笔筒里吗?还可以怎么记?

  预设:也可能放在第三个笔筒里,可以记作(2,0,2)、(0,2,2)。

  预设4:还可以(2,1,1)

  或者(1,1,2)、(1,2,1)

  师:还有其它的放法吗?

  (没有了)

  师:在这几种不同的放法中,装得最多的那个笔筒里要么装有4支铅笔,要么装有3支,要么装有2支,还有装得更少的情况吗?(没有)

  师:这几种放法如果用一句话概括可以怎样说?

  (装得最多的笔筒里至少装2支。)

  师:装得最多的那个笔筒一定是第一个笔筒吗?

  (不一定,哪个笔筒都有可能。)

  【设计意图:在理解题目要求的基础上,通过操作活动,用画图和数的分解来表示上述问题的结果,更直观。再通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个铅笔盒里至少有2支铅笔”这句话。】

  ②假设法

  师:刚才我们研究了在所有放法中放得最多的笔筒里至少放进了几支铅笔。怎样能使这个放得最多的笔筒里尽可能的少放?

  预设:先把铅笔平均放,然后剩下的再放进其中一个笔筒里。

  师:“平均放”是什么意思?

  预设:先在每个笔筒里放一支铅笔,还剩一支铅笔,再随便放进一个笔筒里。

  师:为什么要先平均分?

  学生自由发言。

  引导小结:因为这样分,只分一次就能确定总有一个笔筒至少有几支笔了。

  师:好!先平均分,每个笔筒中放1支,余下1支,不管放在哪个笔筒里,一定会出现总有一个笔筒里至少有2支铅笔。

  师:这种思考方法其实是从最不利的情况来考虑,先平均分,每个笔筒里都放一支,就可以使放得较多的这个笔筒里的铅笔尽可能的少。这样,就能很快得出不管怎么放,总有一个笔筒里至少放进2支铅笔。我们可以用算式把这种想法表示出来。

  【设计意图:让学生自己通过观察比较得出“平均分”的方法,将解题经验上升为理论水平,进一步强化方法、理清思路。】

  (3)提升思维,建立模型

  ①加深感悟

  师:如果把5支笔放进4个笔筒里呢?大家讨论讨论。

  预设:5支铅笔放在4个笔筒里,先平均分,不管怎么放,总有一个笔筒里至少有2支铅笔。

  师:把7支笔放进6个笔筒里呢?还用摆吗?

  学生自由发言。

  师:把10支笔放进9个笔筒里呢?把100支笔放进99个笔筒里呢?

  师:你发现了什么?

  预设:我发现铅笔的支数比笔筒数多1,不管怎么放,总有一个笔筒里至少有2支铅笔。

  师:你的发现和他一样吗?

  学生自由发言。

  师:你们太了不起了!

  师:难道这个规律只有在铅笔的支数比笔筒数多1的情况下才成立吗?你认为还有什么情况?

  练一练:

  师:我们来看这道题“5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子,为什么?”

  师:说说你的想法。

  师:由此看来,只要分的物体比抽屉的数量多,就总有一个抽屉里至少放进2个物体。这就是最简单的鸽巢原理。【板书课题】

  介绍狄利克雷:

  师:鸽巢原理最先是由19世纪的德国数学家狄利克雷提出来应用于解决问题的,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫狄利克雷原理,也叫抽屉原理。

  ②建立模型

  出示例2:一位同学学完了“鸽巢原理”后说:把7本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有3本书。他说得对吗?

  学生独立思考、讨论后汇报:

  师:怎样用算式表示我们的想法呢?生答,板书如下。

  7÷3=2本……1本(2+1=3)

  师:如果有10本书会怎么样能?会用算式表示吗?写下来。

  出示:

  把10本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

  10÷3=3本……1本(3+1=4)

  师:观察板书你有什么发现?

  预设:我发现“总有一个抽屉里至少有2本”,只要用“商+1”就可以得到。

  师:那如果把8本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?请大家算一算。

  学生讨论,汇报:

  8÷3=2……22+1=3

  8÷3=2……22+2=4

  师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。

  师:认真观察,你认为“抽屉里至少有几本书”或“鸽笼里至少有几只鸽子”可能与什么有关?

  预设:我认为根“商”有关,只要用“商+1”就可以得到。

  师:我们一起来看看是不是这样(引导学生再观察几个算式)啊!果然是只要用“商+1”就可以了。

  引导总结:我们把要分的物体数量看做a,抽屉的个数看做n,如果满足【a÷n=b……c(c≠0)】,那么不管怎样放,总有一个抽屉里至少放(b+1)本书。这就是抽屉原理的一般形式。

  鸽巢原理可以广泛地运用于生活中,来解决一些简单的实际问题。解决这类问题时要注意把谁看做“抽屉”。

  【设计意图:借助直观操作和假设法,将问题转化为“有余数的除法”的形式。可以使学生更好地理解“抽屉原理”的一般思路,经历将具体问题“数学化”的过程,初步形成模型思想,发展抽象能力、推理能力和应用能力。考查目标1、2】

  3.巩固练习

  (1)学习了“鸽巢原理”,我们再回到课前的“扑克牌”游戏,你现在能解释一下吗?(出示课件)学生思考,讨论。

  (2)第69页的做一做第1、2题。

  4.全课总结

  师:通过这节的学习,你有什么收获?

  小结:今天这节课我们一起研究了鸽巢原理,也叫抽屉原理,解决抽屉原理问题关键就是找准物体和抽屉,在一些复杂的题中,还需要我们去制造抽屉。

  (三)课时作业

  1.一个小组共有13名同学,其中至少有几名同学同一个月出生?

  答案:2名。

  解析:把1—12月看作是12个抽屉,13÷12=1…11+1=2【考查目标1、2】

  2.希望小学篮球兴趣小组的同学中,最大的12岁,最小的6岁,最少从中挑选几名学生,就一定能找到两个学生年龄相同。

  答案:8名。

  解析:从6岁到12岁一共有7个年龄段,即6岁、7岁、8岁、9岁、10岁、11岁、12岁。用7+1=8(名)【考查目标1、2】

  第二课时鸽巢原理

  中原区汝河新区小学师芳

  一、学习目标

  (一)学习内容

  《义务教育教科书数学》(人教版)六年级下册教材第70页例3。本例是“鸽巢原理”的具体应用,也是运用“鸽巢原理”进行逆向思维的一个典型例子。要解决这个问题,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”,这样就把“摸球问题”转化为“抽屉问题”。

  (二)核心能力

  在理解鸽巢原理的基础上,利用转化的思想,把新知转化为鸽巢问题,提高分析和推理的能力。

  (三)学习目标

  1.进一步理解“抽屉原理”,运用“抽屉原理”进行逆向思维,解决实际问题,体会转化思想。

  2.经历运用“抽屉原理”解决问题的过程,体验观察猜想,实践操作的学习方法,提高分析和推理的能力。

  (四)学习重点

  引导学生把具体问题转化为“抽屉原理”。

  (五)学习难点

  找出“抽屉”有几个,再应用“抽屉原理”进行反向推理。

  (六)配套资源

  实施资源:《鸽巢原理》名师教学课件

  二、学习设计

  (一)课堂设计

  1.情境导入

  师:同学们,你们喜欢魔术吗?今天老师给你们表演一个怎么样?看,这是一副扑克牌,去掉两张王牌,还剩下52张,请同学们任意挑出5张。(让5名学生抽牌)好,见证奇迹的'时刻到了!你们手里的牌至少有2张是同花色的。

  师:神奇吧!你们想不想表演一个呢?

  师:现在老师这里还是刚才这副牌,请你抽牌,至少抽多少张牌才能保证至少有2张牌的点数相同呢?

  在学生抽的基础上揭示课题。教师:这节课我们学习利用“鸽巢原理”解决生活中的实际问题。(板书课题:鸽巢原理)

  2.探究新知

  (1)学习例3

  ①猜想

  出示例3:盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球?

  预设:2个、3个、5个…

  ②验证

  师:我们的猜想是不是正确呢?我们可以用画一画、写一写的方法来说明理由,并把验证的过程进行整理。

  可以用表格进行整理,课件出示空白表格:

  学生独立思考填表,小组交流。

  全班汇报。

  汇报时,指名按猜测的不同情况逐一验证,说明理由,看看解决这个问题是否有规律可循。

  课件汇总,思考:从这里你能发现什么?

  教师:通过验证,说说你们得出什么结论。

  小结:盒子里有同样大小的红球和蓝球各4个。想要摸出的球一定有2个同色的,最少要摸3个球。

  ③小结

  师:为什么球的个数一定要比抽屉数多?而且是多1呢?

  预设:球有两种颜色,就是两个抽屉,从最不利的情况考虑摸2个球都不同色,就必须多摸一个,所以球一定要比抽屉数多1。其实摸4个球、5个球或者更多球,都能保证一定有2个球同色,但问题中要求摸的球数必须“至少”,所以摸3个球就够了。

  师:说得好!运用学过的知识、逆推的方法说明了“只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色”。这一结论是正确的。

  板书:只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色。或者说只要物体数比抽屉数至少多1,就能保证有一个抽屉至少放2个物体。

  (2)引导学生把具体问题转化成“抽屉原理”。

  师:生活中像这样的例子很多,我们不能总是猜测或动手试验,能不能把这道题与前面讲的“抽屉原理”联系起来思考呢?

  思考:①摸球问题与“抽屉原理”有怎样的联系?

  ②应该把什么看成“抽屉”?有几个“抽屉”?要分别放的东西是什么?

  学生讨论,汇报结果,教师讲评:因为有红、蓝两种颜色的球,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”。这样把“摸球问题”转化成“抽屉问题”,即“只要分的物体比抽屉多1,就能保证有一个抽屉至少有2个同色球”。

  从最特殊的情况想起,假设两种颜色的球各拿了1个,也就是在两个抽屉里各拿了1个球,不管从哪个抽屉里再拿1个球,都有2个球是同色的。假设至少摸a个球,即a÷2=1……b,当b=1时,a就最小。所以一次至少应拿出1×2+1=3个球,就能保证有2个球同色。

  结论:要保证摸出的球有两个同色,摸出的球数至少要比抽屉数多1。

  3.巩固练习

  (1)完成教材第70页“做一做”第1题。

  (2)完成教材第70页“做一做”第2题。

  4.课堂总结

  师:这节课你学到了什么知识?谈谈你的收获和体验。

  (三)课时作业

  1.有黑色、白色、蓝色、红色手套各10只(不分左、右手),至少要拿出多少只(拿的时候不看颜色),才能在拿出的手套中,一定有两只不同颜色的手套?

  答案:5只。

  解析:4个颜色相当于4个抽屉,保证一定有两只不同的颜色,相当于分的物体个数比抽屉多1。【考查目标1、2】

  2.一个鱼缸里有很多条鱼,共有5个品种。至少捞出多少条鱼,才能保证有4条鱼的品种相同?

  答案:16条。

  解析:5个品种相当于5个抽屉,保证有4条鱼品种相同,所放物品的个数是:5×3+1=16。【考查目标1、2】

人教版数学六年级下册教案6

  教学内容:

  比较正数和负数的大小。

  教学目的:

  1、借助数轴初步学会比较正数、0和负数之间的大小。

  2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

  教学重、难点:

  负数与负数的比较。

  教学过程:

  一、复习:

  1、读数,指出哪些是正数,哪些是负数?

  -8 5.6 +0.9 - + 0 -82

  2、如果+20%表示增加20%,那么-6%表示 。

  二、新授:

  (一)教学例3:

  1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

  2、出示例3:

  (1)提问你能在一条直线上表示他们运动后的情况吗?

  (2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

  (3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

  (4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

  (5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

  (6)引导学生观察:

  A、从0起往右依次是?从0起往左依次是?你发现什么规律?

  B、在数轴上除了可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?

  (7)练习:做一做的第1、2题。

  (二)教学例4:

  1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

  2、学生交流比较的方法。

  3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

  4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

  5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

  6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。

  7、练习:做一做第3题。

  三、巩固练习

  1、练习一第4、5题。

  2、练习一第6题。

  3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 摄氏度。

  四、全课总结

  (1)在数轴上,从左到右的顺序就是数从小到大的`顺序。

  (2)负数比0小,正数比0大,负数比正数小。

  第二课教学反思:

  许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

  例3——两个不同层面的拓展:

  1、在数轴上表示数要求的拓展。

  数轴除了可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。

  同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

  2、渗透负数加减法

  教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

  例4——薄书读厚、厚书读薄。

  薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)

  例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘了三种不同类型,一一请学生介绍比较方法,将薄书读厚。

  将厚书读薄——无论哪种类型,比较方法万变不离其宗。

  无论哪种比较方法,最终都可回归到“数轴上左边的数比右边的数小。”即使有学生在比较—8和—6大小时是用“8>6,所以—8。

人教版数学六年级下册教案7

  教学目标:

  1.在观察、交流、操作等活动中,经历认识圆柱和圆柱侧面展开图的过程。

  2.认识圆柱和圆柱侧面展开图,会计算圆柱的侧面积。

  3.积极参与学习活动,愿意与他人交流自己的想法,获得学习的愉快体验。

  课前准备:

  教师准备一个带商标纸的茶叶桶、剪刀、小黑板或课件。学生每人准备一个圆柱体实物、剪刀、线绳等。

  教学设计:

  一、创设情境导入

  1、谜语导入引出圆柱。上下一样粗,放倒一推骨碌碌。(板书:圆柱)

  2、(课件出示书中的情境图)师:上面哪些物体的形状是圆柱?(指名说)

  3、拿出你准备的圆柱形物品,举起来,大家互相检查,看看你们准备的都是圆柱吗?(教师也要认真观察及时发现不符的,如果有让学生说说为什么?)生活中,还有哪些物体的形状是圆柱?(指名说)预设:铁皮水桶、烟囱……

  二、体验探究

  1、认识圆柱

  拿起你的圆柱,仔细观察,你发现了:圆柱有多少个面?再用手摸一摸,这些面有什么特点?也可以在桌上轻轻地滚一滚。

  (1)学生观察,并用手摸表面、滚一滚。

  (2)集体交流。好了,放好你的圆柱。你观察到圆柱有哪些特征?(指名说)

  预设;

  2、我发现了圆柱有三个面。(师:用手指一指都有哪三个面)

  3、我发现了圆柱的的上下两个面是完全相同的两个圆。(师:同意吗?那你们怎么知道这两个圆完全相同呢?有没有办法验证一下?(指名说)教师总结:圆柱的上下两个面叫做圆柱的底面,它们是完全相同的两个圆。(并板书:2个底面相等)

  4、我发现了圆柱还有一个面,(师:这个面有什么特点?和上下两个底面有什么不一样?)教师在学生发言的基础上总结:圆柱的这个曲面,叫做侧面。(并板书:曲面)

  5、刚才大家观察的非常认真,那我们回忆一下长方体和正方体都有(高),那圆柱有高吗?(有)谁来用手指一指或者用语言描述一下什么是圆柱的高?(指名说)

  那你们认为一个圆柱有多少条高?(无数条)而且它们的长度怎么能样?(相等)

  (3)刚才通过大家认真的观察,我们发现了圆柱的特征,下面我们一起来回顾一下:圆柱有两个(底面),它们是完全相同的(两个圆);圆柱还有一个(曲面),叫做它的(侧面)。圆柱有无数条高。

  6、圆柱的侧面积。

  (1)(出示)师:老师这里也有一个(圆柱)形状的茶叶桶,教师指圆柱的各部分学生说名称?

  (2)那大家猜想一下:如果我们把这个茶叶桶的商标纸沿着一条高剪开,展开后会得到一个什么图形?(指名说)

  预设:长方形、正方形

  (3)那么大家猜想的对不对呢?下面就请大家睁大眼睛,我们一起来验证一下。(教师操作,学生观察)什么形状?(一起说)

  师:对,我们把这个圆柱形茶叶桶的商标纸沿着一条高剪开,就得到了一个(长方形),也就是说这个圆柱的侧面展开后是一个(长方形)

  (4)下面请同学们认真观察,仔细的想一想

  我们得到的这张长方形纸与茶叶桶的侧面有什么关系?

  ①同桌互相讨论一下。

  ②集体交流。(指名说,教师随即板书)

  长方形的面积长宽

  圆柱的侧面积底面周长高

  (5)因为长方形的面积=长×宽,所以圆柱的'侧面积=底面周长×高

  这就是我们一起推导出来的圆柱的侧面积公式,来,一起读两遍,记住它。

  如果说我要求圆柱的侧面积需要知道什么条件?(圆柱的底面周长和高)

  三、实践应用

  1、这个茶叶桶,如果让你求它的侧面积,我们需要哪些数据?指名测量,并计算。

  2、29页1、2题

  四、课堂小结。

  通过这节课的学习,你对圆柱有一些认识了吗?你都有什么收获?(指名说)

  五、拓展延伸

  在我们推导圆柱的侧面积公式的过程中,我们是将圆柱的侧面沿着一条(高)剪开,得到了一个(长方形),从而根据长方形的面积公式推导出了圆柱的侧面积公式。那大家想一想,如果我们将圆柱的侧面沿一条斜线剪开,会得到一个什么图形呢?那根据这个图形,你也能推导出圆柱的侧面积公式吗?大家课下动手去试一试。

人教版数学六年级下册教案8

  1.课件出示问题:

  ①圆柱两底面的大小有什么关系?你有什么办法证明?

  ②用直尺量一量你手中圆柱的高,你发现什么?

  2.小组观察讨论。学生汇报:圆柱的两个底面都是圆,大小相等。(板书:面积相等)教师:你是怎样知道两个底面相等的?预设:剪出来比较、量直径计算、画在纸上倒过来观察是否重合。(分别请学生演示验证)用哪种方法验证最简单?

  【设计意图】小组合作学习,明确要求有利于学生有序地开展研究活动,在互相合作、互相补充中培养小组协作精神。动手操作有利于增强学生直观感知,让学生更好地理解圆柱的特征,通过多种方法的展示验证拓宽学生思维。

  3.圆柱的高。课件显示:一个圆柱高度变化过程。请同学观察:圆柱的什么发生了变化?引导:哪段距离表示圆柱的高?请看屏幕,圆柱两个底面之间的距离,就叫圆柱的高。(课件出示:圆柱两个底面之间的距离叫做高)教师:圆柱的高在哪些地方可以找到?根据学生的回答,课件上显示并用有颜色的线闪烁。 小结并板书:圆柱的高有无数条,高的长度都相等。教师:你能在你的圆柱上指出这条高吗?(圆柱中心的高,指不到)面对无数条的高,测量哪一条最为简便?(为了方便一般测量侧面上的高)教师:请看这样画一条线段是它的高吗?(三角板斜放)预设:高是两个底面之间的距离,应该垂直于两个底面。在我们的生活中,圆柱的高还有其他的说法。(课件演示)你看:一口水井是圆柱形的,这个圆柱的高还可以说是“深”,一个1元硬币是圆柱形的,这个圆柱的高还可以说是“厚”,水管也是圆柱形的,它的高还可以叫“长”。

  【设计意图】把抽象的立体图形还原于生活原形,更好帮助学生建立数学与生活的`联系,为以后解决生活中的实际问题作好铺垫。

  4.游戏拓展,感受平面图形与立体图形的转换

  (1).出示一个硬纸板做成的长方形(长10cm,宽5 cm),用长尾夹将其10 cm的长固定在小木棒上。教师:这个简易的玩具跟我们今天所学的圆柱有什么关系呢?我们可以快速地转动木棒,看看会发生什么奇迹?学生:转动起来是一个圆柱。教师:是怎样的一个圆柱?你能用具体数据来描述一下吗?(底面半径为5 cm,高为10 cm的一个圆柱)

  (2).如果我把这个长方形5cm长的那一边夹住后再转,转出来的圆柱跟刚才的一样吗?想象一下:这又是一个怎样的圆柱?(一边说一边用手势表示)出现的圆柱和你想象的大小一样吗?和我们生活中常见的什么物体大小差不多?

  (3).同一个长方形,为什么转出来的圆柱不同?如果有一个长方形长是150厘米,宽是30厘米,快速旋转,会形成一个多大的圆柱?

  【设计意图】使学生从旋转的角度认识圆柱,即长方形的一条边快速旋转,形成圆柱形状,感受平面图形与立体图形的转换。通过想象、用手势比划大小、联系实际生活中的物品,最后看圆柱辨长方形,层层递进,发展学生的空间观念。

  4. 小结圆柱特征。教师:现在谁来完整的说说圆柱有什么特征(看板书)?

  (四)练习巩固(课件出示)

  第1题:指出下列圆柱的底面、侧面和高。(根据学生回答,课件出示相应名称。)

  第2题:(读出下面各圆柱的有关数据。单位:厘米)

  叫学生回答。

  第3题:判断。指名学生回答,并说理由。

  第4题:想一想,围起来能得到什么图形?

  【设计意图】通过练习,帮助学生进一步明确圆柱各部分的名称和特征,巩固所学的知识。

  (五)课堂总结

  这节课你有什么新的收获和感想?

  板书设计:

  圆柱的特征

  两个底面(大小相等)

  一个侧面(曲面)

  圆柱的高有无数条

人教版数学六年级下册教案9

  【教学目标】

  1、能在具体的情境中,探索确定位置的方法,说出某一物体的位置。

  2、会在方格纸上用“数对”确定物体的位置。

  3、发展空间观念,初步体会到数形结合的思想。

  4、体会生活中处处有数学,提高运用知识解决实际问题的能力。

  【教学重点】

  使学生经历确定位置的全过程,从而掌握用数对确定位置的方法。

  【教学难点】

  在方格纸上用“数对”确定位置。

  【教法】

  情境教学法,创设找图书管理员的情境,激发学习兴趣,感知确定位置的方法。

  【学法】

  积极参与法,在学习过程中积极思考,理解用数对确定位置的方法,并积极参与动手操作活动,提高看图能力。

  【教学准备】

  多媒体课件

  【教学过程】

  一、谈话导入

  1、师生谈话。

  学校让我们班推荐一位同学到学校图书室做图书管理员,老师已经选好了,那么你们想不想知道这位同学是谁吗?

  这位同学在班级中的位置是第三组的。你们知道这位同学是谁吗?他可能是哪几位同学?如果要找到这位同学,还要知道什么条件?

  这位同学的座位是在第3排,大家知道这位同学是谁吗?

  2、导入新课。

  今天这节课,我们就一起来学习确定位置的方法。

  板书课题:用数对确定位置

  【设计意图:通过谈话中引入数学问题,充分调动了学生的学习兴趣和积极性,为学习新知奠定了基础。】

  二、探索新知

  1、教学例1。

  (1)出示例题1教学图。

  让学生观察图,说说张亮同学坐在第几列?第几行。

  (竖排叫做列,横排叫做行)

  (2)张亮同学坐在第2列,第3行。用数对来表示(2,3)。

  (3)让学生用数对表示王艳和赵强的位置。

  王艳(3,4)赵强(4,3)

  (4)小结。

  确定一个同学在教室的位置,要考虑两个要素:第几列和第几行。

  【设计意图:通过具体的实例引导学生认识第几列第几行的判断方法,经历应用数学知识分析问题的解决问题的过程】

  2、完成第3页的“做一做”。

  课件出示电影院和电影票的图片。出示题目:举出生活中确定位置的例子,并说一说确定位置的方法。

  (电影院用电影票来确定位置,电影票一般都写着“几排几号”,“排”表示行,“号”表示列。比如“3排7号”用数对表示是(7,3)。

  【设计意图:从学生熟悉的情景出发,选择学生感举的事物,提出相关问题,激发学生学习兴趣。】

  3、教学例2。

  (1)认识方格图。

  出示动物园示意图。

  指导学生观察图。

  这幅动物园示意图与以前见过的示意图有以下几点不同:一是动物园的各场馆都画成一个点,只反映各场馆的位置,不反映其他内容;二是表示各场馆位置的`那些点都分散在方格纸竖线和横线的交点上;三是方格纸的竖线从左到右依次标注了0,1,2,…,6;横线从下往上依次标注了0,1,2,…,6,其中的“0”既是列的起始,也是行的起始。

  (2)用数对表示图中各场馆的位置。

  提问1:我用了数对(3,0)来表示大门的位置,你们知道我是怎样想的吗?

  【大门在示意图中处于“竖线3,横线0”的位置上,所以可以用数对(3,0)来表示】

  你们能用数对表示其他场馆所在的位置吗?

  【熊猫馆(3,5)大象馆(1,4)猴山(2,2)海洋馆(6,4)】

  (3)根据数对标位置

  在图上标出下面场馆的位置:飞禽馆(1,1)、猩猩馆(0,3)、狮虎山(4,3)。

  【设计意图:通过具体的事例认识和理解位置与坐标中数值的对应关系,让学生不但会用数对描述现实生活中的位置,还会描述坐标图上的物体的位置。】

  三、巩固运用

  1、小游戏:看谁反应最快。

  老师说出一组数对,相应的同学要在3秒内起立。

  2、做一做。(课件出示)

  【设计意图:通过练习,培养学生分析问题、解决问题的能力,加深对知识的理解和应用。】

  四、课堂总结

  这节课我们学习如何用数对来确定位置,用数对确定位置时,数对中的前一个数表示第几列,后一个数是表示第几行。

  五、板书设计

  用数对确定位置

  竖排叫做列从左往右

  横排叫做行从前到后

  张亮坐在第2列第3行(2,3)

  (列,行)

人教版数学六年级下册教案10

  教学目标:

  1、让学生经历从实际生活中抽象出百分数的过程,感受百分数在生活中的广泛应用,体会引入百分数的必要性, 感受百分数产生的价值,理解百分数的意义,会正确读、写百分数。

  2、使学生会解释百分数的实际含义。

  3、提高学生比较、分析信息的能力,体会数学的应用价值,激发对数学的兴趣和应用数学的意识。

  教学重点:理解百分数表示一个数是另一个数的百分之几。

  教学难点:在具体的情境中理解百分数的实际含义。

  教学过程:

  一、创设情境,导出主题

  1、 谈话引入:

  师:同学们,谁能告诉老师,我们的数学知识来自哪里?学生举手回答:来自于生活。

  (教师出示课前收集的服装成分百分数图片。)

  师:没错,生活中处处有数学。这是老师前段时间买的衣服,同学们,你能从这些图中发现什么数学信息?

  2、 揭示主题:

  像这里的86%、14%、63.2%、36.8%等数,我们把它们叫做“百分数”。这节课,老师将和同学们一起来认识“百分数”。

  二、联系生活,学会读写

  1、观察服装成分中的百分数,教师先示范读,再让学生齐读。

  2、认识百分号,总结百分数的写法。

  三、引导探索,揭示意义

  1、教师展示课前搜集的百分数,学生选择自己最喜欢的一个读给同桌听,并说说所选百分数有具体含义。

  2、学生汇报,师生评价。同时教师板书出每个分数的具体含义。

  3、小结意义,引导学生归纳百分数的.意义。

  4、利用百格图进一步理解百分数的意义。

  四、多层练习,巩固深化

  1、选择合适的数,并说明理由。

  110% 90% 100% 311.76% 55% 311.76

  (1)据统计,国庆长假期间,半数以上的年轻人选择自驾 游,占年轻人出游总数的( )

  (2)国庆长假期间,小客车上高速实行免费通行,长假期间小客车高速通行免费率达到( )

  (3)高速公路上小客车的速度超过了大客车,小客车的行驶速度是大货车速度的( )

  (4)高铁是准点率最高的交通工具,深受人们出行的喜爱,国庆期间全国高铁准点率达到( )以上。

  (5)2014年国庆当天,全国122个景区接待游客( )万人次。

  2、根据题意选择合适的图示。

  图( )最有可能符合第(1)题的意思。

  图( )最有可能符合第(3)题的意思。

  3、小组讨论:百分数和分数在意义上有什么相同之处和不同之处呢?

  五、交流体会,总结提升

  让学生回顾这节课学过的内容,谈一谈这节课的高兴、紧张与遗憾各占百分之几?

  最后以爱迪生的名言结束本节课。

人教版数学六年级下册教案11

  教学目标

  1、通过调查利率,了解利率调整的原因;计算不同的理财方式带来的不同收益,知道如何使收益最大;了解千分数、万分数的概念。

  2、让学生经历整理信息、利用信息的过程,获得运用数学知识解决实际问题的能力。

  3、通过探究活动,使学生感受数学知识与日常生活的密切联系,体会学数学、用数学的乐趣,激发学习数学的热情。

  教学重难点

  1、深化百分数的意义和运用,掌握百分数问题的解决办法。

  2、强调生活体验和社会实践,培养分析和解决问题的能力。

  教学过程:

  一、谈话导入

  1、谈话:同学们,在前面的学习中,我们已经知道“利息”与我们的生活息息相关,可以说“利息”也是我们的生财方法之一。但是,不一样的理财方式,带来的效益是不同的,那么怎样理财才能给我们带来尽可能多的'回报呢?那就一起来参加今天的活动吧!请同学们先回忆一下,什么是利息和利率?怎样求存款利息?

  利息=本金×利率×存期

  2、活动1:昨天老师给大家留了作业,让你们去调查一下附近银行的最新利率,并与课本第11页的利率表进行对比,了解国家调整利率的原因,现在小组内交流一下。

  (1)学生分组交流,老师选取几份调查表全班展示。

  (2)问:你们知道国家为什么要调整利率吗?

  【设计意图】

  通过对附近银行的调查,不仅了解到当前的利率情况和国家调整利率的原因,还有助于提高学生自主搜集信息的能力。

  二、探索新知

  1、活动2。

  师:我们了解了利率也是根据实际需求不断调整的,而具体到我们个人的实际需求,在选取理财方式时,也要慎重。请根据第16页的普通利率表,帮李阿姨算一算,如果把准备给儿子的2万元存入银行,供他六年后上大学,哪种方法获得的利息最多?

  (1)小组合作完成,可以用计算器计算。

  出示第16页利率表,小组合作完成时,教师巡视了解情況。

  (2)组织学生交流,重点明确存期六年,需要取出再次存入时,要把上一次的利息作为本金的一部分存入。

  普通存款:一年一年存存6次共23881。05元

  普通存款:二年二年存存3次共24845。94元

  普通存款:三年三年存存2次共25425。13元

  普通存款:五年一年存存2次共25492。5元

  普通存款:一二三年存存3次共24968。49元

  国债存款:一年一年存存6次共24871。53元

  国债存款:五年一年存存2次共26962元

  国债存款:三年三年存存2次共27046。73元

  教育储蓄:六年存1次共25700元

  (3)这些方案中你会选择哪种方案,为什么?

  通过计算,使学生认识到国债的收益最高。

  (4)小结:在本金相同、存期相同的情况下,利率越高利息越高。

  【设计意图】

  在本环节的教学中,主要采取学生自主尝试解决问题的方式,让学生通过计算和对比,发现在本金相同和存期相同的情况下,利率越高利息越高。

  2、认识千分数和万分数。

  (1)学生自主阅读课本第16页“你知道吗?”

  (2)学生交流自己对千分数和万分数的理解。

  (3)强调千分号和万分号的写法。

  三、课后作业

  自己去各大银行了解利率情况,给自己的压岁钱设计一个合理的方案,供自己六年后上大学用,并算出到期后的本息。

  四、课堂总结

  在本节课的学习中,你有哪些收获?

  学生自由交流各自的收获体会。

  总结:生活中无处不存在百分率,生活中蕴含着无穷的数学知识,希望同学们关心我们的生活,热爱我们的数学,积极用数学知识解决生活中的同题。

  教后思考:

人教版数学六年级下册教案12

  教学目标

  1。在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。

  2。初步学会用负数表示一些日常生活中的实际问题。

  3。能借助数轴初步理解正数、0和负数之间的关系。

  重点难点

  负数的意义和数轴的意义及画法。

  教学指导

  1。通过丰富多彩的生活情境,加深学生对负数的认识。

  负数的出现,是生活中表示两种相反意义的量的需要。教学时,教师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起学生已有的生活经验,激发学生的学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的.量的对比,初步建立负数的概念。在引入负数以后,教师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感受数学在实际生活中的广泛应用。

  2。把握好教学要求。

  对负数的教学要把握好要求,作为中学进一步学习有理数的过渡,小学阶段只要求学生初步认识负数,能在具体的情境中理解负数的意义,初步建立负数的概念。这里不出现正负数的数学定义,而是描述什么样的数是正数,什么样的数是负数,只要求学生能辨认正负数。关于数轴的认识,这里还没有出现严格的数学定义,而是描述性的定义,只是让学生借助已有的在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。

  3。培养学生多角度观察问题,解决问题的能力。

  教材创设了开放性的思维空间,在解决问题时应着眼于让学生自主地理解数学信息、寻找解题思路。教师要有意识地引导学生从不同角度寻找答案,对于学生有道理的阐述,教师要积极鼓励,激发学生求知的欲望,逐步增强学生学好数学的内驱力。

  课时安排

  共分3课时

  教学内容

  负数的初步认识

  (1)(教材第2页例1)。

  教学目标

  结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。

  重点难点体会负数的重要性。

  教学准备多媒体课件。

  情景导入

  1。教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)

  2。引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么0℃代表什么意思—3℃和3℃各代表什么意思)

  3。引出课题并板书:负数的初步认识

  (1) 新课讲授教学教材第2页例1。

  (1)教师板书关键数据:0℃。

  (2)教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,通常在数字前加“—”(负号):如—3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。

  (3)我们来看一下课本上的图,你知道北京的气温吗最高气温和最低气温都是多少呢随机点同学回答。

  (4)刚刚同学回答得很对,读法也很正确。

  (5)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢用手势告诉大家好吗

  学生讨论合作,交流反馈。

  (6)请同学们把图上其它各地的温度都写出来,并读一读。

  (7)教师展示学生不同的表示方法。

  (8)小结:通过刚才的学习,我们用“+”和“—”就能准确地表示零上温度和零下温度。

  课堂作业

  完成教材第4页的“做一做”第1题。组织学生独立完成,指名回答。

  答案:—18℃温度低。

  课堂小结

  通过这节课的学习,你有什么收获

  课后作业

  完成练习册中本课时的练习。

人教版数学六年级下册教案13

  教学内容:

  人教版六年级下册第三单元P17-18内容及“做一做”。

  教学目标:

  1.认识圆柱,掌握圆柱各部分的名称及特点。

  2.能建立圆柱的几何模型,体验从实物中抽象出图形的学习方法。

  3.使学生经历操作、观察、比较和探索的过程,提高分析,推理和判断能力。

  教学重点:理解、掌握圆柱的基本特征。

  教学难点:发展空间观念,掌握圆柱的基本特征。

  教学准备:长方体、正方体、圆柱、三角尺、直尺、学习单

  教学过程:

  一、引“新”明标--引入新课,明确目标

  1.创设情境

  教师出示粉笔盒,问:“这是什么图形”?唤起对学生已有经验的回顾,为新知识的学习作铺垫。

  2.揭题明标

  揭示课题后,启发学生思考回答:关于圆柱,你想了解它的哪些知识?(学生自由回答,师将问题整理后抓住关键词读、写、说并板书)

  二、探“新”依标--依标导学,探究新知

  (一)自学--发现圆柱。

  1.找一找:生活中你还在哪儿见过圆柱?

  2.展一展:实物展示生活中的圆柱:保温杯、唇膏、电池、圆的笔筒。

  3.看一看、想一想:

  认真看课本P17,重点观察圆柱由哪些部分组成,要边看,边思考:

  ①这个圆柱形的物体,它由哪几部分组成的,这些部分有什么特征?

  ②观察圆柱的上、下两个平面,分别是什么形状?

  ③你觉得,两个底面有什么特征?

  4.说一说

  让学生自说说自己的思考结果,验证圆柱的上、下底面是两个大小相等的圆。

  5.读一读

  圆柱是由3个面围成的,圆柱的上、下两个面叫做底面,圆柱周围的面(上下两个面除外)叫做侧面。圆柱的两个底面之间的距离叫做高。

  (二)共学--小组合作,理解圆柱

  1.剪一剪,量一量,议一议

  拿出你制作的圆柱模型,四人小组讨论:

  ①圈:剪一剪你的圆柱模型。

  ②量一量:量圆柱上下两个底面的半径、直径;及身高不同大小圆柱的高。

  ③说:说一说你发现的圆柱两个底面有什么共同的特征?圆柱的周围是什么形状?圆柱的高矮和什么有关系?

  2.展一展,评一评

  讲解要求:

  ①你发现的.圆柱上下两个面有什么共同的特征?

  ②圆柱周围的面(上下面底面除外)是什么形状?

  ③圆柱的高矮和什么有关系?

  小结:圆柱是由3个面围成的,圆柱的上、下两个面叫做底面,圆柱周围的面(上下两个面除外)叫做侧面。圆柱的两个底面之间的距离叫做高。

  4.探究拓展

  把一张长方形的硬纸贴在木棒上,快速转动木棒,看看转出来的是什么形状?

  小结:长方形硬纸围绕木棒快速转动,可以转成一个圆柱。

  三、测“新”评标--达标检测,评价目标

  1.课本第18页“做一做”第1题

  (1)指出下面圆柱的底面、侧面和高

  (2)圆柱有几个底面?是什么形状?

  (3)圆柱有几个侧面,几条高?

  2.课本第18页“做一做”第2题

  (1)图一的旋转轴在哪里?

  (2)图二的旋转轴在哪里?

  (3)为什么同一个长方形会旋转不同的圆柱呢?

  3.练习三第1题

  根据你对圆柱的理解,你能准确地判断出下面的图形哪些是圆柱吗?想一想为什么其他图形不是圆柱?圆柱具有什么样的特征?

  四、结“新”拓标--全堂总结,拓展延伸

  在这节课中,你学会了什么知识,你有什么收获

  板书设计:

  圆柱

  底面2个

  侧面1个

  高一样长

人教版数学六年级下册教案14

  教学目标

  1、知识与技能使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,了解常见税种。

  2、过程与方法能运用百分数的知识进行有关应纳税额的计算。

  3、情感、态度与价值观通过对纳税的认识,增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。

  学情分析

  六年级上册学过了的百分数(一)的知识,对百分数有一定的基础,本节课税率的知识是六年级下册百分数(二)中百分数应用的一种。所以学生接受起来应该不会太困难。

  重点难点

  教学重点:理解“纳税”“税率”及其相关概念的含义,并会正确计算应纳税额。

  教学难点:会正确计算应纳税额和个人所得税,并能灵活解决实际问题。

  教学过程

  (一)创设情境,引入新课

  课件出示:

  平时同学们每天上下学,使用的日常交通工具,离不开城市的基础设施;到了假期,很多家庭利用节假日外出旅游,选择不同的出行方式,离不开国家建设的基础设施。让学生知道是谁修建了这些基础设施?(国家)

  为了让祖国更繁荣富强,人民生活更幸福美好,国家投入了大量的人力、物力和财力来进行建设。

  展示图片:国防、教育、卫生、公共服务机构的维持和基础设施建设等等。国家拿出的这些巨额资金是从哪里来的?

  引入今天的课题。(板书:税率)

  (二)结合情境,学习新知

  国家收入的主要来源之一就是:税收

  税收的主要项目分为:增值税、消费税、营业税和个人所得税。

  1.理解三个专业术语的含义。

  纳税:是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

  应纳税额:缴纳的税款叫做应纳税额。

  税率:应纳税额与各种收入(如销售额、营业额“”)的比率叫做税率。

  (1)举例子理解:

  一家饭店10月份的营业额约是30万元。如果按营业额的5%缴纳营业税,这家饭店10月份应缴纳营业税1.5万元。

  在这里:收入是()税率是()应纳税额是()

  (2)考考你:说出下面每条信息中应纳税额、各种收入和税率分别是多少?

  ①晨光文具店20xx年全年的销售额是44万元,按销售额的5%缴纳增值税2.2万元。

  ②长城宾馆20xx年上半年营业额是840万元,按营业额的4%向国家缴纳营业税33.6万元。

  ③王老师家在20xx年购买了一套售价120万元的两居室商品房,按实际房价的1.5%缴纳购房契税1.8万元。

  2.结合实例,进一步理解概念,并解决问题。

  (1)出示教材第10页例3。

  一家饭店10月份的营业额是30万元。如果按营业额的5%缴纳营业税,这家饭店10月份应缴纳营业税多少万元?

  ①先读题,再指名说说“营业额30万元”是指什么,“营业额的5%”是什么意思?

  ②学生独立完成。

  ③集体交流反馈,并总结出关系式:

  应纳税额=收入×税率

  (2)练习:

  妈妈买了一瓶售价为100元的化妆品,其中消费税大约占25%,妈妈为此支付消费税大约多少元?

  (3)介绍个人所得税

  个人所得税是一种非常专业的经济学术语,是一种法律规范的总称。

  简单的说,个人所得税是国家对本国公民、居住在本国境内的个人的所得和境外个人来源于本国的所得征收的一种所得税。

  《中华人民共和国个人所得税税法》于1980年9月10

  日公布,是我国建国以来颁布的第一部个人所得税税法。

  个人所得税从诞生到现在一共经历了三次修改历程,其中最后一次是在20xx年4月20日的全国人民代表大会上确定的。20xx年9月1日起个人所得税免征额调整至3500元。

  (4)个人所得税的求法(出示教材第10页“做一做”。)

  李阿姨的月工资是5000元,扣除3500元个税免征额后的部分需要按3%的税率缴纳个人所得税,她应缴个人所得税多少元?

  ①读题,重点引导理解“扣除3500元个税免征额后的部分需要按3%的税率缴纳个人所得税”这句话的意思。这里3%的税率是所有月工资的'3%吗?

  ②学生独立解决问题

  ③集体交流反馈,知道如下关系:个人所得税=(总收入-免征收部分)×税率

  (5)对比分析练习

  ①小明的爸爸得到一笔3000元的劳务费用。其中800元是免税的,其余部分要按20%的税率缴税。这笔劳务费用一共要缴税多少元?

  ②李老师为某杂志社审稿,得到300元审稿费。为此她需要按照3%的税率缴纳个人所得税,她应缴纳个人所得税多少元?

  (三)课堂练习

  1.填空

  (1)缴纳的税款叫做(),应纳税额与各种收入(销售额、营业额“)的比率叫做()。

  (2)收入、税率、应纳税额之间的关系是:应纳税额=()×()

  (3)某商店去年的营业额是40万元,去年缴纳税款共2万元,则去年的税率是()%。

  (4)纳税是每个公民自愿做的事情,想交就交,不想交就可以不交。这句话的说法是()。

  2.选择

  (1)天津商场四月份的营业额是580万元,按5%的税率缴纳营业税,应缴纳营业税多少万元。列式正确的是()。

  A.580×(1-5%)B.580×5%C.580÷5%D.580÷(1-5%)

  (2)高经理的月工资是6800元,扣除3500元个税免征额后的部分需要按3%的税率缴纳个人所得税,他这个月应缴个人所得税多少元?列式正确的是()。

  A.6800×3%B.3500×3%C.(6800-3500)×3%D.6800×(1-3%)

  (3)某饭店九月份的营业额是150万元,按规定要缴纳5%的营业税,还要按营业税的7%缴纳城市维护建设税。二月份缴纳的营业税是()万元,二月份缴纳的城市维护建设税是()万元。将正确算式的选项填进括号。

  A.150×5%B.150×(1-5%)C.150×5%×7%D.150×(1-5%)×7%

  (四)课堂总结

  1.今天这节课我们学了什么?

  2.课后作业教材第14页,第6、7、8、11题。

  教学反思:

  税率问题平时学生接触的不多,通过这节课的教学发现学生对这一内容特别感兴趣。本节课的教学主要分为四个环节。第一环节是课题的导入。通过创设问题的情境,很顺利的引入本节课所学的内容,学生们的积极性得到了提高。第二环节是结合情境,学习新知。在教学过程中结合实例,让学生进一步理解纳税,应纳税额和税率等相关专业术语,并掌握应纳税额和个人所得税的计算公式。第三环节是课堂练习。不同梯度的填空题和选择题,增加了学生的学习兴趣,提高了学生的学习效率。第四环节是课堂总结。这节课的重点是使学生明确税率问题与百分数之间的密切联系。通过这节课的学习,学生也感受到很多数学问题都是从生活中来,再运用数学知识去解决这些实际问题,从而体现了数学的应用价值,增进了学生学好数学的信心

人教版数学六年级下册教案15

  教学目标:

  1.学生初步理解杠杆平衡的原理,并通过实验探究,培养学生动手操作实践,与人合作协调,及迁移、类推能力和抽象概括能力。

  2.经过启发、讨论和独立思考、学生主动参与、积极探究,获得了杠杆平衡的条件,学生认识水平、实践能力和创新意识从中得到了培养。

  3.学生在实验、实际操作中体验学习的乐趣,并通过实际应用的练习,将课内外的知识有机结合,培养学生学以致用的应用意识和创新意识。

  重点、难点:

  1.教学重点:理解、掌握杠杆平衡的规律。

  2.教学难点:让学生综合应用所学的知识和方法解决实际问题。

  教学准备:

  竹竿,棋子,塑料袋(多媒体课件)

  教学过程

  一、准备材料,导入活动:

  1.检查课前布置的制作工具(简单杠杆)的作业。

  学生对照制作要求,自查和同组互相检查。

  小黑板或媒体出示制作要求:

  (1)准备的竹竿长1m,尽量做到粗细均匀。

  (2)在竹竿中点打孔,拴绳子时注意绳子的长度,同时注意检查拎起绳子后竹竿是否平衡。

  (3)从中点处每隔8cm做一个刻度记号,尽量等距离。

  拿出准备好的棋子和塑料袋。检查大小是否一样。

  2.揭示课题:有趣的平衡(板书)

  二、动手实践,探索规律

  1.活动一:探索特殊条件下竹竿保持平衡的规律:

  (1)如果塑料袋挂在竹竿左右两边刻度相同的地方,怎样放棋子才能保证平衡?

  ①学生思考,回答问题。“两边所放的棋子要同样多。”

  ②演示:如:左边放3个棋子,右边也必须放3个棋子,这样才能保证平衡。

  (2)如果左右两边塑料袋放入同样多的棋子,它们移动到什么样的位置才能保证平衡?

  ①学生思考,说出自己的见解。“塑料袋挂在竹竿左右两边的刻度要相同。”

  ②演示。如:

  左边塑料袋挂在刻度“4”的点上,右边塑料袋也要挂在刻度“4”的点上,这样才能保证平衡。

  (3)小结:

  你有什么体会?

  要保证竹竿平衡:中点左边两边棋子个数相同,且所挂位置与中点,刻度(距离)要相等。

  2.活动二:探索在一般条件下竹竿保持平衡的规律(A)

  (1)左边的塑料袋在刻度3上,放4个棋子,右边的塑料袋在刻度4上,放几个才能保证平衡?

  ①也放4个棋子行不行?会产生什么结果?

  ②应该放几个?

  “放3个。”

  (2)如果左边的塑料袋在刻度6上放1个棋子。

  ①右边的塑料袋在刻度3上放几个呢?

  学生交流,各自说出自己的见解。

  ②右边的塑料袋在刻度2上呢?

  学生不难得出结果,放3个。

  ③右边的塑料袋在刻度1上呢?

  学生不难得出结果,放6个。

  (3)小结:

  师:你有什么体会?

  左右两边棋子个数与刻度数的积要相等。

  3.活动三:探索在一般条件下竹竿保持平衡的规律(B):

  (1)问题:左边在刻度4上放3个棋子并保持不变,右边分别在各个刻度上放几个棋子才能保证平衡呢?

  (2)实验活动:

  ①学生动手进行实验活动。

  ②将实验结果记录下来。

  ③教师提供表格,引导学生展开活动。

  右刻度

  所放棋子数

  乘积

  (3)汇报结果。

  学生发现:左右两边刻度数和所放棋子数的积相等时,竹竿才能保证平衡。

  (4)从表中你发现刻度数和所放棋子数成什么比例?

  学生观察表中两个量的变化情况,不难发现这两种量成反比例

  三、应用规律,体会揣摩

  1.基本练习:

  母女俩在玩跷跷板,女儿体重12千克,坐的地方距支点15分米,母亲体重60千克,她坐的地方距支点多远才能保持跷跷板的平衡?

  提示:从新课探究的过程我们可以知道,体重和坐的地方距支点的长度成反比例。因此,可直接设她坐的的地方距支点的距离是x分米。可以得到方程

  60x=12×15

  解方程得x=3

  答:她坐的地方距支点3分米才能保持平衡。

  2.综合练习:

  桌子上有一个天平,天平左右两边各有一个可以滑动的托盘,天平的臂上各有几个相等的刻度。现在要把1克,2克,3克,4克,5克五个砝码放在天平上,且使天平左右两边保持平衡,该怎样放?

  提示:(1)根据臂长和质量成反比例

  (2)先确定每个托盘中所放砝码的'总质量,在确定臂长。

  四、回顾整理,反思提升

  1.谈收获。

  师:通过这节课,我们学到了什么知识?我们是用什么方法来研究这些知识的?

  2.评价。

  师:你对自己这节课的表现满意吗?

  可采取学生自评,互评,老师评价的方式进行。

  板书设计:

  有趣的平衡

  要保证竹竿平衡:中点左边两边棋子个数相同,且所挂位置与中点,刻度(距离)要相等。

  左右两边刻度数和所放棋子数的积相等时,竹竿才能保证平衡。

  作业设计

  基础:

  1.用边长20厘米的方砖铺一块地,需要20xx块,如果改用边长为40厘米的方砖铺地,需要多少块?

  综合:

  2.有一位菜贩很不老实,他有一架动过手脚的天平。这架天平的两臂不等长。有一天,当他向农民们购买实际重5千克的白菜时,就把白菜放在天平臂较短这一侧,这样称起来较轻,天平显示只有4千克重;而当他把白菜买出去的时候,他把白菜放在天平臂较长这一侧,这样称起来白菜会有多少千克重?

  提示:

  (1)可以像例题中一样,用列表的方法做。

  (2)根据臂长与质量成反比,列方程求解。

【数学六年级下册教案】相关文章:

六年级数学下册教案09-30

数学六年级下册教学教案01-06

六年级下册数学教案11-07

苏教版六年级数学下册教案02-27

人教版六年级下册数学教案11-28

2022苏教版六年级数学下册教案12-13

人教版小学六年级数学下册教案01-05

苏教版六年级下册数学教案02-06

苏教版六年级数学下册教案 15篇02-27