- 相关推荐
不等式的基本性质教案
作为一名无私奉献的老师,可能需要进行教案编写工作,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。怎样写教案才更能起到其作用呢?下面是小编为大家整理的不等式的基本性质教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
不等式的基本性质教案1
一、教学目标:
(一)知识与技能
1.掌握不等式的三条基本性质。
2.运用不等式的基本性质对不等式进行变形。
(二)过程与方法
1.通过等式的性质,探索不等式的性质,初步体会“类比”的数学思想。
2.通过观察、猜想、验证、归纳等数学活动,经历从特殊到一般、由具体到抽象的认知过程,感受数学思考过程的条理性,发展思维能力和语言表达能力。
(三)情感态度与价值观
通过探究不等式基本性质的活动,培养学生合作交流的意识和大胆猜想,乐于探究的良好思维品质。
二、教学重难点
教学重点: 探索不等式的三条基本性质并能正确运用它们将不等式变形。
教学难点: 不等式基本性质3的探索与运用。
三、教学方法:自主探究——合作交流
四、教学过程:
情景引入:1.举例说明什么是不等式?
2.判断下列各式是否成立?并说明理由。
( 1 ) 若x-6=10, 则x=16( )
( 2 ) 若3x=15, 则 x=5 ( )
( 3 ) 若x-6>10 则 x>16( )
( 4 ) 若3x>15 则 x>5 ( )
【设计意图】(1)、(2)小题唤起对旧知识等式的基本性质的.回忆,(3)、(4)小题引导学生大胆说出自己的想法。
温故知新
问题1.由等式性质1你能猜想一下不等式具有什么样的性质吗?
等式性质1:等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。
估计学生会猜:不等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。教师引导:“=”没有方向性,所以可以说所得结果仍是等式,而不等号:“>,<,≥,≤”具有方向性,我们应该重点研究它在方向上的变化。
问题2.你能通过实验、猜想,得出进一步的结论吗?
同学通过实例验证得出结论,师生共同总结不等式性质1。
问题3.你能由等式性质2进一步猜想不等式还具有什么性质吗?
等式性质2:等式两边都乘或除以同一个数(除数不能是0),等式依然成立。
估计学生会猜:不等式两边都乘或除以同一个数(除数不能是0),不等号的方向不变。
你能和小伙伴一起来验证你们的猜想吗?
学生在小组内合作交流,发现了在不等式两边都乘或除以同一个数时,不等号的方向会出现两种情况。教师进一步引导学生通过分析、比较探索规律,从而形成共识,归纳概括出不等式性质2和3。
问题4.在不等式两边都乘0会出现什么情况?
问题5.如果a、b、c表示任意数,且a<b,你能用a、b、c把不等式的基本性质表示出来码?
【想一想】不等式的基本性质与等式的基本性质有什么相同之处,有什么不同之处?
学生思考,独立总结异同点。
【设计意图】引导学生把二者进行比较,有助于加深对不等式基本性质的理解,促成知识的“正迁移”。
综合训练:你能运用不等式的基本性质解决问题吗?
1、课本62页例3
教师引导学生观察每个问题是由a>b经过怎样的变形得到的,应该应用不等式的哪条基本性质。由学生思考后口答。
2、你认为在运用不等式的基本性质时哪一条性质最容易出错,应该怎样记住?
3.火眼金睛
①a>1, 则2a___a
②a>3a,则 a ___ 0
【设计意图】通过变式训练,加深学生对新知的理解,培养学生分析、探究问题的能力。
课堂小结:
这节课你有哪些收获?你认为自己的表现如何?教师引导学生回顾、思考、交流。
【设计意图】回顾、总结、提高。学生自觉形成本节的课的知识网络。
思考题
咱们班的盛芳同学准备在五、一期间和他的爸爸、妈妈外出旅游。青年旅行社的标准为:大人全价,小孩半价;方正旅行社的标准为:大人、小孩一律八折。若两家旅行社的基本价一样,你能帮盛芳同学考虑一下选择哪家旅行社更合算吗?
【设计意图】利用所学的数学知识,解决生活中的问题,加强数学与生活的联系,体验数学是描述现实世界的重要手段。
不等式的基本性质教案2
教学目的
掌握不等式的基本性质,会用不等式的基本性质进行不等式的变形。
教学过程
师:我们已学过等式,不等式,现在我们来看两组式子(教师出示小黑板中的两组式子),请同学们观察,哪些是等式?哪些是不等式?
第一组:1+2=3; a+b=b+a; S =ab; 4+x =7。
第二组:-7 < -5; 3+4 > 1+4; 2x ≤6, a+2 ≥0; 3≠4。
生:第一组都是等式,第二组都是不等式。
师:那么,什么叫做等式?什么叫做不等式?
生:表示相等关系的式子叫做等式;表示不等式的式子叫做不等式。
师:在数学炽,我们用等号“=”来表示相等关系,用不等式号“〈”、“〉”或“≠”表示不等关系,其中“>”和“<”表示大小关系。表示大小关系的不等式是我们中学教学所要研究的。
前面我们学过了等式,同学们还记得等式的性质吗?
生:等式有这样的性质:等式两边都加上,或都减去,或都乘以,或都除以( 除数不为零)同一个数,所得到的仍是等式。
师:很好!当我们开始研究不等式的时候,自然会联想到,是否有与等式相类似的性质,也就是说,如果在不等式的两边都加上,或都减去,或都乘以,或都除经(除数不为零)同一个数,结果将会如何呢?让我们先做一些试验练习。
练习1 (回答)用小于号“<”或大于号“>”填空。
(1)7 ___ 4; (2)- 2____6; (3)- 3_____ -2; (4)- 4_____-6
练习2(口答)分别从练习1中四个不等式出发,进行下面的运算。
(1)两边都加上(或都减去)5,结果怎样?不等号的方向改变了吗?
(2)两边都乘以(或都除以)5,结果怎样?不等号的方向改变了吗?
(3)两边都乘以(或都除以)(-5),结果怎样?不等号的方向改变了吗?
生:我们发现:在练习2中,第(1)、(2)题的结果是不等号的方向不变;在第(3)题中,结果是不等号的方向改变了!
师:同学们观察得很认真,大家再进一步探讨一下,在什么情况下不等号的方向就会发生改变呢?
生甲:在原不等式的两边都乘以(或除以)一个负数的情况下,不等号的方向要改变。
师:有没有不同的意见?大家都同意他的看法吗?可能还有同学不放心,让我们再做一些试验。
练习3(口答)分别在下面四个不等式的两边都以乘以(可除以)-2,看看不等号的方向是否改变:
7>4;-2<6;-3<-2;-4>-6。
师:现在我们可以归纳出不等式的基本性质,一般地说,不等式的.基本性质有三条:
性质1:不等式的两边都加上(或都减去)同一个数,不等号的方向 。
(让同学回答。)
性质2:不等式的两边都乘以(或都除以)同一个正数,不等号的方向 。(让同学回答。)
性质3:不等式的两边都乘以(或都除以)同一个负数,不等号的方向 。(让同学回答。)
现在请大家翻开课本,一起朗读用黑体字写的三条基本性质。
不等式的这三条基本性质,都可以用数学语言表达出来,先请一位同学说一说第一条基本性质。
生:如果a<b。那么a+c<b+c(或a-c<b-c;如果a>b,那么a+c>b+c(或a-c>b-c)。
师:对a和b有什么要求吗?对c有什么要求?
生:没有什么要求。
师:哪位同学来回答第二、三条性质?
生甲:如果a0, 那么acb,且c>0,那么ac>bc(或
生乙:如果abc(或 );如果a>b,且c<0,那么ac 师:这两条性质中,对a、b、c有什么要求? 生:对a、b没什么要求,特别要注意c是正数还是负数。 师:很好,c可以为零吗? 生:c不能为零。因为c为零时,任何不等式两边都乘以零就变成等式了。 师:好!应用刚才学到的基本性质,我们来看下面的例题。 [例1]按照下列条件,写出仍能成立的不等式: (1)5<9,两边都加上-3; (2)9>4,两边都减去10; (3)-5<3,两边都乘以4; (4)14>-8,两边都除以-2。 解 (1)根据不等式基本性质1,在不等式59的两边都加上-3,不等号的方向不变,所以 5+(-3)<9+(-3), 2<6 (2)根据不等式基本性质1,得 9-10>4-10 -1>-6 (3)根据不等式基本性质2,得 -5×4<3×4 -20<12 (4)根据不等式基本性质3,得 14÷(-2)<(-8)÷(-2) -7<4 [例2]设a>b,用不等号连结下列各题中的两式: (1)a-3与b-3;(2)2a与2b;(3)-a与-b。 师:哪一位同学来做这题?解题时,要讲清一步的理由。 生甲:因为a>b,两边都减去3,由不等式的基本性质1,得 a-3>b-3. 师:很好,大家都是这样做的吗? 生乙:我是这样做的,因为a>b,两边都加上(-3),由基本性质1,得 a-3>b-3. 师:好!这两位同学从不同的角度来分析题目,都得到了正确的结论。 生丙:因为a>b,2>0,由基本性质2,得2a>2b。 生丁:因为a>b,-1>0,由基本性质3,得-a>-b。 师:下面我们来看一组较复杂的问题,请大家都来开动脑筋,认真审题,仔细分析。[例3]判断以下各题的结论是否正确,并说明都理由: (1)如果a>b,且c>0,那么ac>bd; (2)如果a>b,那么ac2>bc2; (3)如果ac2>bc2,那么a>b; (4)如果a>b,那么a-b>0; (5)如果ax>b,且a≠0,那么x< ; (6)如果a+b>a; 生甲:(1)不对,当c=d≤0时,ac>bd不成立。 生乙:(2)也不对,因为c2是一个非负数,当c=0时,ac2>bc2不成立。 生丙:(3)对,因为ac2>bc2成立,则c2一定大于零,根据不等式基本性质2,得a>b出。 (4)对,根据不等式基本性质,由a>b,两边减去b得a-b>0。 (5)不对,当a<0时,根据不等式基本性质3,得。 (6)不对,因为当b<0时,根据不等式基本性质1,得a+b<a;而当b=0时,则有a+b=a。 师:同学们回答得很好。今天我们学习了不等式的基本性质,我们不仅要理解这三条性质,还要能灵活运用。 课外做以下作业:略。 教案说明 (1) 不等式的基本性质的教学,是分成两个阶段进行的。在初中阶段,对不等式的基本性质,并不作证明,只引导学生用试验的方法,归纳出三条基本性质。通过试验,由特殊到一般,由具体到抽象,这是一种认识事物规律的重要方法。科学上的许多发现,大多离不开试验和观察。大数学家欧拉说过:“数学这门科学,需要观察,也需要试验。”通过教学培养学生掌握由试验发现规律的方法,具有重要的意义。当然通过几个特殊的试验,就得出一般的结论,是不严密的。但对初中学生来说,初次接触不等式,是不能要求那么严密的。 (2) 不等式的基本性质的教学,还应采用对比的方法。学生已学过等式和等式的性质,为了便于和加深对不等式基本性质的理解,在教学过程中,应将不等式的性质与等式的性质加以比较:强调等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,所得到的仍是等式,这个数可以是正数、负数或零;而在不等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,当这个数是正数、负数或零时,对不等式的方向,有什么不同的影响。通过这样的对比,不但可以复习已学过的等式有关知识,便于引入新课,而且也有利于掌握不等式的基本性质。对比的方法,也是学习数学的一种重要方法。 (3) 在应用不等式的基本性质对不等式进行变形时,学生对不等式两边是具体数,判定大小关系比较容易。因为这实际上是有理数大小的比较。对于不等式两边是含字母的代数式时,根据题给的条件,运用不等式基本性质判别大小关系或不等号方向,就比较困难。因为它比较抽象,特别是在运用不等式的基本性质2和性质3时,学生必须考虑不等式两边同乘(或同除)的这个用字母表示的数的符号是什么,或者还要对这个用字母表示的数,按正数、负数或零三种情况加以讨论。在教学过程中,对于这类题目,采用讨论法是比较好的。因为在讨论时,学生可以充分发表各种见解。对于正确的见解,教师可以让学生说出解题的依据;对于错误的见解,教师可以进行启发引导,发动学生自己找出错误的原因,自己修正见解。这样,有利于发现问题,有的放矢地解决问题,有利于深化对不等式基本性质的认识。 教学目标: 知识目标:掌握不等式的基本性质. 能力目标:通过不等式基本性质的探索,培养学生观察、猜想、验证的能力. 情感目标:经历不等式基本性质的探索过程,初步体会不等式与等式的异同. 教学重、难点: 1、重点:掌握不等式的基本性质. 2、难点:不等式的基本性质2和3. 教学准备: 教师准备:课件. 教学设计过程: 一、创设情境,探究新知: 1、合作学习 (1)已知a<b和b<c,在数轴上表示如图5-9. 由数轴上a和c的位置关系,你能得出什么结论?你那举几个具体的例子说明吗? (2)观察:用“”或“”填空,并找一找其中的规律. ①53,5+2____3+2,5-2____3-2; ②–13,-1+2____3+2,-1-3____3-3; ③6>2,6×5____2×5,6×(-5)____2×(-5); ④–23,(-2)×6____3×6,(-2)×(-6)____3×(-6) 会发现:当不等式两边加或减去同一个数时,不等号的方向不变 当不等式的两边同乘同一个正数时,不等号的方向_不变;而乘同一个负数时,不等号的方向改变. 2、归纳 不等式的基本性质1若a<b和b<c,则a<c. 这个性质也叫做不等式的传递性. 不等式的基本性质2不等式的'两边都加上(或减去)同一个数,所得到的不等式仍成立。 即 如果a>b,那么a+c>b+c,a-c>b-c; 如果a<b,那么a+c<b+c,a-c<b-c. 不等式的基本性质3不等式的两边都乘以(或除以)同一个正数,所得的不等式仍成立;不等式的两边都乘以(或除以)同一个负数,必须把不等号的方向改变,所得的不等式成立. 即 如果a>b,且c>0,那么ac>bc,>; 如果a>b,且c<0,那么ac<bc,<; 3、做一做P104 4、试一试 (1)若-m5,则m___-5. (2)如果x/y0那么xy___0. (3)如果a-1,那么a-b___-1-b. 5、做一做P105 6、讲解例题 已知a<0,试比较2a与a的大小. 分析比较2a与a的大小,可以利用不等式的基本性质,也可以利用数轴,直接得出2a与a的大小. 二、巩固反思: 1、P106T1、T2“ 2、探究活动 比较等式与不等式的基本性质. 例如,等式是否有与不等式的基本性质1类似的传递性?不等式是否有与等式的基本性质类似的移项法则?你可以用列表的方式进行对比.(请与你的伙伴交流) 三、小结: 通过这节课的学习,你有哪些收获? 四、作业: 1、作业题P107 2、预习5.3不等式与不等式组 【不等式的基本性质教案】相关文章: 《分数的基本性质》教案09-10 分数的基本性质教案03-21 分数的基本性质的教案02-26 人教版《分数基本性质》教案02-27 分数的基本性质教案3篇07-10 比例的意义和基本性质教案04-01 《比例的意义和基本性质》教案02-17 比例的意义和基本性质的教案02-25 【精品】分数的基本性质教案三篇10-22不等式的基本性质教案3