分数除法教案

时间:2022-10-27 08:32:57 教案大全 我要投稿

分数除法教案

  作为一名为他人授业解惑的教育工作者,往往需要进行教案编写工作,教案是教材及大纲与课堂教学的纽带和桥梁。那么应当如何写教案呢?以下是小编帮大家整理的分数除法教案,希望能够帮助到大家。

分数除法教案

分数除法教案1

  教学目标

  1.使学生理解两个整数相除的商可以用分数来表示.

  2.明确分数与除法的关系,加深学生对分数意义的理解.

  教学重点

  理解、归纳分数与除法的关系.

  教学难点

  用除法的意义理解分数的意义.

  教学步骤

  一、铺垫孕伏.

  1.读题说得数.

  3。2+1。68 0。8×0。5 14-7。4 0。3÷1。5 4。8×0。02

  7。8+0。9 1。53-0。7 0。35÷15 0。4×0。8 0。8-0。37

  2.口述 表示的意义.

  3.列式计算.

  (1)把40棵树苗平均分给5个小组栽,每组栽多少棵?

  (2)把8米长的钢管平均分成2段,每段长多少米?

  二、探究新知.

  1.新课导入.

  出示例2:把1米长的钢管平均截成3段,每段长多少米?

  板书: 1÷3

  教师提问:1÷3的结果能用准确的数表示出来吗?怎么办?学习了分数与除法的关系就明白了.(板书、分数与除法)

  2.教学例2.

  (1)从分数的意义上理解1÷3,即把1米长的钢管着成单位“1”,把单位“1”平均分成3份,表示这样一份的数,可用分数 来表示,1米的 就是 米.(板书 米)

  (2)学生完整叙述自己想的过程.

  (3)反馈练习.

  ①把1米长的钢管,平均分成8段,每段长多少?

  ②把1块饼平均分给5个同学,每个同学得到多少块?

  3.教学例3.

  出示例3:把3块饼平均分给4个孩子,每个孩子分得多少块?

  (1)读题列式: 3÷4

  (2)动手操作:怎样把3块饼平均分给4个同学呢?

  (3)学生交流.

  甲生:先把每个圆剪成4个 块,然后把12个 平均分成4份,再把3个 拼在一起,每份是 块.

  乙生:把3个圆放在一起,平均分成4份后,剪下其中的一份,再把1份中的3个 拼在一起,得到每个分 块.(在3÷4后板书 块)

  (4)看图根据乙生分饼的过程说出 表示的意义.

  ①乙生把3块饼平均分成了4份,这样的一份是3块饼的 ,即

  ②甲生把1块饼平均分成了4份,表示这样的3份的数是 .

  (5)都是 ,意义有何不同?(结合算式说出 的两种意义)

  明确: 表示把3平均分成4份,取其中的1份;

  还表示把单位“1”平均分成4份,取这样的3份.

  (6)反馈练习:说说下面分数的两种意义

  4.归纳分数与除法的关系.

  (1)教师提问:怎样用分数来表示整数除法的`商呢?

  学生归纳:可以用分数表示整数除法的商,用除数做分母,用被除数作分子.也就是说分数既表示分数的意义,又表示整数除法的商.

  (板书: )

  教师明确:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数.

  (2)讨论:用字母表示分数与除法的关系有什么要求?

  (3)反馈练习.

  三、全课小结.

  通过今天的学习,你明白了什么?

  四、随堂练习.

  1.填空.

  分数可以用来表示除法算式的( ).其中分数的分子相当于( ),分母相当于( ).

  2.用分数表示下列各式的商.

  4÷5 11÷13 27÷35

  9÷9 13÷16 33÷29

  3.列式计算.

  (1)把5米长的绳子,平均分成12段,每段长多少米?

  (2)把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

  (用分数表示)

  (3)小明用15分钟走了1千米路,平均每分走几分之几千米?

  五、布置作业.

  用分数表示下面各式的商.

  3÷4 7÷12 16÷49 25÷24 9÷9

分数除法教案2

  教学内容:人教版小学数学第十一册p37。“已知一个数的几分之几是多少,求这个数”类型的应用题。

  教学目标:

  1、使学生理解“已知一个数的几分之几是多少,求这个数”类型的应用题的数量关系,能用方程解答。

  2、培养学生的分析、比较、迁移等能力。

  3、建构知识间的联系,渗透“事物间是相互联系的”这一辩证思想。

  教学重难点:

  1、理解数量关系,掌握分析方法。

  2、正确分析数量关系并解答。

  教学过程:

  一、复习准备。

  1、下面这些句子中,哪两个量进行比较,谁为单位“1”?

  ⑴一桶水用去3/4。 ⑵书的`价钱是钢笔价钱的1/3。

  师:第一题是部分与总数的比,总数为单位“1”。第二题是一个量同另一个量比。和谁比?谁为单位“1”。

  [点评: 通过对比练习, 帮助学生理解“两个数量的比较”有两种情况: 一是部分与整体之间的关系; 二是两个相对独立的数量之间的关系。 ]

  2、出示准备题。说出关系式,再列式计算。

  爸爸体重75kg,小明的体重是爸爸的7/15。

  ⑴小明的体重是多少千克?

  爸爸的体重×7/15=小明的体重 75×7/15=35(kg)

  ⑵小明体内水分的质量占小明体重的4/5,小明体内有多少千克水分?

  小明的体重×4/5=小明体内水分的质量 35×4/5=28(kg)

  二、探究新知。

  1、激趣引入。

  师:我们对自己的身体应该是再熟悉不过了, 我们的身体内有很多科学知识藏在里面呢,你们知道自己体内水分的含量吗?

  [点评: 通过创设情境, 调动学生积极参与的情感, 让学生在轻松愉快的数学活动中提高分析能力。 ]

  2、出示:

  根据测定,成人体内的水分约占体重的2/3,儿童体内的水分约占体重的4/5,照这样计算,小明体内有28kg的水分,和爸爸体内的水分差不多重了。可是小明的体重才是爸爸的7/15。

  [点评: 设计有多余条件的问题, 让学生有目的地筛选, 使学生进一步理解应用题的结构和解题方法, 训练了学生整理信息、解决问题的能力。 ]

  问题一:小明的体重是多少千克?

  出示思考问题,学生先分小组进行讨论。

  ①小明的体重与什么数量有关系?有什么关系?

  ②应该把哪个量看做单位“1”, 为什么?

  ③单位“1”所表示的数已知吗?

  ④怎样求单位“1”所表示的这个数?你能列出关系式吗?讨论后汇报。

  方法一:

分数除法教案3

  教学目标:

  1、知识目标:体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

  2、能力目标:培养学生动手动脑能力,以及判断、推理能力。

  3、情感目标:培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

  教学重点:

  能求一个数的倒数。

  教学难点:

  分数除以整数计算法则的推导过程。

  教学准备:

  长方形纸片。

  教学过程:

  一、创设情景,教学分数除法的意义

  1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!

  (1)每人吃1/2块饼,4个人共吃多少块饼?

  (2)把2块饼平均分给4个人,每人吃了多少块饼?

  (3)有2块饼,分给每人1/2块,可分给几个人?

  2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

  师:讨论:分数除法的意义和整数除法的意义一样吗?

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  二、探究分数除法的计算方法

  (1) 引导参与,探究新知

  师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

  出示问题1。

  请大家拿出一张操作纸,涂色表示出这张纸的4/7。

  师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2

  请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。

  方法一:把4/7平均分成2份就是把4份平均分成2份,每份是2个1/7,也就是2/7。展示折纸和计算过程。4/7÷2=4÷2/7=2/7

  方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/7的.1/2是多少,可以用乘法来做。展示折纸和计算过程。4/7÷2=4/7×1/2=2/7

  师:对这种做法大家有什么疑问吗?

  生:这儿是除法怎么变成了乘法?

  师:老师也有这个疑问,你能讲讲吗?

  师:谁能结合图来讲一讲呢?

  师:很好!把除法转化成乘法,问题迎刃而解,你真棒!……

  (2)质疑问难,理解新知

  ①师小结:有的是用分子除以整数,分母不变的方法算出结果2/7,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

  ②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

  ③通过计算你们有什么发现?

  生1、用第一种方法就不能做了。因为: 上一题的时候,分子4是2的倍数,4÷2能得到整数商。而 4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

  生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21

  能再讲讲这样做的道理吗?

  师:“4/7÷3”表示把4/7平均分成3份,取其中的一份。

  请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的一份吗?

  展示学生的分法

  师(指着涂色部分):你所表示的这一部分是4/7的多少?

  通过直观图理解4/7的1/3是4/21

  (3)比较归纳,发现规律。

  ①师:在计算这两道题时同学们想到了不同的算法,计算左边这道题你比较喜欢那种方法?右边呢?

  ②在两道题的计算中同学们都想到了把除法转化成乘法来做,请观察一下,左边这道算式,在转化的前后什么变了,什么没变?怎么变的?

  ③师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!

  小组活动,说算法。

  ④师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。

  出示:分数除以整数,等于分数乘这个整数的倒数。

  还有需要注意的地方吗?

  生:有,除数不能为0。

  师:谁能把分数除以整数的计算法则用自己的话来说一说?

  完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。

  ⑥那象这样的分数除以整数的题目在计算时要注意些什么?

  生:要约分!结果最简。除号要变成乘号!

  三、巩固练习

  学生独立完成

  四、课堂小结

  1、这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)

  板书设计:

  分数除以整数

分数除法教案4

  教学内容

  北师大版小学数学五年级下册第五单元分数除法(二)第一课时

  教学目标

  1.借助实际操作和面积模块,进一步理解分数除法的意义和基本算理。

  2.掌握一般分数除法的计算方法,并能正确计算。

  教学重点

  一个数除以分数的计算方法。

  教学难点

  分数除法的基本算理。

  教学方法

  自主、合作、探究

  教学过程

  一、课前复习、引入新课

  由值日班长主持复习上节课(分数除法一)内容。

  (1)提问。

  (2)1分钟口算练习。

  【设计意图:让孩子主持完成课前复习是为了把课堂的主动权从开始就交给孩子们,体现生本教育理念。这样做,不但能激发孩子的学习数学的兴趣,还能提高孩子们听课的效率,锻炼表达能力和思维能力。】

  教师借势引入新课,板书课题——分数除法(二)。

  二、目标导学

  师:下面一起来看本节课的学习目标。(平板阅读)

  1.借助实际操作和面积模块,进一步理解分数除法的意义和基本算理。

  2.掌握一般分数除法的计算方法,并能正确计算。

  师:以上两个目标还得靠同学们的自学,小组内团结协作完成。有信心吗?

  【设计意图:学孩子们明确本节课的学习任务及目标,有目的的去学习】

  导学质疑

  分一分、说一说、算一算。

  师:课前,老师准备了这样一道题目:有4张同样大小的饼,如果1张1份,能分得几份?2张1份能分得几份?张1份呢?张1份呢?

  【设计意图:为任务一、任务二做铺垫,让学生顺势、快速完成任务一。】

  根据学生回答情况平板出示任务一:

  根据自学单上第一题中四个问题列出算式,不计算。

  【设计意图:任务一是根据教师的提问让孩子们顺势完成四道题目列式,注重学生审题,理解能力,解决问题策略的培养。】

  出示任务二:

  圈一圈,画一画,写出每道算式结果,并用平板拍照上传。

  想一想、说一说,你发现了什么?

  3.对任务二进行质疑提问。

  孩子们完成拍照上传后,教师随意抽取2-3幅作品进行点评,点评中以孩子讲解为主。讲解中重点质疑计算结果是怎么得出来的:

  师(或生):4÷=8,4÷=12,你是怎样算出来的?(孩子们的回答可能有:除以一个不为零的数等于乘这个数的倒数;根据画图结果得出来的等)

  师引导借助作品中的图片:如果每张1份,每张饼可以平均分成几份?(孩子们在操作的基础上会很快说出2份,4张饼共可分为8份,这样也会得到4÷=8)

  教师板书:4÷==4×2=8份

  4÷=12是怎样得到呢?

  由4÷==4×2=8份很快会说出4÷=4×3=12份。

  师点拨:有同学说:“除以一个不为零的数等于乘这个数的倒数”这句话你们认为有道理吗?结合刚才的画图过程,说一说。

  根据孩子们的表述,教师强调,从图中可以看出,把4张饼张1份,共可以分成8份,也就是4个2是多少,就是4×2=8,所以4÷=与4×2是相等的,所以:“除以一个不为零的数等于乘这个数的倒数”表述是正确的。(教师:板书,除以一个不为零的数等于乘这个数的倒数)

  为什么要除以“一个不为零的数”呢?(强调除数不能为零)

  【设计意图:任务二的重点“除以一个不为零的数等于乘这个数的倒数”这句话,总结出分数除法的一般计算方法,理解分数除法的算理。探究中,借助图形的操作让孩子们掌握并理解分数除法的算理,知道4÷==4×2的原因。任务中,让孩子们先通过自学找出答案,在教师的引导中思考结果是怎样得到的?从而达到对算理的质疑,让学生借助图形理解并掌握“除以一个不为零的数等于乘这个数的倒数”的真正含义。另外,对于完成任务早的同学,给他们时间在小组内进行交流,让他们有事可做。】

  出示任务三:

  填写自学单表格,根据长方形面积模块,理解“除以一个不为零的数等于乘以这个数的倒数”。用平板拍照上传。

  待孩子们完成表格后,将上传的.作品抽样点评并质疑提问:

  师:从表格中你发现了什么?(可能回答有:宽不变,面积在变,“除以一个不为零的数等于乘这个数的倒数”等,对“除以一个不为零的数等于乘这个数的倒数”这句话进行重点的强调。)

  通过一体机放大功能演示,借助长方形面积模块进一步理解分数除法的计算方法和算理。

  【设计意图:任务三的重点是借助长方形的面积模块进一步理解分数除法的算理和计算方法,在质疑讲解中利用一体机图形的扩大功能,将长方形变化图进行展示讲解,让孩子们从图中理解“除以一个不为零的数等于乘这个数的倒数”这句话。】

  任务四:

  小组长负责,安排三位同学在一体机上完成,其他同学在作业本上完成。完成后小组内说一说进行分数除法计算时要注意些什么?点名的同学拍照上传。

  让孩子们在一体机上完成任务,并要求点名的同学拍照上传,解答疑难,全班共享。

  【设计意图:通过任务四的学习,让孩子们理解分数除法计算方法的基础上,反思学习过程注意的问题,保证计算的正确性、准确性。任务四以一体机演示和交流反思的形式进行,先在小组内交流展示计算方法,然后全班反思、交流注意的题。】

  三、巩固训练

  判断正误(在平板上手写完成并上传)

  在点评中,由孩子们说出对错的理由,进一步理解“除以一个不为零的数等于乘这个数的倒数”。

  四、小结评价

  1.孩子们畅谈本节的收获。

  2.教师对小组学习情况进行评价。

分数除法教案5

  教学目标

  1.通过一组习题,学生能够理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。

  2.通过学生试做例1,在理解算理的基础上总结出分数除以整数的计算法则,并能正确地进行计算。

  3.培养学生分析能力、知识的迁移能力和语言表达能力。

  教学重点和难点

  正确的归纳出分数除以整数的计算法则,并能正确地进行计算。

  教学过程设计

  (一)复习导入

  1.投影,看乘法算式写出两道除法算式。

  67=42

  ( )( )=( )

  ( )( )=( )

  问:谁还记得整数除法的意义是什么?

  板书:积 一个因数 另一个因数

  师:这节课我们来学习分数除法的意义和计算法则。(板书课题)

  首先研究分数除法的意义。(板书:意义)

  (二)新授教学

  1.分数除法的意义。

  我们来看下面的问题。(投影出示)

  (1)每人吃半块月饼,5人一共吃几块月饼?

  问:谁会列式计算?

  问:你是怎么想的?

  (2)两块半月饼,平均分给5个人,每人分得多少月饼?

  问:怎样列式计算呢?

  问:没有学过分数除法,得数怎么得来的?

  (3)两块半月饼,分给每人半块,可分给几个人?

  问:谁会列式计算?

  问:为什么这样列式,怎样算出的得数?

  观察这三个算式,它们之间有什么联系?

  同桌讨论,指名回答。

  生:后两道除法是根据第一道乘法变化而来的,被除数相当于乘法中的积,除数是乘法中的一个因数,商是乘法中的另一个因数。

  板书:积 一个因数 另一个因数

  问:与整数除法对比一下,分数除法的意义是什么?

  同桌互相说一说,指定2~3名学生说。

  板书:已知两个因数的积与其中的一个因数,求另一个因数的运算。

  师:同学们说得好极了!书上是怎么说的?打开书第30页看下面几行字,边读边画出来。

  做一做:(同学们做在书上。投影订正。)

  根据下面的乘法算式和分数除法的意义,写出两个除法算式的得数。

  问:你根据什么写出得数的?

  师:分数除法中的商可以根据与它有关的乘法得出。但是不能每道除法都这么做,下面我们来研究分数除以整数的计算法则。(板书:法则)

  2.分数除以整数的计算法则。

  为什么这样列式?

  (2)根据题意画出线段图。

  生:把1米平均分成7份,取其中的6份。

  (3)4人一组讨论:怎样计算出每段长多少米呢?试说一说算理。

  师:有道理,结果也正确,还有别的方法吗?

  师:这种方法也有道理,分数除以整数到底哪种方法好呢?同学们任选一种方法做下面一题。

  学生做完后提问:你们用的哪种方法?有用第一种方法的吗?为什么不用?

  师:看来第一种方法不能解决所有的分数除以整数的题。第二种方法是可以的。

  (4)观察第二种方法,看哪儿没变,哪儿变了?是怎么变的?

  生:被除数不变,除号变乘号,除数变成了它的倒数。

  (5)试着说一说分数除以整数的计算法则。

  板书:分数除以整数( )等于分数乘以这个整数的倒数。

  想:为什么要空几个字的地方?为什么要加0除外三个字?(补充板书:0除外)

  问:谁再来说一说分数除以整数的计算法则。同桌互相说一说。要真正理解。

  计算法则是否会用呢?我们来自测一下。

  投影做一做,学生做在书上,投影订正。

  (三)巩固练习

  1.计算下面各题。(投影)

  2.判断下面的计算过程是否正确。对的举,错的举,并说明理由。(投影出示)

  (2)题为什么对?举错的.说说你的想法?1的倒数是几?

  (3)错在被除数变倒数了,而除数没有变。问:这道怎么改?

  (4)错在除号没有变成乘号。怎么改?

  (5)错在除数没有变成倒数。怎么改?

  去计算。)

  师:同学们审题非常认真,判断力很强。我们做题时就不应该出现上面的错误了。

  下面我们计算几道题,看谁能正确运用计算法则。

  3.计算:

  4.想一想:如果a是一个自然数,

  (3)用一个数检验上面的结果是否对。

  (四)课堂总结

  这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?

  (五)作业

  课本32页第3,4,5,6题。

  课堂教学设计说明

  这节课有两部分内容。第一部分是分数除法的意义。在处理这部分内容时,首先出示一组整数乘除法的复习题,复习整数除法的意义,然后通过书中一组分数乘除法题,让学生观察三个算式之间的关系,再与整数一组题比较,发现道理完全一样,从而很自然得出分数除法的意义。第二部分内容是分数除以整数的计算法则,这是本节课的重点和难点。通过画图帮助学生理解题意,让学生讨论试做例1的方法,引导学生自己说出两种不同的思路,老师都加以肯定,然后让学生任选一种方法计算。

分数除法教案6

  【教学内容】

  《义务教育课程标准实验教科书数学》(人教版)六年制六年级上册第三单元《分数除法》的整理与复习

  【单元主题分析】

  本单元的概念比较多,尤其是比的初步认识这节中相似的概念较多,并且容易混淆,因此复习时要着重使学生弄清各个概念之间的联系和区别。计算是数学的基础,做题时掌握计算方法,培养良好的计算习惯。在做分数四则混合运算时,注意运算顺序,选择适合自己的方法计算,并通过交流了解其他算法。值得强调的是:掌握分数除法的计算方法,能正确进行计算,是学生必须掌握的一项技能,也是本单元的教学重点。但是,在计算过程中把除法转化为乘法,对学生来说是数学认识上的一次飞跃。另外,分数除法应用题历来是学生学习中的难点,它经常需要学生灵活应用数量之间的关系。。分析数量关系是解决实际问题的一个重要步骤。让学生知道分数应用题应该怎样想,学会思考的方法。还可以将它与比的应用进行对比,发现这两种题型是可以互相转化的`。

  【复习目标】

  1、学生自主复习本单元的概念,进一步掌握本章所学的基本概念和计算法则,提高学生的计算能力和解题能力。引导进一步理解分数除法和比的意义、计算及应用。

  2、通过梳理与沟通,让学生感悟相关知识的联系和区别。如分数乘除法解决问题,求比值、化简比,比和除法、分数之间的关系等。

  3、培养学生良好的复习习惯。

  【复习重点】

  能比较熟练地进行分数除法、求比值以及化简比的计算;会正确地用方程或算术方法解答文字题。

  【复习难点】

  使学生进一步掌握用方程或算术方法解答已知一个数的几分之几是多少求这个数的应用题和稍复杂的分数除法应用题,提高学生解答分数应用题的能力.

  【教具准备】

  课件、练习纸

  【复习过程】

  一、回顾整理、汇报交流

  师:昨天,老师布置同学们复习并整理分数除法这一单元,完成了吗?把你整理的内容先在小组内交流一下吧!

  (生小组交流)

  师:我选了几份有代表性的,想看看吗?

  (学生汇报)

  ①简单列出本单元提纲 ②总结出个别重要的知识 ③虽然知识点零碎,但很全面

  师:能把这么多零碎的知识全面的总结出来,看来你们很用心地对本单元进行了复习!可是,你们知道吗?复习不仅仅是回顾所学的知识,更重要的是找到知识间的联系,总结出学习方法,真正达到温故而知新!

  二、练中梳理、沟通联系

  师:请看(出示线段图) 什么图?仔细看,你能看明白什么?

  生:b是单位“1”,分成了5份,a占了3份;a是b的 —理解的真好!

  师:它可以用一个怎样的数量关系式来表示呢?

  生:b× =a

  师:你能把它改写成两个除法算式吗?

  生:a÷b=

  a÷ =b

  师:为什么这样改?(积÷因数=因数)

  所以说,分数除法的意义与整数除法相同,都是已知两个因数的积与一个因数,求另一个因数的运算。

  师:想一想,两个数相除还可以用什么形式表示?

  生:比。

  师:什么是比?

  师:那么a比b是 ?

  生:a:b=

  师: 是什么?(比值)

  它还可以表示a与b的比是3:5

  在a÷b= 这儿它是商

  看来,比与分数以及除法之间,是有一定的联系的。有什么联系呢?

  (生说,然后示课件)

  有没有区别呢?(运算、数、关系)

  师:既有密切的联系,又有本质的区别!

  师:好了,下面看这儿 a÷ =b,如果a是2,你能算出b是多少吗?

  (生计算)

  师:说一说,怎么算的?

  师:除以 ,算的时候变成了乘 ,依据什么?

  分数除法的计算方法是什么?(生说)

  乘除数的倒数,这样,就把分数除法的计算转化成了乘法。(示转化)

  师:想一想,像这样,a是2,b是 , a与b的比还是( )吗?

  (生有认为是,有的认为不是)

  师:究竟是不是呢?(算算看)

  生:(① 2÷ =2÷ =2× = )→这是求比值的方法,得到比值还是

  师:②看看这种方法可以吗?2: =(2×3):( ×3)=6:10=3:5=

  ↓ ↓

  为什么前项×3 后项也×3 ?

  这是通过化简比,得出结果还是3:5

  问:化简比依据是什么?

  对比:谁能说一说:求比值与化简比有什么不同?

  生:求比值可以用前项÷后项,是一个商,结果可以是小数,分数或整数。

  而化简比是根据比的性质,化成最简整数比,结果必须写成比的形式。

  师:其实,求比值的计算中,常常会用到分数除法的计算方法。

  三、解决问题,提升方法

  1、根据线段图提简单的分数除法问题

  师:如果a是六年级女生有300人 ,你能提出什么问题呢?

  生:六年级总数?

  师:可以吗?还可以怎么提?(示题)会做吗?

  生:300÷

  师 为什么用除法?题目的关键是哪句话?

  生:女生是男生的

  师:根据条件,可以写出什么数量关系式?

  生:(男生)× =300

  师:现在知道为什么用除法了吗?

  师:还可以用什么方法?

  生: 〤=300

  2、稍复杂的分数除法问题

  师:如果把条件换一换:女生比男生少 怎么做呢?

  (生做,然后汇报交流)

  师:对比这两题,你有什么发现?

  生:男生是单位“1”,未知 。

  师:求单位“1”可以用什么方法?

  生:可以用方程,也可以用除法。

  师:用除法做是根据了除法的意义,而用方程相当于顺着题目的意思列式,把分数除法问题转化成分数乘法法问题 ,这样就简单了。

  3、比的应用

  师:我把题目全换一换(示投影),变成了什么问题?

  生:比的问题

  师:能直接列式吗?

  生:列式解答

  师:把比转化成分数

  问:为什么不用方程?

  生:单位“1”知道,是800人。

  师:这种按比分配的问题,也转化成了求“一个数的几分之几是多少”的分数乘法问题。

  小结:这样把知识联系起来,问题就简单多了,应用起来也更灵活了!

  四、综合练习,自我检测

  师:经过我们再次整理,就把本单元这些散落的知识点穿在了一起,形成一个知识网。找到了联系,明确了方法,老师这儿还有一份检测题,有信心完成吗?

  (分发练习纸,根据完成情况反馈交流)

  (分析错因,大多是计算出错)

  小结:看来掌握方法固然重要,细心认真的学习习惯也很重要!

  五、课堂小结

  师:咱们六年级的同学,面临对小学六年所学知识的复习。希望今天这节课对你们以后的学习能有所帮助,有所启发!

  附练习题

  一、 填空

  1、8:10= =40÷( )=( )(填小数)

  2、20千克:0.2吨的比值是( ),最简整数比是( )。

  二、计算

  ÷2 ÷

  ×8÷ ( ÷

  三、应用

  一本书的 是80页,已看的与未看的页数比是9:1。已经看了多少页?

分数除法教案7

  设计说明

  分数除法问题的解决是本单元教学中的一个难点。为了突破这个难点,鼓励学生用方程解决分数除法问题,本节课的教学设计重视发挥学生的主体作用,让学生自己发现问题,亲自感受题中数量之间的关系,并在讨论、交流的学习活动中发现规律,从而让学生体会并归纳出用方程解决分数除法应用题的关键,即从题目的关键句中找出数量之间的相等关系,进而帮助学生学会用方程的方法解决有关分数除法的问题。

  苏霍姆林斯基曾说过:“在人的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、成功者,而在儿童的精神世界中,这种需要特别强烈。”因此,本节课的教学设计给学生提供了充分的探究空间,先让学生独立思考,探究解题方法,再在学生独立探究的基础上,让学生小组合作讨论、交流,探究不同的解题方法,使学生对分数除法问题的数量关系及解法有清晰的理解,为进入更深层次的学习做好充分的准备。

  课前准备

  教师准备 PPT课件

  教学过程

  第1课时 分数除法(三)(1)

  ⊙创设情境,激趣导入

  1.谈话激趣。

  师:我们学校的春季运动会快要开始了,同学们喜欢开运动会吗?为什么喜欢开运动会呢?(学生思考后汇报)

  师:大家都喜欢哪些项目?(学生举手,教师进行统计)

  2.体会等量关系。

  师:咱们班喜欢跑步的人真多呀,大约是全班人数的。你们能说一说这个信息中存在着什么样的等量关系吗?(学生思考后汇报:全班人数×=喜欢跑步的人数)

  3.导入。

  师:不仅我们学校这个时候开运动会,淘气所在的学校也准备开运动会,而且他们学校的学生都在积极地参加训练,争取在运动会上夺得冠军,为班级争光。

  ⊙合作交流,探究新知

  问题。

  师:(出示课件)这是他们训练时的.情境,请同学们仔细观察,从这幅图中你能发现哪些数学信息?

  (学生观察后汇报:有6名同学在跳绳,是操场上参加活动总人数的)

  师:同学们观察得真仔细,那么你们能根据这些数学信息提出问题吗?(学生自由提问题)

  设计意图:兴趣是学习的内动力,为了激发学生学习的兴趣,充分利用情境图,鼓励学生根据信息大胆地提出数学问题,不仅能使学生的思维活跃,热情高涨,还能使学生主动地投入到学习活动中来。

  师:同学们提的问题都非常好,老师这里也有一个问题,你们愿意解答吗?(愿意)

  出示问题:操场上参加活动的总人数是多少?说一说,你是怎么想的?

  (学生先独立思考,然后与同桌说一说自己的想法)

  2.解决问题。

  (1)画图解决问题。

  师:你们能说一说题中所表示的意义吗?试一试,能不能通过画图来解决这个问题呢?

  (学生先交流题中所表示的意义,然后尝试通过画图解决问题并汇报)

  预设

  生:通过画图,我知道是6人,是3人,这样推算下来,操场上参加活动的总人数是27人。(如果学生采用其他画图方法来解决,教师也要给予肯定)

  (2)用方程法解决问题。

  ①分析题中的等量关系。

  师:你知道题中的关键句是哪句话吗?这句话蕴涵了什么样的等量关系?(学生交流,得出:参加活动总人数×=跳绳人数)

  ②自由解决问题。

  师:根据这样的等量关系,你能列方程解决问题吗?快来试一试吧!(学生思考,独立解决问题,教师巡视指导)

  ③汇报。

  师:同学们,谁能说说你是怎样解决这个问题的?

  预设

  生:我是根据“参加活动总人数×=跳绳人数”列方程解决问题的。

  解:设操场上有x人参加活动。

分数除法教案8

  教学内容

  教科书第1246~125页乘法与除法、分数的初步认识,并完成练习二十三第1~4题

  三维目标

  知识与技能

  .经历对本学期所学知识回顾、梳理的过程,初步学会和复习的方法,逐步养成自觉所学知识的意识和良好的学习习惯

  过程与方法

  进一步理解两、三位数乘一位数和两位数除以一位数的算理,提高学生的计算熟练程度和正确率;进一步提高学生的估算能力,体会估算的实际意义,养成估算习惯

  情感、态度与价值观

  进一步巩固分数的意义,熟练地读写分数,会用分数表示实际操作结果,能熟练地进行简单的同分母分数的加减法计算

  教学重点两、三位数乘一位数和两位数除以一位数

  教学难点两、三位数乘一位数和两位数除以一位数

  教具准备小黑板

  教学过程

  一、回忆梳理本学期学习的内容

  (1)出示教科书第126页主题图,学生看图,说说他们在做什么。

  (2)你能像他们一样,回顾一下本学期的学习内容和自己的学习情况吗?

  (3)小组讨论:四人小组议一议本册书包含哪些知识?在讨论的基础上,将小组的共同意见写在卡片上。

  教师巡视,关注学生交流情况,引导学生按一定的顺序梳理知识。

  (4)小组汇报

  出示小组汇报要求:

  ①请全体同学认真倾听每一位小组代表的发言。

  ②请各小组记录员边听边用笔将其他小组与你们小组相同的地方勾画出来。

  ③勾画完之后,请各小组发言的代表对前面同学的发言只作补充,不作重复汇报。

  二、复习乘法与除法

  1.复习口算

  先以口算比赛的形式完成教科书第126页第1题,补充以下口算题。

  80÷8=×5=4×25=65÷8=

  指名汇报,并分别说说是怎样算的'。

  2.复习笔算

  (1)问:用竖式计算两、三位数乘一位数和两位数除以一位数时要注意什么?

  (2)学生独立计算教科书第126页第2题,教师巡视,对学习困难的学生及时进行指导。

  (3)全班交流,指名板演,并结合题目说一说两、三位数乘一位数和两位数除以一位数的计算方法。重点让学生说一说乘数中间有0的乘法,如:304×5=

  3.复习估算

  (1)学生先谈一下自己在生活中是否应用过估算,是怎样用的?

  (2)学生独立完成教科书第127页乘法与除法的第3题,同桌再相互说说自己是怎样估算的。

  全班交流,指名说出估算方法,如果学生有不同的估算方法,只要是合理的,都要给予充分肯定。如52×9≈,可以用50×9,也可以用52×10进行估算。

  三、复习分数的初步认识

  1.认识分数

  (1)学生先独立完成教科书第127页分数的初步认识第1题。

  (2)指名口答填写结果,并说一说为什么这样填。通过交流进一步强调平均分。

  2.简单的同分母加减法

  (1)独立完成教科书第127页分数的初步认识第2题。

  (2)全班交流,汇报结果时,结合分数的意义让学生说一说同分母分数加减法的计算方法。

  四、全课

  今天我们复习了什么内容?是怎样进行和复习的?你有什么收获?

  五、练习:完成练习二十三第1,2,3,4题

分数除法教案9

  一、复习

  1、同学们,你能口算95930÷362等于多少吗?为什么?(学生回答数据太大,不好口算)

  如果已知265×362=95930,你能说出答案吗?为什么?

  (引导学生说出整数除法的意义:已知两个因数的积和其中一个因数,求另一个因数的运算)

  二、教学分数除法的意义

  1、2/7 ×( )=1,括号内填几分之几?为什么?

  2、根据这道乘法算式,你能说两道除法算式吗?根据是什么?

  (引导说出分数除法的意义)

  3、完成p25做一做

  三、分数除以整数的计算法则

  1、这节课我们学习分数除法

  2、同学们已经了解分数除法的意义,你还想学习关于分数除法的什么知识?

  3、事实上,有一些分数除法同学们是会计算的。下面口算几题:

  3/8÷3/8 0÷4/9 1÷2/5 3/4÷1

  你是根据什么知识口算这几道题的?

  4、上面这四道题是一些特殊的分数除法,我们继续学习其他的分数除法。

  出示例题:一张纸的 平均分成3份,每份是这张纸的几分之几?(图略)

  怎样列式? 你能根据图说出算式的结果吗?怎样证明这个结果是正确的呢?(引导学生从多个角度证明结果的正确性 )

  根据学生的回答板书:

  3/4÷3 = 3÷34 = 1/4

  你能归纳这种分数除以整数的.计算方法吗?

  5、用这种方法口算:

  3/4÷3 4/9÷4 10/9÷5 6/7÷2

  6、质疑

  你认为这种计算方法适用于所有的分数除以整数吗?能举例说明吗?

  7、小组讨论,自主学习分数除以整数

  用学生所举的例子作为教学例题(例如 1/5÷3),在数学学习过程中,我们经常遇到新问题,这时需要考虑如何将新问题转化为已学过的旧知。现在看一看,我们已经掌握了哪些分数除法的知识:

  (1)分数除以整数,用分子除以整数的商作分子,分母不变。

  (2) 1除以一个分数,结果是该分数的倒数。

  (3)一个分数除以1,结果是原分数。

  你能将1/5 ÷3转化成已经掌握的分数除法吗?小组讨论并将讨论结果记录下来。

  8、小组汇报

  (1)1/5 ÷3=3/15 ÷3=1/15

  (2)1/5 ÷3=(1/5 ×5)÷(3×5)=1÷15=

  (3)1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

  (4) ……

  你能归纳自己小组讨论的分数除以整数的计算方法吗?

  (1)先将分子和分母同时扩大相同的倍数,使除数能整除分子,再用前面的方法计算。

  (2)利用商不变性质,将分数除以整数转化成1除以一个数,再计算。

  (3)利用商不变性质,将分数除以整数转化成一个分数除以1,再计算。

  (4)……

  9、观察第三种方法:

  1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

  这个计算过程还可以更简洁些,你能看出来吗?

  化简得: 1/5 ÷3=( 1/5×1/3 )÷(3×1/3 )= 1/5×1/3 =1/15

  观察 1/5÷3== 1/5×1/3 ,你能说一说吗?

  (引导学生说出分数除以整数,等于分数乘整数的倒数)

  10、计算方法的优化

  刚才小组讨论时,每组用一种方法计算了 1/5÷3,现在你能用其他的方法计算一下吗?

  学生计算后提问:你喜欢那种方法?为什么?

  总结分数除以整数的计算法则:

  分数除以整数(零除外),等于分数乘整数的倒数。

  11、对其他的方法,你又有什么要说的吗?

  (引导说出当分子能被整数整除时,可以直接用分子除以整数的商作分子,分母不变的方法。培养学生从不同角度观察、分析问题)

  四、课堂练习

  1、计算下列各题

  2/3÷3 2/11÷2 3/8÷6 5/4÷2

  2、练习七第1题

  3、讨论题

  1/3÷a和 1/a÷3(a≠0),那道题的结果大?为什么?

分数除法教案10

  教学内容

  一个数除以分数

  教材第31、第32页的内容。

  教学目标

  1.结合具体情境,理解整数除以分数和分数除以分数的算理,掌握一个数除以分数的计算方法。

  2.能够熟练、正确地进行计算。

  3.渗透转化的数学思想。

  重点难点

  重点:理解一个数除以分数的算理,掌握计算方法。

  难点:能够熟练、正确地进行分数除法的计算。

  教具学具

  练习题投影片。

  教学过程

  一导入

  1.口算。

  3.解答应用题。

  投影出示:小明步行2小时走了6千米。他每小时走多少千米?

  学生计算后,说出这道题中的数量关系。

  板书:路程÷时间=速度。

  二教学实施

  揭示课题:我们已经学过了分数除以整数的计算方法,如果除数是分数该怎样计算呢?今天,我们就来研究一个数除以分数的计算方法。

  板书课题:一个数除以分数

  1.出示例2。

  (1)学生读题,明确题意。

  提问:这道题应该怎样解决呢?(算出每人的速度各是多少,再比较大小)

  (2)列式。

  提问:怎样求小明的速度和小红的速度?

  引导学生利用“速度=路程÷时间”这个关系式列式。

  了2千米”。

  提问:1小时行多少千米,在图上怎样表示?

  小时行了多少千米)

  4.归纳方法。

  老师:观察比较例2的两个算式,你发现了什么?你会用自己的方式描述你发现的规律吗?

  学生自由发言。

  板书:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

  5.练习。

  (1)完成教材第32页“做一做”的第1、2、3题。

  (2)完成教材第34页练习七的第1~8题。

  学生独立完成,集体订正。

  三课堂作业新设计

  1.在○里填上运算符号,在( )里填上适当的数。

  四思维训练参考答案

  思维训练

  练习七

  板书设计

  3.分数除以分数

  4.甲数除以乙数(0除外),等于甲数乘乙数的倒数。

  当一个数(0除外)除以小于1的数,商大于被除数;当除以大于1的数,商小于被

  除数;当除数为1时,商等于被除数。另外,0除以任何数都为0。

  备课参考教材与学情分析

  本节课根据已有的数量关系,引出一个数除以分数的计算。在分数除以整数的基础上,例3研究一个数除以分数的计算,这是一个难点。教材以比较小明、小红两位同学“谁走得快些”,引导学生根据“路程÷时间=速度”这个数量关系列出两个除法算式。算式列出后,请同学们估一估结果是多少,是比被除数2大还是小,然后想办法进行验证,这个环节的设计既激发学生的探究欲望,又为发现被除数和商之间的关系留下悬念。另外,例2的设计体现了一种转化的思想。将“图”与“式”相对照进行解释、分析、说理,使学生在讲述算理的.过程中,感受到用“数形结合”的思想解决问题的便捷性、科学性。

  课堂设计说明

  1.借助线段图引导学生一点点进行分析、说理,学生很自然就理解到要乘除数的倒数。因为有线段图辅助,学生理解起来很容易,自然而然地就明白了算理。

  2.渗透思想,明确结构。

  每一个数学知识都不是孤立存在的,计算教学更是如此,每个新内容都是在已学知识的基础上的进一步延伸,都是在已有知识基础上生长出来的。所以每次新课内容都不能把它看作一个孤立的内容。

分数除法教案11

  教材分析

  这节课是在学习了“已知一个数的几分之几是多少,求这个数”的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。根据新旧知识的联系,抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。

  学情分析

  在已经学习了,已知一个数的几分之几是多少,求这个数是多少的问题的基础上,六年级学生能在一定的基础之上去拓展,去学习更新的知识。

  教学目标

  逆向思维,能根据具体的数量和分率,求出单位“1”的.量。通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地用方程解答一些简单的实际问题。

  教学重点和难点

  1、 能确定单位“1”,理清题中的数量关系。

  2、利用题中的等量关系用方程解答。

  教学过程

  一、1、苹果的重量是X千克,梨的重量比苹果多5千克 。

  ⑴、梨的重量比苹果多了( )千克。

  ⑵、梨的重量是( )千克。

  2、钢笔X元,比毛笔少了3元 。

  ⑴、钢笔比毛笔少了( )元。

  ⑵、毛笔是( )元。

  3、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

  二、新授课

  1、教学补充例题:水果店运来了一些苹果,已经卖了36千克 ,还剩下20千克,水果店运来了多少苹果?

  (1)卖了 是什么意思?应该把哪个数量看作单位“1”?

  (2)引导学生理解题意,画出线段图。

  (3)引导学生根据线段图,分析数量关系式:运来苹果的重量-卖了的重量=剩下的重量

  (4)指名列出方程。解:设运来苹果X千克。

  x-36=20

  2、教学例2

  (1)出示例题,理解题意。

  (2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的 (1+)

  (2)学生试画出线段图。

  (3)根据线段图,结合题中的分率句,列出数量关系式:

  航模小组人数+美术小组比航模小组多的人数=美术小组人数

  (4)根据等量关系式解答问题。

  解:设航模小组有人。

  (1+)=25

  =25÷

  =20

  答:略。

  三、小结

  1、今天学习了两道应用题,找出它们的共同点?(这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

  2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)

  四、练习

  练习十第4、12、14题。

分数除法教案12

  教学目标:

  使学生理解一个数除以分数的算理,掌握一个数除以分数的计算法则,能够正确地进行计算。

  教学重点:

  掌握分数除法的计算法则。

  教学过程:

  一、复习

  说出下列分数的倒数。

  二、新课

  1、教学例3

  提问:按照题意应该怎样列式?(生说师板书)

  想一想:分数除以分数应该怎样计算?(学生回答计算步骤,教师板书)÷=×==3

  教师:分数除以分数的计算方法跟整数除以分数有什么联系?

  让学生总结:(整数除以分数,被除数不变,把除法转化成乘法,也就是转化成乘原分数的.倒数。分数除以分数,也是被除数不变,把除以分数转化成乘除数的倒数。)也就是:(教师板书)一个数除以分数,等于这个数乘以除数的倒数。

  学生看书P29读法则。

  教学分数除法的统一法则。

  做完后让学生进行对比,三道题的计算过程有什么相同点?(第一题是乘整数的倒数,第2、3题是乘分数的倒数。)

  教师提问:整数能否看成分数?(可以看成分母是1的分数)

  教师:前面学过的分数除以整数和一个数除以分数的计算法则,能否统一成一个法则呢?(可以,这就是:甲数除以乙数(0除外),等于甲数乘乙数的倒数。教师板书)

  学生看书P30并读统一的法则。

  三、巩固练习

  1、做P30例4前面的做一做题目。学生独立完成,然后集体订正,订正时让学生说一说法则。

  2、做练习八第5题第1行的小题。第6题的前两栏的题目。

  3、做第7题。注意引导学生列式,(这是求一个数是另一个数的几倍或几分之几的文字题。用除法计算。)

  4、做练习八的第8题。

  学生做后教师让学生说一说想法。

  5、做练习八第9题。

  做题前提问:1米等于多少厘米?1千米等于多少米?1 吨等于多少千克?1小时等于多少分?然后让学生独立做题,做完后集体订正。做练习八第10题。教师让学生独立审题,然后提问:这题求什么?分析以后,让学生独立完成,集体订正。

  四、小结

  教师先问学生今天学习了什么?然后指出:分数除法法则是除法普遍适用的法则。

  五、作业

  练习八第5题第2行的小题,第6题的第3、4栏小题。

分数除法教案13

  教学目标

  1、结合具体情境,使学生掌握分数混合运算的顺序,能正确进行计算

  2、能运用所学知识解决简单的实际问题,提高综合解题能力。

  学情分析

  本班共有72名学生,男女生人数协调,基础知识比较扎实,应用题的'解决较差,少数学生数学成绩很差。

  重点难点

  1、掌握分数混合运算的顺序,正确计算分数混合运算。

  2、解决有关的实际问题。

  教学过程

  4、1复习导入

  4、1、1教学活动

  活动1【导入】复习导入

  不计算,说说下面各题的运算顺序。

  3700÷9 0、3×9÷6

  50×【(900—90)÷9】

  活动2【讲授】合作探究

  1、出示例3

  一天吃三次,每次吃半片,12片药可以吃几天?

  2、理解题意

  (1、)分析题意,列出算式。

  (2、)提问:求小红可以吃几天,应先求什么?再求什么?

  (3、)小组合作讨论并填写预习卡。方法一:每次吃半片,吃3次:

  12片可以吃几天?

  方法二:12片可以吃:12÷ =12×2=24(次)

  24次可以吃:24÷3=8(天)

  (4)互相交流,请两位同学板演并说一说解题思路。

  (5)列出这两种方法的综合算式。

  (6))提问:综合算式里分别含有几级运算?应先算什么,再算什么?

  7)小结:分数混合运算和整数混合运算相同,在同级运算中,如果

  没有括号,按从左往右的顺序计算。如果有两级运算,先算乘除,再算

  加减。有括号的先算小括号,再算中括号。

  活动3【练习】巩固练习

  1、完成教材第33页“做一做”。

  提问:梯形的面积公式是什么?

  2、完成教材第35页第10题。

  活动4【作业】课堂小结

  这节课你有什么收获?

分数除法教案14

  教学内容:

  五年级下册教科书第65—66页。

  教学目标:

  1.在具体的问题情境中,探究和理解分数与除法的关系,并能正确地用分数表示两个整数相除的商,会用两种方法叙述分数的意义。

  2.在探究过程中,培养学生观察、比较、归纳等探究的能力。

  3.体会知识来源于实际生活的需要,激发学习数学的积极性。

  教学重点:

  经历探究过程,理解和掌握分数与除法的关系。

  教学难点:

  通过操作,让学生理解一个分数可以表示的两种意义。

  教材分析:

  《分数与除法》是人教版小学数学五年级下册第四单元《分数》第二课时的教学内容。是在对分数意义有初步认知基础上的深入理解。在这节数学课中,不仅要让学生掌握分数与除法之间直观的位置关系,还要从分数意义中理解分数与除法的联系。所以在本课的的设计中,以分数意义的辨析贯穿始终。因为分数的意义,本身就是除法的界定,这才是分数与除法最根本的联系。

  本节教学内容重视引导学生在观察比较中发现分数与除法的关系,探究整数除法得不到整数商的'情况时,可以用分数表示;在表示整数除法的商时,用除数作分母,用被除数做分子。教材从“分蛋糕”的实际情境引入,引导学生列出除法算式,并结合分数的意义得出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数写成两数相除的形式。

  教具学具:

  课件,模型。

  教学设计

  一、导入

  师:孩子们,上课之前先考验下大家,(出示课件)这个谜底是什么?

  生:月饼。

  师:你们的课外知识真丰富,你们喜欢吃月饼吗?

  生:喜欢。

  师:老师也喜欢。在月饼中也含有许多数学知识,我们一起来看看吧(出示课件),把6块月饼平均分给3个小朋友,每人分得多少块?怎样列式计算?

  生:2块,6÷3=2(块)。(板书)

  师:说得真棒,要是声音再大些就更好了,我们再来看下一个问题,把1块月饼平均分给2个小朋友,每人分几块?怎样列式计算?

  生:0.5块,1÷2=0.5(块)。(板书)

  师:表达得特别清楚,让大家一听就懂。老师就继续考验大家,如果把1块月饼平均分给3个小朋友,每人分几块?怎样列式计算?

  师:你为你们组又增添了一份光彩。看来大家已经能够解决分月饼的问题了,不用学具直接说出5除于7等于多少?

  生:七分之五。

  师:非常正确。我们再来看这些算式,整数除法得不到整数商的时侯,可以用什么数表示商?

  生:可以用分数表示。

  师:在表示整数除法的商时,用谁作分母?用谁做分子?

  生:用被除数作分子,除数作分母。

  师:那么分数与除法有什么样的关系呢?谁能用语言概括下?

  生:被除数除以除数等于除数分之被除数。

  师:你表达得这么清晰流畅,了不起!

  师总结:可以用分数表示整数除法的商,用除数作为分母,被除数作为分子,除号相当于分数中的分数线。反过来,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。所以,分数与除数的关系我们可以用式子来表示为:被除数÷除数=被除数/除数(板书)。用字母表示是?

  生:a÷b= a/b(b≠0)(板书)

  师:这个关系式里每个数的范围要注意什么?

  生:因为在除法里除数不能是零,所以分数的分母也不能是零。即b≠0。

  师:想一想分数与除法有哪些联系和区别?

  教师强调:分数是一种数,但也可以看作两个数相除(分数的分子相当于除法中的被除数,分母相当于除数)。除法是一种运算。

  师:今后我们再看分数时,会有两种意义。(把“1”平均分成4份,表示这样3份的数,也可以是把“3”平均分成4份,表示这样1份的数。)

  二、巩固练习

  师:你们知道阿凡提吗?你有他聪明吗?敢不敢挑战他?我们来闯关,大家有信心吗?

  1.1.用分数表示下面各式的商。

  (1)3÷2 =()

  (2)2÷9 =()

  (3)7÷8 =()

  (4)5÷12 =()

  (5)31÷5 =()

  (6)m÷n =()n≠0

  2.把5千克糖平均分成7份,每份是( )千克;把1千克糖平均分成7份,5份是( )千克;也就是说5千克糖的( )和1千克糖

  的( )是相等的

  三、课堂小结

  说说你的收获是什么?重点说说分数与除法的关系。

  结束语:今天我们通过自己的努力,发现并学会了这么多知识,老师真为你们骄傲!其实生活中有更多的知识等着我们去发现、探索,快做个有新人吧,你会成长得更快!

  四、作业布置

  练习十二第1,3题。

  板书设计

  分数与除法

  被除数÷除数=被除数/除数

  a÷b= a/b(b≠0)

  教学反思

  这节课在引入课题之前,先利用谜语激发学生兴趣,引进分数,复习旧知。在探索新知时,从想象中每人2个饼,到一张饼,把一张饼平均分给4个人,每人能得到几块?有了刚才的复习知识进行铺垫、迁移,很容易能用算式1÷4来计算,学生很快会说出1/4,这时我会再提问:为什么是1/4?你是怎么分得?学生用准备的圆片分一分;接着出示:学生一步步经历了分得过程,对分数的意义就理解得更好了,也就明白了为什么是3/4。当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。

分数除法教案15

  学习目标:

  1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

  2 .掌握一个数除以分数的计算方法,并能正确进行计算。

  学习重点:理解一个数除以分数的`意义和基本算理。

  学习难点:运用分数除法的计算方法解决实际问题。

  学习内容:

  一、分一分

  有4张同样的圆形纸片。

  (1)每2张一份,可以分成多少份?

  画一画:

  列示:

  (2)每1张一份,可以分成多少份?

  画一画:

  列示:

  (3)每1/2张一份,可以分成多少份?

  画一画:

  列示:

  (4)每1/3张一份,可以分成多少份?

  画一画:

  列示:

  (5)每1/4张一份,可以分成多少份?

  画一画:

  列示:

  二、画一画

  1.有1根2米长的绳子。

  (1)截成每段长1/3米,可以截成几段?

  画一画:

  列示:

  (2)截成每段长2/3米,可以截成几段?

  画一画:

  列示:

  2.3/4里面有几个1/8?

  画一画:

  列示:

  三、填一填,想一想

  在〇里填上“>”“<”或“=”。

  4÷1/2〇4×2 4÷1/3〇4×3 4÷1/4〇4×4

  2÷1/3〇2×3 2÷2/3〇2×3/2 3/4÷1/8〇 ×8

  你发现了什么?( )

  四、试一试

  8÷6/7 5/12÷3

  你能把“除以一个整数(零除外),等于乘这个整数的倒数。”和“除以一个分数,等于乘这个分数的倒数。”这两句画合并成一句话吗?

  ( )

分数除法教案16

  教学目标:

  1、能正确进行分数乘除的混合运算。

  2、能用分数乘除的混合运算解决生活中的实际问题。

  3、初步形成独立思考和探索的意识。

  4、感受数学与生活的密切联系,激发学生学习数学的兴趣。

  教学重点:

  用分数乘除的混合运算解决实际问题。

  教学难点:

  分析题中的数量关系,正确地列出算式。

  教学准备:

  多媒体课件、实物投影

  教学过程:

  一、 课前三分钟口算练习。

  师:老师要先考考大家的口算能力

  出示口算卡片,指生答

  (挑选一两道题让学生说说计算方法)

  二、情境导入:

  师:同学们,规范认真的书写是每一个同学应具备的基本素质,不光语文上要规范书写,数学亦如此,经过一段时间的努力,同学们的书写水平都有了很大的进步,我们班也涌现出了数学书写之星,想知道他们是谁吗?想看看他们的.作品吗?

  师:好,那大家必须接受考验,闯过三关,找到三把金钥匙,有信心吗?

  师:上节课我们学习了“分数乘除的混合运算”,这节课我们要运用所学知识解决生活中的数学问题。上一节分数乘除混合运算的练习课。

  三、检查复习知识点与指导练习。

  1、我会说

  师:不计算,只说运算过程,你会说吗?

  指生说

  2、计算

  师:知道了分数乘除混合运算的运算顺序和计算方法,你能准确无误的计算这两道题吗?试试看

  指生到台前做。

  学生讲解

  师:能不能告诉大家,在计算时应该注意什么问题?

  师:同学们说得真不错,这就是我们在计算时容易出现的错误,在做题的时候,大家要注意这些问题,正确进行分数乘除混合运算的计算。能做到吗?

  指生到黑板上做

  订正答案,及时反馈。出示错题,让学生找错误。并说说计算应注意什么问题。

  3、解方程

  师:看来,刚才这道题太简单了,没有难住大家。下面老师就要增加一点难度了,愿意接受挑战吗?(出示课件)

  师:你能说一说解方程的步骤吗?

  指生说

  学生在练习本上完成本题,订正反馈

  师:恭喜大家,拿到了第一把金钥匙。有信心拿到第二把吗?让我们继续闯关吧。

  4、解决问题

  学生独立完成,分析题意,订正答案

  师:在大家的共同努力下,我们拿到了第二把金钥匙。第三把钥匙得靠自己了。有信心超越自我吗?

  四、当堂测试:

  师:请同学们独立完成当堂测试,检验一下自己的学习成果吧。

  订正答案,及时反馈

  师:恭喜大家,拿到了最后一把金钥匙。

  师:现在三把钥匙都找到了,让我们一起来看看是谁获得了数学书写之星的称号,共同来欣赏他们的作品吧。(课件出示)

  师:看了大家的书写,你想说点什么?

  五、小结

  师:通过本节课的学习,你有什么收获?

  学生交流

  师:同学们,这节课你学得快乐吗?希望同学们每一节课都能快乐学习,健康成长。

分数除法教案17

  教学目标:

  1.使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。

  2.使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力,体验数学学习的乐趣。

  教学重点:理解分数与除法的关系。

  教学难点:理解分数表示整数除法的商。

  课前准备:课件。

  教学过程:

  一、激活旧知,引发思考

  1.把8块饼平均分给4个小朋友,每人分得多少块?如果有4块饼呢?

  学生口答列式,教师板书。

  提问:这样的问题为什么用除法算?

  指出:把一些物体平均分,求每份是多少,用除法计算。

  2.引入新课

  二、主动思考,认识新知

  1.教学例2

  (1)把刚才呈现的题目改为:把1块饼平均分给4个小朋友,每人分得多少块?

  怎样列式?

  把1块饼平均分给4个小朋友,平均每人能分到1块吗?你是怎样想的?

  每人分得的不满1块,结果可以用分数表示。

  那么,可以用怎样的分数表示1÷4的商呢?请大家拿出1张圆形纸片,把它们看作1块饼,按照题目分一分,看结果是多少?

  (2)学生操作,了解学生是怎样分和怎样想的.。组织交流,你是怎么分的?

  (3)小结:把1块饼平均分给4个小朋友,每人分得14块。完成板书。

  2.教学例3:

  把3块饼平均分给4个小朋友,每人能分得多少块?

  可以怎样列式?3÷4得数是多少?

  大家拿出3张圆形纸片,把它们看作3块饼,按照题目分一分,看结果是多少?

  3.独立完成

  把3块饼平均分给5个小朋友,每人能分得多少块?

  3除以5,商是多少?怎样用分数表示?小组交流。

  4.总结归纳

  请大家观察上面两个等式,你发现分数与除法有什么关系?

  被除数÷除数=被除数/除数

  如果用a表示被除数,用b表示除数,这个关系式可以怎样写?a÷b=a/b

  讨论:b可以是0吗?(在除法中,0不能作除数;分数中的分母,相当于除法中的除数,所以分母不能是0。)

  5.教学试一试。学生尝试填空。你是怎样想的?

  把7分米改写成用米做单位的数,可以列怎样的除法算式?7÷10的商用分数怎样表示?23分改写成用时作单位的数,可以列怎样的除法算式?23÷60的商用分数怎样表示?(指出:两个数相除,得不到整数商时,可以用分数表示。)

  6.做练一练第1、3题

  学生独立填写,要求说说填写时是怎样想的。

  7.做练一练的第2题

  学生填写后,引导比较:上下两行题目有什么不同?

  三、练习巩固,加深认识

  1,做练习八第6题

  让学生看图填空。

  交流:结果各是多少米?怎样从图上看出结果?

  追问:如果列式计算,应该怎样列式,得数是多少

  2.做练习八第7题。

  让学生独立完成,交流结果。

  3.做练习八第8题。

  让学生独立解答,交流方法板书。

  四、反思总结

  今天这节课,学习了什么内容?通过学习,有什么收获?还有哪些疑问?

分数除法教案18

  分数除法同分数乘法一样,都是小学阶段重要的数学内容,从过去的教学实践来看,这部分知识历来是学生数学学习的难点。原《大纲》的要求是:理解分数除法的意义;掌握分数除法计算法则;会计算分数除法;会口算简单的分数除法;会进行分数四则混合运算(不超过三步);会解答分数应用题(最多不超过两部)。《数学课程标准》关于分数除法的具体标准是:会进行分数除法运算和混合运算(以两步为主,不超过三步)。会解决有关分数的简单实际问题。《数学课程标准》与原《大纲》相比,分数除法计算方面的要求没有大的变化,只是把《大纲》中的混合运算的步数”不超过三步“改为”以两步为主,不超过三步“。变化较大的同分数乘法一样,仍然是淡化分数除法的意义,强调会进行分数除法计算和解决简单实际问题。本单元教材与传统教材相比,从编写思想、内容编排、教学方式等方面都有了较大的变化,主要有以下几个方面的特点:

  一、结合具体情境理解分数除法的意义强化计算方法的掌握和应用。

  从传统分数除法教材来看,主要有三个重点。第一,分数除法的意义;第二,分数除法法则。即:一个数除以分数,等于这个数乘以分数的倒数。第三,用方程或算术两种方法解决分数除法问题。从知识的建构上看,学生学习整数除法时对除法就是”平均分“已经非常熟悉,而现实生活中,又很难找到具体的事例来说明”一个数除以分数“的实际意义。所以,传统教材中选用”已知两个因数的积和其中一个因数,求另一个因数的运算“来说明分数除法的意义。这种乘除互逆关系是重要的数学结论,应该在学生乘除计算的知识背景下让学生认识。但是,现在用这个关系来定义分数除法意义的表述,对学生来说实在难于理解,再加上枯燥的看算式说意义的练习,使学生一开始接触分数除法就一头雾水。另外,这个分数除法的意义与”一个数除以分数,等于这个数乘以分数的倒数“这一分数除法的核心知识点又没有一点联系。所以,造成既增加学生的学习难度,又不利于学生掌握知识的情况。本着”降低难度,突出重点“的原则,本套教材首先不安排分数除法意义的内容。而是利用学生已有的整数除法意义的知识,通过现实的,学生能理解的具体事例,学习除法计算。明白为什么用除法?为什么这样算?如,为了解决”一个数除以分数,等于这个数乘分数的倒数“这一分数除法的核心知识点。教材首先安排了三组整数除法和分数乘法相对应口算练习,通过观察计算结果和算式的特点,让学生发现”甲数÷乙数=甲数×乙数的倒数“的规律。然后,选择学生生活中的现实问题,妈妈买来1/2张饼,把它平均分成3份,每份是整张大饼的几分之几?解决这个问题,学生自己的知识和经验是把半张饼平均分成3份,列式是÷3。甲数÷乙数=甲数×乙数的倒数以及3的倒数是。在解决问题的过程中,借助直观图,把学生已有的知识和经验整合在一起,生成新的数学知识,分析除以一个数(0除外)等于分数乘这个数的倒数。这样设计分数除法法则的学习,首先删去了学生难于理解的计算方法推导的过程,另外,由整数除法和分数乘法的规律迁移到分数除法,是一个计算方法验证过程,也是计算方法形成和巩固的过程。在这里,删去的是次要的、过高的要求,强化的是学生扎扎实实进行分数除法计算最基本、最有价值的内容。同时,培养了学生自主建构知识的能力。

  二、渗透数学建模思想,强化用方程解答分数除法问题。

  从过去的经验看,分数除法应用问题的特点是”已知部分和所对应的分率,求整体“。实事求是地讲,这样的应用问题都是已发生的事物,是经过人为”加工“、”编造“的应用问题。这样的问题解决虽然在现实生活中应用较少,但在传统教材和教学中,一直是教材内容的重点和教学评价选题的焦点。众所周知,在很长时期内,分数除法问题要求用算术方法和方程两种方法解答,而用算术方法解答无论如何也找不到学生能够理解的、能够说明并理解数量关系的问题情境。所以,人们就用”已知部分和所对应的分率,求整体,用除法“的解题套路来解决问题。这样的学习,不利于学生理解问题中的数量关系,没有思维的条理性训练,有的只是死记硬背和机械的模仿训练。本教材有关分数除法问题的解决只采用列方程解答。这样设计的思考有以下几点:第一,有利于学生应用已有知识解决问题。即:把单位”1“看作χ,根据”求一个数的几分之几是多少,用乘法“找到题中的等量关系。第二,渗透数学建模的思想。方程是现实运算的一个有效的数学模型。结合分数除法问题的解决,通过一些典型事例,让学生经历分析问题(找等量关系)--列出方程表示--解方程等过程。这是《数学课程标准》提倡的数学建模思想的具体体现。

  三、借助线段图分析数量关系,发挥其工具性。

  线段图作为小学阶段数形结合,分析数量关系的工具,历来成为小学数学中的重要内容。传统教材和教学中,人们在关注用线段直观描述数量关系的同时,也把用线段图表示数量关系作为一般要求。即,把画线段表示题中的数量关系作为学习要求,增加了学习的难度。本套教材,只发挥线段图的工具性。即:借助线段图分析数量关系,不把画线段图表示数量关系作为学习要求。通过线段图来分析问题中的数学信息和数量关系,从而找出问题中隐含的等量关系。让学生在自主解决问题中,体会画图分析问题、解决问题的优越性和工具性。

  本单元共安排5课时。主要内容包括:分数除以整数;一个数除以分数;简单的应用问题;混合运算。

  本单元的教育目标是:

  1、会进行简单的分数除法以及分数四则混合运算,能用方程解决有关分数除法的简单实际问题。

  2、能借助线段图分析数量关系,在用方程解简单分数除法应用问题的过程中,能进行有条理的思考,并对结论的合理性作出有说服力的说明。

  3、能够表达解决简单分数除法实际问题的过程,并尝试解释所得的结果。

  4、体验画线段图分析问题的直观性和用方程解决问题时思维的条理性,认识到许多分数除法问题可以用方程的方法来解决。

  ●分数除法,安排4课时。

  第1课时,分数除以整数。教材首先设计了三组有关系的口算题。如:20÷5,20×。通过计算20÷5=4,20×=4,发现它们的结果相同,进而得出:甲数÷乙数=甲数×乙数的倒数。接着,设计了”把张大饼平均分成3份,每份是这张大饼的几分之几?“的问题,探索分数除以整数的计算方法。教材以学生交流的形式呈现了学生计算和验证的过程。一是利用图示和已有的分数知识,推导出÷3==,二是直接利用发现的规律得出:÷3=×=。得到:分数除以一个数等于分数乘这个数的倒数。然后,在”试一试“,设计了分数除以整数的三道题,让学生应用上面的方法尝试计算。教学时,要给学生充分的口算和讨论规律的时间,然后,启发学生利用以前学过的除法的意义,倒数的知识,分数乘法的知识解决问题,说明结果的正确性。把分数除以整数计算方法的学习过程,变成知识扩展、方法验证的过程。

  第2课时,一个数除以分数。教材贯彻在解决问题中学习计算的设计思路,选择了把消毒液分装在每瓶能装升的小瓶中的典型事例,设计了两个问题。(1)把2升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习整数除以分数的除法;(2)把升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习分数除以分数的计算方法。两个问题都呈现了算术和用方程解的两种方法。这节课的内容,计算方法是上节课的进一步拓展,根据题意列算式和方程是重点。教学中,首先要帮助学生理解题意,明白把2升消毒液倒入每瓶能装升的小瓶中,需要几个瓶子,就是求2升中有几个升。再鼓励学生用自己的方法试着解答。χ=2和χ=,除根据等式的基本性质解方程外,还可以利用倒数的知识,即两边直接乘的倒数来解决。如果学生只用方程两边同时除以的方法解答,教师就提出兔博士的问题”χ=2还可以怎样解?“启发学生用倒数的知识列方程χ×=2×解答。”试一试“中安排了三道除数是分数的式题,要给学生充分的试算和交流的时间,重点说一说自己是怎样想的。教师还可以引导学生讨论一下分数除以整数、分数除以分数有什么共同点,进一步巩固分数除法的计算方法。

  第3课时,简单的已知一个数的几分之几是多少,求这个数的简单问题。教材选择了同学们开联欢会布置会场的事情,呈现了布置会场的情境图和”用的`红气球占总数的“、”红气球有28个“等文字信息,以及”一共用了多少个气球?“的问题。通过兔博士的话,提出”把气球的总数看作单位‘1’,画出线段图分析一下的要求“,并呈现了线段图。教学时,要在学生了解数学信息和知道了要解决的问题后,师生共同画线段图来分析数量关系,找到等量关系式,再鼓励学生自己试着解答,并检验计算的结果。交流时,重点让学生说说是怎样想的、怎样解答的,用自己的方法解释计算结果的正确性。”试一试“中,安排了一个数的几分之几是两数和,求这个数的问题,鼓励学生画线段图并解答。

  第4课时,稍复杂的”已知一个数的几分之几是多少,求这个数“的问题。教材首先选择了玩具厂计划生产碰碰车的事例,用图文结合的方式呈现了已经完成计划的,还要生产190辆等信息和”这批碰碰车有多少辆?“的问题。通过兔博士的话,提示画线段图来分析数量关系并呈现了完整的线段图。这是一道需要两步计算的分数除法的实际问题,可找到两组等量关系,列出两个方程解答。(1)计划生产的辆数-已经生产的辆数=还要生产的辆数,方程为:χ-χ=190。(2)计划生产的辆数×还剩下的几分之几(1-)=还要生产的辆数,方程为:χ(1-)=190。教学时,要充分利用线段图指导、帮助学生分析问题中的数学信息和数量关系,找到题中给出的等量关系,再鼓励学生用列方程的方法解答。

  分数混合运算的顺序与整数一样,本节课的混合运算主要是根据分数除法的特点,解决运算过程中的方法问题。教材设计了三道分数混合运算式题,(1)题是除加混合运算,运算中要先算除法,并把除法变成乘除数的倒数。(2)题是乘除混合运算。运算时,把除法转化为乘除数的倒数后,可以有不同的约分方法。第一,直接在三个分数上约分;第二,把三个分数相乘写成分子乘分子,分母乘分母的式子,再约分。(3)是带小括号的除减混合运算。教学中,由于两步混合运算的顺序学生已经非常熟悉,所以,让学生说一说运算顺序,自己计算。在交流学生计算方法和结果的同时,掌握分数两步混合运算方法。

分数除法教案19

  教学目标

  使学生掌握分数除法和加减法混合运算的运算顺序,能正确地进行运算,并能具体情况采用合理的计算方法,提高学生四则计算的能力。

  教学重难点

  运算顺序,简便运算。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、复习引新

  二、教学新课

  三、

  四、作业

  1、说说下面各题的运算顺序。

  8÷2+9÷318÷(12-3)

  2、引入新课

  1、教学例1

  这道题要先算什么,再算什么?

  上下练习。

  引导观察计算过程,说明递等式书写的规范过程,并说明理由。

  2、组织练习。

  练一练1

  说顺序后练习。

  3、例2

  说运算顺序,这里除法的`两步按照计算法则要怎样算?

  观察转化成乘法后的算式,想一想,是不是可以简便运算?

  上下用简便算法。

  问:用了什么运算定律?

  4、练习;

  练一练2

  这里除一个数要怎样算?

  用简便算法。

  说说各运用了什么运算定律,是怎样算的?

  说说运算顺序,要注意什么?

  练习111~3、4、5

  课后感受

  混合运算学生做起来很简单,只是在简便运算上还要注意灵活运用。

分数除法教案20

  教学内容:

  苏教版义务教育教科书《数学》六年级上册第49~50页例5、试一试和练一练,第51页练习七第1~4题。

  教学目标:

  使学生联系对“求一个数的几分之几是多少”的已有认识,学会列方程解答“已知一个数的几分之几是多少求这个

  数”的简单实际问题,进一步体会分数乘、除法的内在联系,加深对分数表示的数量关系的理解。

  教学重点:

  列方程解答“已知一个数的几分之几是多少,求这个数”的.简单实际问题。

  教学难点:

  理解列方程解决简单分数实际问题的思路。

  教学过程:

  一、导入

  1、出示例5中两瓶果汁图,估计一下,大、小两瓶果汁之间有什么关系?

  出示:小瓶的果汁是大瓶的。

  这句话表示什么?你能说出等量关系式吗?

  如果大瓶里的果汁是900毫升,怎么求小瓶果汁里的果汁?自己算算看。

  如果知道小瓶里的果汁,怎么求大瓶中的果汁呢?

  2、揭示课题:简单的分数除法应用题

  二、教学例5

  1、出示例5,学生读题。

  提问:你想怎么解决这个问题?

  2、讨论交流:你是怎么想、怎么算的?

  (1)用除法计算。

  引导讨论:为什么可以用除法计算?依据是什么?

  (2)用方程解答。

  讨论:用方程解答是怎么想的,依据是什么?

  让学生在教材中完成解方程的过程,并指名板演。

  3、引导检验:900是不是原方程的解呢,怎么检验?

  交流检验的方法。

  4、教学“试一试”

  (1)出示题目,让学生读题理解题目意思。

  (2)讨论:这里中的两个分数分别表示什么意思?

  这题中的数量关系式是什么?

  (3)这题可以怎么解答,自己独立完成,并指名板演。

  (4)交流:你是怎么解决这个问题的?

  4、小结。

  三、练习

  1、做“练一练”。

  各自独立解答后,进行交流汇报。提倡学生用两种方法进行解答。

  2、做练习十二第1题。

  (1)读题,画出题目中的关键句。

  (2)学生说题意

  (3)引导学生说出并在书上写出数量关系式。

  (4)独立解答,并指名板演。

  (5)集体评议并校正。

  3、做练一练第2题。

  启发:你是怎样分析数量关系的?为什么要列方程解答?

  3、小结解题策略。

  四、作业:练习十二第1、3、4题。

  板书设计:(略)

分数除法教案21

  教学目标

  1.使学生在掌握稍复杂的求一个数的几分之几是多少的分数应用题的基础上,利用其数量关系列方程解答稍复杂的已知一个数的几分之几是多少,求这个数的应用题。

  2.在分析解答的过程中拓宽学生的思维空间,培养学生分析问题的能力。

  教学重点和难点

  确定单位1,理清题中的数量关系。利用题中的等量关系用方程解答。

  教学过程

  (一)复习准备

  1.找出单位1。

  2.出示第88页的复习题。

  (1)画图分析并列式解答。

  (2)说说你是怎样思考和解答的?

  (3)学生分析教师板演线段图。

  3.导入:

  今天我们继续学习分数应用题。

  (二)学习新课

  现在老师把这道题改动一下。

  1.出示例6。

  千克?

  2.分析解答。

  (1)读题,找出已知条件和问题。

  (2)提问:这两道题有没有相同的条件?(有,都已知吃了这袋大米的.

  不同的地方在哪儿?(前者已知一袋大米的重量,求还剩的重量,后者已知还剩的重量,求这袋米的重量。)

  (3)我们把这道题也用线段图表示出来,应从哪个条件入手找单位

  (4)谁来分析这个条件?

  成8份,吃了的占其中的5份。)

  学生分析的同时教师板演线段图:

  (5)上道题是已知单位1的重量,求还剩的重量,这道题呢?谁能把条件和问题标在图上?

  生在黑板上画出:

  (6)对比两道题的线段图说一说是怎样变化的。(条件和问题互相转化了。)

  (7)无论谁为条件,谁为问题,题中所涉及的数量关系变了吗?(没变)

  (8)说一说上题在解答的过程中涉及到哪些数量关系?(总重量-它

  (9)现在买来大米的重量是未知的,根据这个等量关系可以用什么方法解答?(列方程)

  (10)试着在练习本上列方程解答。

  (11)谁能说说你是怎样解答的?

  生口述:

  解 设买来大米x千克。

  答:买来大米40千克。

  题中的等量关系式是什么?

  (买来的重量还剩几分之几=还剩的重量。)

  3.小结。

  通过刚才的分析解答,你认为这两道题实际上什么相同。(数量关系相同。)

  解答方法相同吗?为什么?

  (解答方法不同。单位1已知,可根据数量关系用算术方法解答;单位1未知,可用x代替,运用数量关系式列方程解答。)

  4.出示例7。

  烧煤多少吨?

  (1)读题,找出已知条件和所求问题。

  (3)画图分析解答。

  ①从这个条件可以看出题中是几个数量相比?(两个数量相比。)

  追问:哪两个?(四月份实际烧煤量和四月份计划烧煤量。)

  我们应把哪个数量看作单位1?为什么?(把原计划烧煤量看作单位1。因为和它相比,以它为标准,所以把它看作单位1。)

  ②画图时我们要用两条线段表示两个数量,先画谁呢?(先画原计划烧煤吨数。)

  下一步画什么?(实际烧煤吨数。)

  指名回答:把计划烧煤量看作单位1,平均分成9份,实际比计划节约的烧煤量相当于这样的1份,即节约的烧煤量占计划烧煤量的

  这两条线段谁为已知?谁为未知?

  在提问回答的过程中教师板演线段图:

  ③指图提问:计划烧煤量与实际烧煤量之间有什么样的等量关系?

  (计划烧煤吨数-节约吨数=实际烧煤吨数。)

  计划烧煤吨数未知怎么办?(设计划烧煤吨数为x,用方程解答。)

  ④试做在练习本上。

  ⑤反馈:说说你的解答方法及依据。

  解 设四月份原计划烧煤x吨。

  答:四月份原计划烧煤135吨。

  (1)学生独立画图分析并列式解答。

  (2)反馈提问:

  ②你用什么方法解答的?依据的等量关系式是什么?

  (三)课堂总结

  今天我们学习的例6、例7与前边学过的分数应用题相比有什么相同点?有什么不同点?

  (数量间的等量关系相同,解答方法不同。)

  (四)巩固反馈

  (1)课本第91页的第2题。

  (2)根据列式补充条件:

  (五)布置作业

  课本第91页第1,3题。

  课堂教学设计说明

  本节课的内容是在学习了已知一个数的几分之几是多少,求这个数的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。

  由于新旧知识联系很密,因此本节课在教案设计上抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在画图分析的过程中抓住数量关系相同,只是已知和问题发生了转化,引导学生利用数量间的等量关系用方程解答。

  在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。

分数除法教案22

  教学目标:

  1、通过本课的复习使学生能很好的掌握本单元所学的知识,能正确 的计算分数的除法。

  2、全盘对本单元的知识有个全面的了解,解决在学习时所遇到的问题。

  3、能很好的计算分数乘除混合运算的题目。

  教学重点:分数除法的计算的方法。

  难点:分数乘除的混合运算的运算的`计算的正确率

  教学过程:

  一、复习回顾

  小组讨论

  1、怎么样来计算分数除法

  请学生进行讨论,讨论好以后 再请学生进行回 答。

  2、教师强调:在计算分数除法的时候我们除以一个数等于乘以这个数的倒数。

  请生说说你是怎么来理解这句话的。

  二、进行练习

  1、做课本66的1

  请学生直接的在课本上进行口算,口算的时候让学生要看清题目,注意区分乘和除。

  学生做好了以后再请学生进行口答。

  对于做错的题目,让请学生自己来分析下错误的原因是什么?

  2、做第2题

  前面4题可以让学生独立的做,做好了以后再请学生说说计算的方法是怎么样的?

  并请学生上黑板进行板演。

  进行集体订正。

  3、对比练习

  1) 城东小学六年级有学生450人,占全校人数的2/9,全校有学生多少人?

  2)城东小学有学生450人,六年级占其中的2/9,六年级有学生多少人?

  4、做66页第4题

  请学生独立的做,做好了以后请学生分析一下说说你是怎么想的?

  做好以后请学生进行板演

  5、根据方程或算式,将应用题补充完整。

  1)、120×3/8

  ( ),苹果树的棵数是梨树的3/8,( )?

  2)、3/8x=120

  ( ),苹果树的棵数是梨树的3/8,( )?

  3)、120+120×3/8

  ( ),苹果树的棵数是梨树的3/8,( )?

  请学生独立的做,做好了以后请学生说说是怎么想的?

  三、布置作业

  做66页第5~7题

  1、在计算练习中,可增加以下练习,帮助学生进一步体会分数计算中的一些规律。

  在( )里填上“>”“<”“=”

  4/7×1/3( )4/7 4/7×4/3( )4/7

  4/7÷1/3( )4/7 4/7÷4/3( )4/7

  4/7÷1( )4/7 4/7×1( )4/7

  先让学生独立思考,再说说判断的结果和理由。

  2、在解决实际问题时,要紧紧围绕数量关系的分析学生掌握分数应用题的解答方法。

  3、加强对比有利于学生辨析什么情况下列算式解答,什么情况下列方程式方便。

  课后反思:

  通过今天的复习,部分学生已初步感受到单位"1"的量未知,列方程解答,实际也可以用分数除法解答。于是我及时引导,再次让学生体会,从而理解乘除之间互逆关系。

  在今天学习第4题的练习中,结合具体题目,补充了工作效率、工作时间、工作总量三个数量之间的关系,并结合学生体会到的分数乘除法之间的关系再次体会到列方程解与分数除法解的优劣。

  在处理第7题的练习中,学生对变化着的“1”不注意,部分学生将国土面积乘5/2等于草地面积。归其原因还是没有掌握分数应用题数量关系。

分数除法教案23

  单元教材分析:本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。主要内容包括分数除法的意义和计算;解决问题;比的意义与基本性质,求比值一化简比,以及比的应用。通过本单元的学习,学生可以比较系统大掌握了分数的四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。

  单元教学目标:

  1、理解并掌握分数除法的计算方法,回进行分数除法计算。

  2、回解答已知一个数的几分之几是多少求这个数的实际问题。

  3、理解不的意义,知道比与分数、除法的.关系,并能类推出比的基本性质。能够正确地化简比和求比值

  4、能运用比的知识解决有关的实际问题。

  学情分析:

  本单元学习之前,学生基本上完成了分数加、减以及分数乘法的学习。学生可以根据整数除法的意义理解分数除法的意义。

  教学目标:

  1、让学生理解分数除法的运算意义。

  2、掌握分数除以整数的计算方法。

  3、培养学生的计算能力和分析能力。

  教学过程:备注

  活动一:

  出示例1

  每盒水果糖重100克,3盒有多重?

  1、读题理解题意

  2、列式100*3=300

  3、把乘法算式改成两道除法算式

  300/3=100300/100=3

  4、用千克做单位怎样列式?

  1/10*3=3/10

  5、|用同样的方法改写成除法算

  小结:分数除法的意义

  活动二:

  出示例2

  把一张纸的4/5平均分成2份,每份是这张纸的几分之几?自己试着折一折,算一算

  1、把4/5平均分成2份,就是把4个1/5平均分成2份,每份就是2个1/5,就是2/5

  2、把4/5平均分成3份,每份就是4/5的1/2,也就是4/5*1/2

  3、根据上面的折纸实验和算式,你发现什么规律?

  小结:(略)

  活动三:

  巩固练习:

  1、31页做一做1、2

  板书设计

  略去设计

分数除法教案24

  教学内容:

  教材第25~26页的内容及练习。

  教学目标:

  1.在涂一涂,算一算等活动中,探索并理解分数除法的意义。

  2.探索并掌握分数除以整数的计算方法,并能正确计算。

  3.能运用分数除以整数的计算方法解决实际问题。

  教学重难点:

  1.探索并理解分数除法的意义。

  2.探索并掌握分数除以整数的计算方法,能正确计算。

  教学过程:

  一、创设情景激趣揭题

  1.引导操作:出示一张7等份的纸,让学生涂一涂,用它表示一个分数。

  2.引入并板书课题:分数除法(一)

  二、扶放结合探究新知

  1.提问:如果把这张纸的'4/7平均分成2份,每份是多少?

  2.把这张纸的4/7平均分成3份,又该怎样解决?

  3.引导归纳分数除以整数的意义及计算方法。

  4.想一想;整数除法也有类似的规律吗?

  5.填一填,验证猜想。

  1÷4 1×1/4

  7÷3 7×1/3

  三、反馈矫正落实双基

  1.出示26页试一试。

  2.指导完成26页练一练的1~3题。

  四、小结评价布置预习

  1.引导小结

  (1)这节课我们学习了什么知识?

  (2)还有什么问题?

  2.布置预习:27~28分数除法(二)

  板书设计:

  分数除法(一)

  4/7÷2=4/7×1/2=2/7

  4/7÷3=4/7×1/3=4/21

  分数除以整数的意义,与整数除法的意义相同。

  计算法则:分数除以整数(零除外),等于乘这个整数的倒数

分数除法教案25

  教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生

  动手操作的能力和抽象,概括,归纳的能力.

  教学重点:分数的数感培养,以及与除法的联系.

  教学难点:抽象思维的培养.

  教学过程:

  一,铺垫复习,导入新知 [课件1]

  1,提问:A,7/8是什么数 它表示什么

  B,7÷8是什么运算 它又表示什么

  C,你发现7/8和7÷8之间有联系吗

  2,揭示课题.

  述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系".

  板书课题:分数与除法的关系

  二,探索新知,发展智能

  1,教学P90 .例2:把1米长的钢管平均截成3段,每段长多少

  提问:A,试一试,你有办法解决这个问题吗

  板书:用除法计算:1÷3=0.333……(米)

  用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就

  是1/3米.

  B,这两种解法有什么联系吗

  (从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)

  板书: 1÷3= 1/3

  C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来

  表示 也就是说整数除法的商也可以用谁来表示

  2,教学P90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]

  (1)分析:A,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式

  B,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢

  板书: 3÷4= 3/4

  (2)操作检验(分组进行)

  ① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼

  ② 反馈分法.

  提问:A,请介绍一下你们是怎么分的

  (第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)

  (第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)

  B,比较这两种分法,哪种简便些

  ※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.

  3,小结提问:A,观察上面的学习,你获得了哪些知识

  板书: 被除数 ÷ 除数 = 除数 / 被除数

  B,你能举几个用分数表示整数除法的商的例子吗

  C,能不能用一个含有字母算式来表示所有的例子

  板书: a÷b=b/a (b≠0)

  D,b为什么不能等于0

  4, 看书P91 深化.

  反馈:说一说分数和除法之间和什么联系 又有什么区别

  板书:分数是一个数,除法是一种运算.

  三,巩固练习 [课件5]

  1,用分数表示下面各式的`商.

  5÷8 24÷25 16÷49 7÷13 9÷9 c÷d

  2,口算.

  7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )

  3, 7/10表示把单位"1"平均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.

  四,全课小结

  当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.

  在整数除法中零不能作除数,那么,分数的分母也不能是零.

  五,家作

  P93 .1,2,3

  板书设计: 分数与除法的关系

  例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4

  被除数 ÷ 除数 = 除数 / 被除数

  a÷b=b/a (b≠0)

  分数是一个数,除法是一种运算

分数除法教案26

  设计说明

  《数学课程标准》指出:学生是学习的主体,教师是组织者、引导者、合作者。因此,本节课以自主探究、小组合作的学习方式为主,采用情境教学法。先通过分月饼来导入新知,再通过实例验证,自己总结归纳出整数除以分数的计算方法,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、验证新知、应用新知、巩固和深化新知的目的。本节课的教学设计有如下特点:

  1.注重对算理的探究。

  探究算理是计算教学的根本。本节课的教学设计借助除法的意义和直观图形,让学生通过观察、比较与思考,发现整数除以整数(0除外)与整数除以分数知识间的内在联系,初步体会“除以一个不为零的.数”与“乘这个数的倒数”之间的联系。这样不仅为学生创设了一个理解分数除法意义的机会,还教会了学生一种学习的方法,即分数除法的意义可以联系整数除法的意义进行学习。

  2.突出自主探究的过程。

  《数学课程标准》指出:自主探究、合作交流是数学学习的重要方式。本节课充分发挥学生的主体作用,先让学生独立思考,探究计算方法,再在独立探究的基础上,让学生小组合作讨论,探究不同的计算方法。这样不仅可以使学生经历独立探究、小组探究的过程,还可以使学生对“整数除以分数”的算理和算法的理解更深刻。

  课前准备

  教师准备 PPT课件

  学生准备 圆形纸片

  教学过程

  第1课时 分数除法(二)(1)

  ⊙创设情境,导入新课

  有4张饼,平均每人得到了2张;还是同样的4张饼,平均每人得到了1张。你能猜出两次分别是几个人分的饼吗?你是怎么想的?

  设计意图:以猜一猜的形式导入新课,生动地呈现例题,激发了学生学习的兴趣。

  ⊙合作交流,探究新知

  1.初步探究计算方法。

  (1)课件出示教材57页上面例题。

  (2)组织学生独立完成前两个小题,明确数量关系。

  学生独立完成后汇报:

  每2张一份,可分成几份?4÷2=2(份)

  每1张一份,可分成几份?4÷1=4(份)

  (3)组织学生讨论后,明确一个数除以分数的计算方法。

  ①引导学生动手操作,用圆形纸片代替饼,画一画,分一分,完成填空,并汇报自己的分法。

  生1:我把每个圆都平均分成2份,一共可分成8份,可以用算式4÷=4×2=8(份)来表示。

  生2:我把每个圆都平均分成3份,一共可分成12份,可以用算式4÷=4×3=12(份)来表示。

  ②观察算式,明确计算方法。

  组织学生观察下面两个算式,交流自己的发现。

  4÷=4×2=8 4÷=4×3=12

  小结:一个数除以一个不为零的数,等于乘这个数的倒数。

  设计意图:让学生充分利用学具,独立完成整数除法的计算,明确题中的数量关系;借助画一画、分一分的方法完成除法到乘法的转化。通过自主观察、小组讨论交流,真正理解一个数除以一个不为零的数,等于乘这个数的倒数的计算方法。

  2.进一步巩固计算方法。

  (1)出示教材57页中间例题的表格。

  (2)引导学生观察表格前两行,讨论、交流表格中各项的意义和计算方法。

  (3)组织学生填写表格。

  (4)讨论:从表格“算式”一栏,你发现了什么?

  (一个数除以一个不为零的数,等于乘这个数的倒数)

  3.算一算,巩固计算方法。

  (1)组织学生独立完成教材57页下面例题。

  (2)汇报交流,说明计算时需要注意的事项。(能约分的要约分)

  ⊙巩固练习,提升反馈

  完成教材58页3题,集体订正。

  ⊙课堂总结

  通过本节课的学习,你有哪些收获?

  ⊙布置作业

  教材58页1、2题。

  板书设计

  分数除法(二)(1)

  4÷=8 4÷=12

分数除法教案27

  教学目标:

  使学生理解分数除法的意义,理解并掌握分数除以整数的计算法则,能正确地进行计算,并在教学中渗透转化的教学思考方法,培养学生的归纳概括能力。

  重点难点:

  分数除以整数的.计算法则

  教学准备:

  实物投影仪

  教学过程:

  一、复习。

  1.根据算式32×25=800写出两道除法算式。

  2.说出下面各数的倒数。

  0.25 、3、 5、 1、

  3.填空。

  (1)30÷5表示把30平均分成( )份,

  求其中( )份是多少。

  (2)求18的 是多少,可以用算式18×( ),

  也可以用算式18÷( ),所以18÷3=18×( )。

  二、新授。

  1、师先从学生的生活经验入手,问:同学们都参过哪些兴趣小组呢?

  大屏幕出示信息窗的情景图,问:大家可以提出哪些除法问题呢?

  板书:给小猴子做一件背心需要多少米花布呢?

  怎样列算式呢?

  师:小组讨论一下,怎样计算呢?

  哪位同学上来交流一下你组的计算过程呢?

  教师归纳总结:

  (1) 可以根据题意画出线段图。

  (2) 利用平均分的思想,把 米平均分成3段,实际上就是把9个 米平均分成3份,每份是3个 米,

  (3)根据分数乘法的意义,把 米平均分成3份,求每份是多少,也就是求 的 是多少。

  1、师小结:分数除以整数,如果分数的分子能被整数整除时,可以直接去除。如果分子不能被整数整除的,就乘分子的倒数。

  2、教学绿点部分。

  现在大家可以自己解决第二个问题了,(大屏幕出示:做一条裤子需要花布多少米?)

  学生独立操作解答。

  此题让学生明白,在解答分数除以整数的情况下,乘分子的倒数可以适用于任何情况,让学生体会将分数除法转化成分数乘法更具有普遍性。

  师:小组讨论交流,观察、比较、分析“ ”和“ ”在计算方法上的异同点。

  最后归纳出分数除以整数的计算方法:分数除以整数(0除外),等于分数乘这个整数的倒数。

  问:上述结语中为什么要添上“0除外”?

  三、巩固练习。

  1.课本第61页的第1、2题。

  2.下面的计算有错吗?错的请改正。

  3.填空。

  四、作业。

  1.自主练习第4、8、9题。

  2.判断对错

分数除法教案28

  分数除法一(分数除以整数)

  教学目标和要求

  1, 在涂一涂、算一算等活动中,探索并理解分数除法的意义。

  2, 探索并掌握分数除以整数的计算方法,并能正确计算。

  3, 能够运用分数除以整数解决简单的实际问题。

  教学重点

  分数除以整数的计算方法。

  教学难点

  分数除以整数的计算方法

  教学准备

  教学时数

  1课时

  教学过程

  一, 涂一涂,算一算

  1, 把一张纸的4/7平均分成2份,每份是这张纸的几分之几?

  2, 把一张纸的4/7平均分成3份,每份是这张纸的.几分之几?

  (1)第1题让学生可以先用画图、分数的意义等方法解决这个问题,然后根据除法的意义列出算式4/7÷2。在画图、理解分数的意义的基础上,生得出4/7÷2=2/7。因此,学生可能会得到“分母不变,被除数的分子除以除数得到商的分子”。

  (2)鼓励学生探索第2题,联系分数乘法的意义,说明把4/7平均分3份,也就是求4/7的1/3,从而理解其基本算理。让学生在第1题的基础上来引导学生发现此时被除数的分子不能被除数整除,从而总结出分数除以整数的一般方法,即用分数乘以除数的倒数。

  二, 填一填,想一想

  1, 变换探索的角度,呈现三组算式,让学生实际运用,再次验证一个分数除以整数的意义和算理。2

  2, 师导学生根据前面的三个活动,总结算法。3,

  3, 让学生先列举出分数除法算式,并利用手中的学具具体地分一分,涂一涂,借助图形语言进行理解。

  三, 试一试

  练习分数除以整数的计算方法,沟通起分数除法与分数乘法的联系。

  四, 练一练

  1,第26页第2,3题,让学生独立解决。

  教学内容(课题)

分数除法教案29

  教学目的:使学生会计算带分数除法和已知一个数的几分之几倍是多少求这个数的文字题。

  教学过程

  一、复习

  1.口算下列各题。

  2.把下列假分数改写成带分数。

  3.把下列带分数改写成假分数。

  让学生独立完成。巡视时注意学生发生错误的情况,加强个别辅导。做完后集体订正。

  二、新课

  1.教学例5。

  教师出示例5:

  教师:我们学过的分数乘法中有带分数的应该怎么办?(先把带分数化成假分数,然后再乘。)

  教师:那么在分数除法中有带分数的,应该怎样计算?(也要先把带分数化成假分数,再进行计算。)

  教师让学生把例5中的带分数化成假分数,再独立计算,巡视时。注意学生将除法转化成乘法的同时是否将除数改写成它本身的倒数,约分是否有错等。做完后集体订正。

  2.做教科书第39页中间做一做的题目。

  让学生独立完成。做完后集体订正。

  3.教学例6。

  (1)准备题。

  ①的3倍是多少?②的是多少?③的是多少?

  教师:这三道题按照题意应该用什么方法计算?(按照分数乘法的意义,用乘法计算。)

  教师让学生计算后集体订正。

  (2)教学6。

  教师出示例6:

  教师指名说题目的条件和问题。

  教师:如果例6中的一个数已知的,那么求一个数的几倍应该怎样计算?(应该用乘法计算。)

  教师:从上节课学习过的内容来看,例6怎样解答比较方便?(用方程解答比较方便。)

  教师:应该设什么数为未知数x?(设这个数为未知数x。)

  让学生列方程解答。巡视时,注意学生设未知数、书写是否规范,发现问题及时纠正,做完后集体订正。

  4.做教科书39页下面做一做题目。

  让学生独立完成。巡视时,注意学生设未知数和书写规范方面的问题。做完后集体订正。

  三、巩固练习

  1.做练习十第1题第1行的小题。

  让学生装独立完成。做完后集体订正。

  2.做练习十第2题的'前2个小题。

  让学生装独立完成,做完后集体订正。

  3.做练习十第3题的第(1)~(3)题。

  第(1)题:教师先让学生读题,弄清题目的条件和问题以及它们之间的关系,然后再列方程解答。做完后集体订正。

  第(2)、(3)题:让学生装独立完成。订正时,让学生装说一说是根据什么列方程式的?(根据乘法的意义。)

  4.做练习十的第5题。

  教师先让学生读题和分析数量关系,再列方程解答。做完后集体订正。

  四、作业

  练习十第1题第2行的小题,第2题的最后一个小题,第3题的第(4)题,第4题。

分数除法教案30

  教学目标:

  能力目标:培养学生动手动脑能力,以及计算能力。

  知识目标:

  体验整数除以分数的计算方法,并能正确的计算。

  情感目标:

  培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验成功的欢乐。

  教学重点:整数除以分数的计算方法。

  教学策略:

  在小组间交流合作的'基础上,提高计算能力和计算速度。

  教学准备:小黑板

  教学过程:

  一、导入新课。

  前一课我们学习了整数除以分数的计算方法,你们还记得吗?老师考一考你们好吗,看题目。

  6÷=÷=÷=÷=

  2÷=÷=÷=÷=

  通过提问,全班订正,导入新课。并评价。

  二、用小黑板出示下列题目。

  3x=x=10x=25x=

  提问学生解方程的规律,并指名说一说第一小题的解法。

  其它题目独立作,全班订正。

  三、课本第三题

  指名说出题目的意思,然后解答,全班判定。

  四、第四题

  1、先独立计算,全班订正。

  2、小组间交流发现了什么规律。

  3、全班交流。

  4、教师小结。

  板书设计:

  整数除以分数

  除以真分数商大于整数

  整数除以分数除以1商等于整数

  除以假分数商小于整数

分数除法教案31

  分数乘、除法及比是本册教材的重点内容,为突出知识间的内在联系,帮助学生形成知识网络,本节复习课在教学设计上主要关注以下几个方面:

  1.重视对分数乘、除法之间的关系及分数乘、除法计算方法的复习。

  教学中,结合教材内容,进一步强调分数乘、除法之间的关系,加强计算方法的指导,使学生在进一步理解并掌握分数除法是分数乘法的逆运算的同时,计算能力得到提高。

  2.重视对相关概念、性质及某些知识间相互关系的复习。

  教学中,把比的相关概念、倒数的相关概念、比的性质以及比与分数、除法的关系等作为重要的复习内容,结合教材相关习题进行全面、系统地复习,使学生加深对概念的理解,同时将比与分数、除法联系起来。

  3.重视对学生解决问题能力的培养。

  教学中,把用分数乘、除法解决问题和用比解决实际问题作为重要的复习内容之一,结合教材习题,重点分析题中的数量关系,使学生通过对比练习,更好地掌握解决分数乘、除法问题以及比的有关问题的思路,提高学生分析问题、解决问题的能力。

  相同点:题中的'数量关系相同,解题思路相同。

  不同点:①题表示单位“1”的量已知,用乘法计算。

  ②题表示单位“1”的量未知,列方程解答或用除法计算。

  (3)总结解决分数乘、除法问题的方法和解题关键。

  ①方法:表示单位“1”的量已知,求单位“1”的几分之几是多少,用乘法计算;表示单位“1”的量未知,已知一个数的几分之几是多少,求这个数,列方程解答或用除法计算。

  ②关键:找准表示单位“1”的量。

  设计意图:结合教材习题,复习画线段图分析问题的方法,在对比中使学生进一步理解并掌握解决分数乘、除法问题的方法和解题关键,提高学生解决问题的能力。

  ⊙巩固练习

  1.完成教材115页6题。

  地球上海洋面积是36000万平方千米,占地球总面积的。地球总面积是多少万平方千米?

  2.完成教材116页8题。

  (1)五年级同学收集了165个易拉罐,六年级同学比五年级多收集了。六年级收集了多少个易拉罐?

  (2)四年级比六年级少收集了,四年级收集了多少个易拉罐?

  3.完成教材116页10题。

  一列火车的速度是180千米/时。一辆小汽车的速度是这列火车的,是一架喷气式飞机的。这架喷气式飞机的速度是多少?

  4.完成教材116页11题。

  (1)用84 cm长的铁丝围成一个长方形,这个长方形的长与宽的比是2∶1。这个长方形的长与宽分别是多少厘米?

  84÷2=42(cm) 长:42×=28(cm)

  宽:42×=14(cm)

  (2)用84 cm长的铁丝围成一个三角形,这个三角形三条边长度的比是3∶4∶5。三条边各是多少厘米?

  [84÷(3+4+5)=7(cm) 7×3=21(cm)

  7×4=28(cm) 7×5=35(cm)]

  ⊙课堂总结

  通过本节课的复习,你有什么收获?

分数除法教案32

  教学目标

  1.使学生掌握列方程解答“已知一个数的几分之几是多少,求这个数”的应用题的解答方法

  2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.

  教学重点

  找准单位“1”,找出等量联系.

  教学难点

  能正确的分析数量联系并列方程解答应用题.

  教学过程

  一、复习、引新

  (一)确定单位“1”

  1.铅笔的支数是钢笔的 倍.

  2.杨树的棵数是柳树的 .

  3.白兔只数的 是黑兔.

  4.红花朵数的 相当于黄花.

  (二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?

  1.找出题目中的已知条件和未知条件.

  2.分析题意并列式解答.

  二、讲授新课

  (一)将复习题改成例1

  例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?

  1.找出已知条件和问题

  2.抓住哪句话来分析?

  3.引导学生用线段图来表示题目中的数量联系.

  4.比较复习题与例1的相同点与不同点.

  5.教师提问:

  (1)棉田面积占全村耕地面积的 ,谁是单位“1”?

  (2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积× ).

  (3)全村耕地面积的 就是谁的面积?(就是棉田的面积)

  解:设全村耕地面积是 公顷.

  答:全村耕地面积是75公顷.

  6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?

  (1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)

  (公顷)

  (根据棉田面积和 是已知的,全村耕地面积是未知的.,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)

  (二)练习

  果园里有桃树560棵,占果树总数的 .果园里一共有果树多少棵?

  1.找出已知条件和问题

  2.画图并分析数量联系

  3.列式解答

  解1:设一共有果树 棵.

  答:一共有果树640棵.

  解1: (棵)

  (三)教学例2

  例2.一条裤子75元,是一件上衣价格的 .一件上衣多少钱?

  1.教师提问

  (1)题中的已知条件和问题有什么?

  (2)有几个量相比较,应把哪个数量作为单位“1”?

  2.引导学生说出线段图应怎样画?上衣价格的

  3.分析:上衣价格的 就是谁的价钱?(是裤子的价钱)谁能找出数量间相等的联系?(上衣的单价× =裤子的单价)

  4.让学生独立用列方程的方法解答,并加强个别辅导.

  解:设一件上衣 元.

  答:一件上衣 元.

  5.怎样直接用算术方法求出上衣的单价?

  (元)

  6.比较一下算术解法和方程解法的相同之处与不同之处.

  相同点:都要根据数量间相等的联系式来列式.

  不同点:算术解法是按照分数除法的意义直接列出除法算式;而方程解法则要先设未知数,再按照等量联系式列出方程.

  三、巩固练习

  (一)一个修路队修一条路,第一天修了全长 ,正好是160米,这条路全长是多少米?

  提问:谁是单位“1”?数量间相等的联系式是什么?怎样列式?

  (米)

  (二)幼儿园买来 千克水果糖,是买来的牛奶糖的 ,买来牛奶糖多少千克?

  (三)新风小学去年植树320棵,相当于今年植树棵数的 .今年、去年共植树多少棵?

  1.演示:分数除法应用题

  2.列式解答

  四、课堂小结

  这节课我们学习了列方程解答分数除法应用题的方法.这类题有什么特点?解题时分几步?

  五、课后作业

  (一)一桶水,用去它的 ,正好是15千克.这桶水重多少千克?

  (二)王新买了一本书和一枝钢笔.书的价格是4元,正好是钢笔价格的 .钢笔价格是多少元?

  (三)一种小汽车的最快速度是每小时行140千米,相当于一种超音速飞机速度的 .这种超音速飞机每小时飞行多少千米?

分数除法教案33

  教学目标:

  4、学习运用线段图帮助分析数量关系。

  5、加强列方程的思维训练。

  6、培养学生分析问题解决问题的能力。

  教学过程:备注

  活动一:复习与准备

  1、根据题意列出方程。

  (1)、六年一班有15人参加了合唱队,占全班人数的1/3,六年一班有多少人?

  (2)、美术小组的.人数比航模小组多1/4。美术小组的人数比航模小组多5人。航模小组有多少人?

  活动二:出示例2

  一、

  1、审题。

  2、看例题的插图,理解题目的意思,说说知道了什么,要求什么

  3、分析题意,说说你对美术小组的人数比航模组多1/4这一条件的理解。

  4、理解数量关系

  二、

  1、分析、解答

  2、说说数量关系。

  3、学生根据得到的数量关系列方程解答。

  4、交流各自的解法。

  小结:关键是搞清哪两个量比较,谁多谁少,多或少了谁的几分之几。

  活动三:

  巩固联系:

  1、41页7、8题

  2、41页10题

  板书设计

分数除法教案34

  第课时分数与除法

  1、通过学习,使学生进一步理解分数的意义,知道分数还可以表示除法的商,被除数相当于分数的分子,除数相当于分数的分母,学生能够用分数表示整数除法的商。

  2、通过学习,使学生进一步理解分数的意义,知道分数还可以表示数量,理解并掌握1个的几分之几就是几分之几个,几个的几分之一就是几分之几个。

  3、能运用分数与除法的关系解决相关的问题。

  4、让学生经历分数与除法的关系的探究过程,经历求一个数是另一个数的几分之几的解答过程。

  【重点】理解和掌握分数与除法的关系。

  【难点】理解用分数可以表示两个数相除的商。

  【教师准备】 PPT课件,口算卡片。

  【学生准备】 3个完全相同的圆片,剪刀。

  填一填。

  (1)表示的意义是()。

  (2)的分数单位是(),它有()个这样的分数单位。

  【参考答案】

  (1)4个是多少

  (2)7

  老师出示口算卡片,学生口答。

  8÷4= 15÷5= 12÷3=

  5÷4= 6÷5= 7÷3=

  师:比较这6道题的商,你发现了什么

  预设生:上面3题的商没有余数,下面3题的商都有余数。

  师:以前计算整数除法时,如果遇到除不尽或得不到整数商的情况,我们就只算到个位,然后写出余数是几,有了分数以后,就可以解决这个问题了。除法的商怎么能用分数表示呢除法与分数有什么关系呢这就是我们今天要研究的问题。(老师板书课题:分数与除法)

  由比较两组口算题的结果引入课题,使学生明确用分数可以表示除法的商。

  师:请同学们回忆一下,在计算除法时,如果遇到除不尽或得不到整数商的情况,我们是怎样处理的。

  预设生:可以用小数表示商,或者除到个位后,用余数表示结果。

  师:你们知道吗有了分数,再遇到这种情况,我们就可以用分数来表示商。想不想知道怎样用分数来表示除法的商(想)要想知道怎样表示,就要先理解分数与除法的关系。(老师板书课题:分数与除法)

  通过老师提问,引起学生思考,激发学习欲望。

  一、教学例1,掌握用分数表示除法的商的方法。

  1、PPT出示例1。

  (1)学生看图、读题,思考解答方法。

  (2)指名回答:求每人分得多少个,怎样列式

  预设生:根据题意应该列式为:1÷3。

  (3)用PPT出示:用一个圆表示一个蛋糕,把一个圆平均分成3份,其中1份涂色。让学生根据图意说出结果是多少。

  预设生:每人分得个。

  老师根据学生回答板书:1÷3=(个)。

  2、巩固练习。

  用分数表示下面各题的商。

  3÷7= 5÷8= 9÷10=

  21÷32= 4÷11= 6÷13=

  【参考答案】

  使学生了解用分数表示商的方法。

  二、教学例2,使学生理解分数与除法的关系。

  1、PPT出示例2。

  (1)学生看图、读题,思考解答方法。

  (2)指名回答:求每人分得多少个,怎样列式

  预设生:根据题意应该列式为:3÷4。

  (3)让学生拿圆片代替月饼实际分分,可能有不同的分法。然后让学生汇报。

  (4)用PPT出示:把3个月饼平均分成4份,其中1份是3个四分之一个月饼,再把这3个四分之一拼起来,可以看出得到了四分之三个月饼。然后让学生说出结果是多少。

  预设生:每人分得个。

  老师根据学生的回答进行板书:3÷4=(个)。

  2、老师引导学生观察除法算式与分数,探究它们之间的关系。

  (1)用文字进行表述例1和例2的算式。

  1÷3=

  3÷4=

  被除数÷除数的结果怎样表示得到:

  被除数÷除数=

  (2)学生在小组中学习用语言描述分数与除法之间的关系,然后指名回答。

  预设生:被除数相当于分数中的分子,除数相当于分数中的分母,除号相当于分数中的分数线。

  (3)小组讨论,用字母表示出分数与除法的.关系,然后派代表发言。

  预设生:a÷b=。

  (4)引导学生思考b可以是0吗学生通过小组讨论后明确,因为除数不能为0,所以分数的分母不能为0,因此b也不能等于0。

  老师根据学生的回答进行板书。

  a÷b=(b≠0)

  被除

  除数

  数

  (5)教师小结:现在学习了分数与除法的关系,复习题中表示的意义,还可以看作把“4”平均分成5份,表示这样一份的数。

  通过小组讨论,使学生明确分数与除法的关系。

  三、教学例3,使学生经历求一个数是另一个数的几分之几的过程,进一步理解分数的意义,知道分数还可以表示两种数量比较的关系。

  1、PPT出示例3。

  (1)学生读题,理解题意。

  (2)出示自学要求:

  ①想一想,答案是多少

  ②有什么办法说明自己的答案是正确的怎样说明

  ③题中的两个问题有什么关系

  学生根据自学要求翻开教材第50页,自主学习、交流,老师巡视了解学情,对学生进行指导。

  (3)组织学生汇报自学情况,展示答案。

  自学要求①:

  预设生:求“鹅的只数是鸭的几分之几”就是求7只是10只的几分之几,用除法计算,列式为:7÷10,根据分数与除法的关系可知结果是。求鸡的只数是鸭的多少倍,也用除法计算:20÷10=2。

  自学要求②:

  预设生:可以通过画图分析,证明自己的答案是正确的。

  (根据学生回答,展示学生画的图或用PPT出示教材第50页的图)

  自学要求③:

  预设生:第1问是求一个数是另一个数的几分之几;第2问是求一个数是另一个数的几倍。这两个问题都用除法计算。

  2、老师引导学生小结:求一个数是另一个数的几分之几,或几倍,都用除法计算。两个数相除,如果商是整数,那么用几倍来表示;如果商不是整数,那么用几分之几来表示。(老师板书)

  3、师:根据题意,你们还能提出其他的数学问题并解答吗

  (1)学生在小组里讨论,提出问题并解答。

  (2)各小组展示提出的问题和解答的过程。

  预设生1:我们提出的问题是:鹅的只数是鸡的几分之几解答是:7÷20=。

  生2:我们提出的问题是:鸭的只数是鸡的几分之几解答是:10÷20=。

  ……

  4、巩固练习。

  五、(1)班有男生23人,女生22人。

  (1)女生人数是男生人数的几分之几

  (2)女生人数是全班人数的几分之几

  (3)男生人数是全班人数的几分之几

  学生独立解答,指名回答,集体订正。

分数除法教案35

  教学目的

  1理解分数除法的意义,掌握分数除法的计算方法。

  2进一步培养学生抽象概括的能力和计算能力。3进一步渗透转化的数学思想。教学重点理解分数除法的意义,掌握分数除以整数的计算方法。教学难点培养数学能力,渗透转化思想。课型讲练课教法讨论、讲解教具投影

  板书设计1分数除以整数例1:把一根长4/5米的铁丝,截成相等的两段,每段长几米?解:4/52 = 0.82 = 0.4(米)4/52 = 42/5 = 0.4(米) 4/52 = 4/51/2 = 0.4(米) 课后小结内容设计合理,结构紧凑,一步一步让学生体会分数除以整数,可以有多种方法解答,只有把除以整数改写成乘整数的倒数,这样才是最简便的,学会了把新知改变成旧知来解决问题的这种学习方法,拓展了思路,活跃了思维。 教学过程意图媒体教师活动学生活动

  一、复习导入新课为迁移做准备

  明确分数除法意义投影 板书 投影 小结 板书1列式计算:一袋洗衣粉重1/2千克,4袋洗衣粉重多少千克?1/24 或41/22改编并列式:把上题改编成两道除法应用题① 4袋洗衣粉重2千克, 一袋洗衣粉重多少千克?2 4 = 1/2(千克)②一袋洗衣粉重1/2千克, 几袋洗衣粉重2千克?21/2 = 4(千克)3讨论:结合以上三题,请同学们思考分数除法的意义。通过以上数学活动,同学们已经明确了分数除法与整数除法的意义相同,是已知两个因数的与其中的.一个因数,求另一个因数的运算。那么分数除法又怎样计算呢?今天我们就来研究这个问题。课题:分数除法指名口答 求4个1/2是多少。 生编题,师板书。 根据上题数量关系说出结果

  二、新课学习分数除法的计算方法

  学习分数除法的计算方法板书 激发兴趣 汇报 板书

  板书 1出示例1:把一根长4/5米的铁丝,截成相等的两段,每段长几米?理解4/5米的意义 ?米 ?米

  4/5米通过以上活动,我们进一步理解了题意,你能否根据题意把它转化成已学过的知识进行计算?解:①4/52 = 0.82 = 0.4(米)②4/52 = 42/5 = 0.4(米) ③4/52 = 4/51/2 = 0.4(米)重点说明③把4/5米平均分成2份,求每份是多少,就是求4/5米的1/2是多少米?列式是4/51/2。2尝试计算方法:三选一计算3/85 1/32 5/93①3/85 = 3/81/5 = 3/403/85 = 35/8 = 0.6/8 = 3/403/85 = 0.3755 = 0.075②1/32 = 1/31/2 = 1/6 1/32 = 12/3 = 0.5/3 = 1/6③5/93 = 5/91/5 = 5/27哪种方法最好,为什么?3用这种最简便方法计算:7/1314

  5/9104归纳计算法则:①口述做上述两题的方法②除以10 改写成乘1/10。③1/10是10 的倒数。分数除以整数(0除外),等于分数乘这个整数的倒数。审题列式 理解意义

  讨论方法

  选择自己喜欢的方法计算其中一题 讨论③最适用 小组讨论 为什么要0除外

  三、练习巩固分数除法的计算法则投影

  投影 1计算:14/157 4/53 4/1182填空:2/35 = 2/3( )3/79 = 3/7( )5/610 = 5/6( )19/208 = 19/20( )3/116 = 3/11○1/65/66 = 5/6○( )12/173 = ( )○( )3课后讨论:2/73你会做,32/7你行吗?认真计算

分数除法教案36

  教学内容:

  分数乘法、除法计算练习

  教学目标:

  1、通过练习,更好地掌握分数乘法和分数除法的计算方法,形成相应的计算技能,提高计算能力,培养良好的计算习惯。

  2、通过练习,进一步提高运用分数乘法计算解决简单的实际问题的能力。

  3、通过练习,进一步体会数学知识之间的内在联系,感受数学知识和方法的应用价值,增强学好数学的信息。

  教学重、难点:

  掌握运用分数乘法解决简单实际问题的基本思路与方法。

  教学对策:

  设计一些找单位1的量和分析数量关系式的练习,多组织学生说思考过程,通过交流感受一些方法。

  教学准备:

  自制投影片或小黑板

  教学过程:

  一、揭示课题

  谈话:国庆长假之前,我们学习了分数乘法和分数除法的有关内容,在计算中,同学们还存在一些问题,所以今天这节课,我们将进行相关练习,帮助大家更好地掌握这些知识。(板书课题:分数乘法和分数除法)

  二、基本练习

  1、计算练习。

  5/129/10 3410/51 22/3926/11

  10/2112/257/8 3/20145/7

  8/15 6 11/622 2515/16 812/13

  11/1222/9 15/165/12 5/1410/21

  学生任选3道乘法、3道除法进行计算,同时指名学生板演,教师及时结合学生计算情况进行讲评。

  组织学生小结分数乘法和分数除法的计算方法。

  2、解方程。

  12x=9/11 3/8x=9/10 6/5x=15

  学生先独立完成,再指名学生板演,结合板演情况进行讲评时指出解方程的格式及依据,及时纠正学生计算中的错误。

  3、在○里填上、或=。

  5/711/13○5/7 7/916○7/91/16

  5/71○5/7 5/77/5○5/7

  6/73/5○6/7 3/84/ 3○3/8

  110/9○1 8/111○8/1

  学生不计算,通过已学知识进行判断,然后交流判断理由。

  教师及时组织学生小结:

  一个数乘真分数,结果小于这个数;一个数乘以1,结果等于这个数;一个数乘比1大的假分数,结果大于这个数。

  一个数除以真分数,结果大于这个数;一个数除以1,结果还等于这个数;一个数除以比1大的假分数,结果小于这个数。

  4、根据已知条件找准单位1的.量并说说数量关系式。

  (1)白兔只数的5/12是黑兔的只数。

  (2)已经修了公路全长的3/4。

  (3)今年棉花产量比去年增加1/8。

  (4)第三季度冰箱价格比第二季度便宜1/10。

  (5)二班植树棵数相当于一班的9/8。

  (6)还剩这堆煤的3/8。

  学生同桌之间进行练习,每人选3题说说数量关系,然后指名交流。

  5、解决实际问题。

  (1)小明用3/10小时走了15/16千米,平均每小时走多少千米?照这样的速度,小明走1千米要多少小时?

  (2)一种柴油2/3升重8/15千克。1升这样的柴油重多少千克?1千克这样的柴油有多少升?

  (3)鹅的孵化期是30天,鸡的孵化期是鹅的7/10,鸭的孵化期是鸡的4/3倍,鸭的孵化期是多少天?

  (4)一个乒乓球从50分米的高度下落,每次弹起的高度是下落时高度的2/5,第三次下落时能弹起多少分米?

  (5)一盒鲜牛奶的净含量是3/2升,一盒酸奶的净含量是鲜牛奶的2/15。一盒酸奶的净含量是多少升?

  (6)一盒鲜牛奶的净含量是3/2升,一盒酸奶的净含量比鲜牛奶少13/15。一盒酸奶比一盒鲜牛奶少多少升?

  (7)一盒鲜牛奶的净含量是3/2升,一盒酸奶的净含量是1/5升。一盒酸奶的净含量比一盒鲜牛奶少多少升?

  学生独立完成后进行交流,主要交流思考过程。

  三、全课总结

  评价一下自己的练习情况,分析一下还存在什么问题。

  课后反思:

  按照课前的教学设想,我先组织学生进行了分数乘、除法计算练习,然后进行了分析数量关系式的练习,最后进行了解决实际问题的练习。课堂上学习效果还不错。

  但从学生作业情况看,有些学生解决实际问题时,还未认真读题就列式计算,这样就存在一个问题,当天所学的如果是分数乘法,这部分学生在解题时就会全部用乘法来解决问题;如果今天学的是分数除法,他们就全部用除法来计算。也就是说完全是模仿,没有自己的理解和对问题的思考、分析。长此下去,造成的后果是严重的。所以要把问题杜绝在源头,在练习过程中,我经常组织学生进行对比练习,逼着他们要独立思考,让他们感到没有自己的思考是无法正确解答题目的。

分数除法教案37

  【学习目标】

  1、能利用计算法则,正确、迅速地进行分数除法的计算。

  2、培养自己的语言表达能力和抽象概括能力。

  3、养成良好的计算习惯。

  【学习重难点】

  1、重点是抽象概括出分数除法的计算法则。

  2、难点是利用法则正确、迅速地进行计算,并能解决一些实际问题。

  【学习过程】

  一、复习

  1、列式,说清数量关系。

  小明2小时走了6 km,平均每小时走多少千米?____________________________

  速度=路程÷时间

  2、计算:151×4 ×3 ×2 ×6 971215

  8352÷4 ÷3 ÷2 ÷6 9765

  二、探索新知

  1、阅读例题3主题图及题目,要“比较谁走的快”可以比较他们的什么?如何列式?

  2、探究2÷

  (1)“2的算法 32小时走了2 km,估一估1小时走多少千米? 3

  (2) 动手画线段图表示已知条件与问题的关系。

  1小时走的路程,再将线段平均分成3份,其中2份

  表示的.就是2小时走的路程。 3

  (3) 结合线段图,思考:要求小明的速度,第一步可以先算什么?第二步再算什么?

  2要怎样计算?它把除法转化成什么?怎样转化? 3

  55553、计算例3第二个算式÷,想一想÷可以转化成什么? 612612(4) 结合解题思路,思考2÷

  4、通过上面的2道计算题,你发现了什么?你会用自己的方式表示下你发现的规律吗?

  ______________________________________________________________

  三、知识应用:独立完成P31“做一做”的第1、2题。(组长检查核对,提出质疑。)

  四、层级训练:巩固训练:练习八第4、5、6题;拓展提高:练习八第7、8、9题。

  五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

  学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(写出你的发现或见解)

分数除法教案38

  教学目标:

  1、通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

  2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

  教学重点:

  弄清单位1的量,会分析题中的数量关系。

  教学难点:分析题中的数量关系。

  教学过程:

  一、复习

  小红家买来一袋大米,重40千克,吃了 ,还剩多少千克?

  1、指定一学生口述题目的条件和问题,其他学生画出线段图。

  2、学生独立解答。

  3、集体订正。提问学生说一说两种方法解题的过程。

  4、小结:解答分数应用题的.关键是找准单位1,如果单位1的具体数量是已知的,要求单位1的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

  二、新授

  1、教学补充例题:小红家买来一袋大米,吃了 ,还剩15千克。买来大米多少千克?

  (1)吃了 是什么意思?应该把哪个数量看作单位1?

  (2)引导学生理解题意,画出线段图。

  (3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量

  (4)指名列出方程。 解:设买来大米X千克。

  x- x=15

  2、教学例2

  (1)出示例题,理解题意。

  (2)比航模组多 是什么意思?引导学生说出:是把航模组的人数看作单位1,美术组少的人数占航模组的

  (2)学生试画出线段图。

  (3)根据线段图,结合题中的分率句,列出数量关系式:

  航模小组人数+美术小组比航模小组多的人数=美术小组人数

  (4)根据等量关系式解答问题。 解:设航模小组有人。

  + =25

  (1+ )=25

  =25

  =20

  三、小结

  1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位1都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

  2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位1,再按照题意找出数量间的相等关系列出方程)

  四、练习

  练习十第4、12、14题。

分数除法教案39

  一、复习

  1、口算分数乘法

  前一段时间,我们已经学习了分数乘法,那么,谁能告诉老师分数乘法怎样计算的?说得真好。下面,我们就一起来口算几道题:

  (出示)4/71/3 203/4 3/816 2/33/2

  2、(复习倒数)其中当计算完2/33/2时提问:

  看到这个答案,你想说什么?(乘积是1的两个数互为什么数(互为倒数))

  说得不错,下面就请同学们说说下面各数的倒数分别是什么?

  (出示) 3/8 4 1 2/9

  3、把100千克的一桶油平均分成2分,每份是100千克的( )/( ),求100千克的1/2,列式为___。

  把24千克的一袋面粉平均分成3份,每份是24千克的 ( )/( ),求24千克的1/3,列式为:_____。

  同学们学得真不错,今天,潘老师就要带着大家用这些我们已经掌握的知识去学习新知识,解决新问题。

  二、新授

  (一)教学例1

  1、教学第一种算法

  例1:量杯里有4/5升果汁,平均分给2个小朋友喝,每人可以喝多少升?

  读题

  提问:怎样列式?(4/52)

  怎样计算呢?

  (1)4/5表示什么意思?(是把1升平均分成5份,取其中的4份),(边说边出示图)

  从图中你能看出每份是多少米?(板书:2/5升)

  那么2/5升是怎样算出的呢?

  4个1/5平均分成2份,可以用4/5的分子除以2,而分母不变,就得到结果是2/5。(板书算式)

  (2)补充例证

  如果现在把4/5升果汁,平均分给4个小朋友喝,每人可以喝多少升?

  怎样列式?(板书)。现在是把几个1/5平均分4份,每份是多少?这里的1是怎样得来的?分母怎样?

  (3)观察比较

  提问:(1)这两道除法算式都是什么数除以什么数?(分数除以整数 板书课题)

  (4)通过刚才这两道题的计算,你们有没有发现,分数除以整数可以怎样计算?(边说边指示)。

  2、教学第二种算法

  (1)还有别的计算方法吗?(把4/5平均分成2份,求每份是多少?也就是求4/5的1/2是多少?可以用乘法来计算。)(板书)

  (2)问:从这个算式可以看出,一个分数除以整数还可以怎样计算

  通过这两种交流,使学生知道分数除以整数的方法是多样的,又能初步理解分数除以整数可以转化为分数乘以这个整数的倒数的思路。

  (3)让学生做试一试的题(自主选择计算方法)

  计算好了以后,再请学生说说你的思路是怎么样的

  使学生进一步明确,分数除以整数,可以转化为分数乘这个数的倒数。

  (4)你能用简炼的`语言概括一下这种方法吗?

  教师板书:分数除以整数,等于分数除以整数的倒数

  (5)你认为这个计算方法有什么重要的地方需要提醒大家。

  教师用红笔标注。

  三、巩固练习

  老师也为同学们准备了一套星级赛题,你们有信心挑战吗?

  一星题:

  1、课本56页的练一练第1题

  做此题的目的使学生明确当遇到分子能整除时比较简便。

  可以选用这样的方法。

  二星题:

  2、这里还有6道题,哪些同学愿意到前面来解答的?

  练一练第2、3题

  让学生能根据题目灵活选择计算方法

  做好以后进行集体讲解和订正

  三星题:

  3、老师这里还有一组辨析题,请你们看看这几道题正确吗?错在哪里?你能帮助改正过来吗?

  8/94=8/91/4=2/9 2/73=2/73=6/7

  8/94=8/91/4=2/9 3/73=3/71/3=1/7

  师:因此,我们同学在计算时,首先要看清题目,选择正确的计算方法,计算要细心。

  四星题:

  4、练习十一第2题

  本题的题目关键要让学生进行比较,分数乘法和除法的区别。

  五星题:

  1、如果a是一个不等于0的自然数,13 a等于多少

  问:你能用具体的数来检验这个结果吗?

  2、( )/( )3=5/18 7/( )=( )/24

  四、小结

  本课我们学习了什么内容?

分数除法教案40

  【学习目标】

  1、掌握分数四则混合运算的运算顺序,能较熟练地进行计算。

  2、理解整数四则混合运算定律在分数四则运算中同样适用,并能进行简便运算。

  3、通过练习,培养计算能力及初步的逻辑思维能力。

  【学习重难点】

  1、重点是确定运算顺序再进行计算。

  2、难点是明确混合运算的顺序。

  【学习过程】

  一、复习

  1、复习整数混合运算的运算顺序

  (1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;

  如果既有加减法又有乘除法,应该先算乘除法,后算加减法。

  (2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。

  (3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面

  的,最后算中括号外面的。

  2、整数四则混合运算定律在分数四则运算中同样适用。

  3、说出下面各题的运算顺序。

  (1) 428+63÷9―17×5 (2) 1.8+1.5÷4―3×0.4

  (3) 3.2÷[(1.6+0.7)×2.5] (4) [7+(5.78—3.12)]×(41.2―39)

  二、探索新知

  1、阅读例4题目,明确已知条件及问题,尝试说说自己的'解题思路。

  A、可以从条件出发思考,根据彩带长8m ,每朵花用2m 彩带,可以先3

  算出一共做了多少朵花。

  B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。

  2、列出综合算式,想一想它的运算顺序,再独立计算。

  ______________________________________________________________

  3、独立完成P34 “做一做”第1、2题

  4、明确整数四则混合运算定律在分数四则运算中同样适用,正确复述四则混合运算定律。

  三、知识应用独立完成练习九第1题,组长检查核对,提出质疑。

  四、层级训练:巩固训练:完成练习九第2—6题;拓展提高:练习九第7---10题。

  (1)第2题:要注意6楼楼板到地面的高度实际上只有5层楼的高度。 (2)第7题:“60瓦”与计算无关。 (3)第10题:最后得数与原数相同,原因是231、的倒数与的积正好是1。 342

  五、总结梳理:回顾本节课的学习,说一说你有哪些收获?

  学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(把你个性化的解答或创新思路写出来吧!)

分数除法教案41

  【学习目标】

  1、掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的

  解题思路和方法,能比较熟练地解答一些简单的实际问题。

  2、培养并提高分析、判断、探索能力及初步的逻辑思维能力。

  3、提高解答应用题的能力。

  【学习重难点】

  1、重点是弄清单位“1”的量,会分析题中的'数量关系。

  2、难点是分析题中的数量关系。

  【学习过程】

  一、复习题:

  小红家买来一袋大米,重40千克,吃了5,还剩多少千克? 8

  1、分析题目的条件和问题,画出线段图。

  2、交流讨论并解答。组内检查核对,提出质疑。

  1”,如果单位“1”的具体数量是已

  知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,

  直接用乘法计算。

  二、探索新知

  1、补充例题:小红家买来一袋大米,吃了

  (1)吃了5,还剩15千克。买来大米多少千克? 85是什么意思?应该把哪个数量看作单位“1”? 8

  (2)理解题意,画出线段图。 (3)根据线段图,分析数量关系式:____________________________

  (4)根据等量关系式解答问题。___________________________

  2、学习例2

  (1)阅读例5的主题图及题目,用自己的话表述题意,说一说“美术小组的人数比航模

  小组多1”的含义,把谁看作单位“1”?_________________________________ 4

  (2)自己动手,画线段图表示两个小组的人数,将已知条件和问题标注在线段图上,图

  中的未知数可以用X表示。

  (3)结合线段图,写出等量关________________________________________________

  (4)列出方程式并解答,算完后梳理一下自己整道题的解题思路?(注意解题格式)

  三、知识应用:独立完成P40练习十第4题,组长检查核对,提出质疑。

  四、层级训练:1、巩固训练:完成练习十第10--13题

  2、拓展提高:练习十第14题以及P42最后一题“思考练习”。

  五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

  学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(写出你的发现或见解)

分数除法教案42

  本课题教时数:1本教时为第1教时备课日期10月22日

  教学目标

  1、使学生进一步认识分数除法的意义、比的意义和基本性质及其应用,能比较熟练地求比值和把一个比化成简单的整数比。

  2、使学生进一步掌握分数除法的计算法则,能正确地计算分数除法和分数除法与加、减法或乘法的混合运算。

  教学重难点

  能比较熟练地求比值和把一个比化成简单的整数比。

  能正确地计算分数除法和分数除法与加、减法或乘法的混合运算。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、 揭示课题

  二、整理知识

  三、组织练习

  四、课堂小结

  本单元我们学习了什么?你学习了哪些内容?

  这节课我们先复习分数除法的有关概念和计算。

  通过复习,大家要进一步掌握分数除法的意义、比的意义和基本性质,以及这些概念的应用;进一步掌握分数除法的计算法则。要能比较熟练地求比值和正确地进行比的`化简,能正确地计算分数除法,以及分数除法与分数加、减法或乘法的混合运算。

  1、复习分数除法的意义

  问:分数除法表示的意义是什么?

  你能根据分数除法表示的意义,把2/155=2/3改写成两道除法算式吗?

  指出:分数除法是已知两个数的积和其中一个因数,求另一个因数的运算。

  2、复习分数除法计算法则

  提问:我们在分数除法里,学过哪几种情况的计算?

  分数除法计算的方法是怎样的?

  3、笔算练习

  做复习第2题

  指出:在分数除法里,无论哪一种情况的计算,都要转化成乘法计算。

  4、复习比的意义

  问:什么叫比?比的各部分名称是什么?请你举个例子来说明。

  比与除法、分数有什么联系?请你根据4:5来说明。

  5、做复习第3题

  6、复习比的基本性质

  提问:化简比和求比值各是依据什么来做的?

  1、做复习第5题

  2、做复习第6题

  3、做复习第7题

  指出:有关分数除法的运算,只要按过去的运算顺序,计算时遇到除法计算,只要转化成乘法来计算。

  4、做复习第8题

  指出:根据求一个数和分数相乘可以表示求这个数的几分之几是多少,可以顺着题意列出方程来解答这样的文字题,也可以根据分数除法的意义列式解答。

  这节课复习了什么内容?你进一步明确了哪些知识?

  课后感受

  教学效果较好,同学们所做的题目的正确率较高。

分数除法教案43

  【学习目标】

  1、掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,

  能熟练地列方程解答这类应用题。

  2、进一步培养自主探索问题的能力和分析、推理和判断等思维能力。

  3、提高解答应用题的能力。

  【学习重难点】

  1、重点是弄清单位“1”的量,会分析题中的数量关系。

  2、难点是分数除法应用题的'特点及解题思路和解题方法。

  【学习过程】

  一、复习

  1、复习题:根据测定,成人体内的水分约占体重的24,而儿童体内的水分约占体重的,35

  六年级学生小明的体重为35千克,他体内的水分有多少千克?

  2、观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。

  3、选择解决问题所需的条件,确定出单位“1”,并说出数量关系式。_______________

  4=体内水分的重量 5

  4列式计算____________________________________________

  二、探索新知

  1、解决例1的第一个问题:小明的体重是多少千克?

  (1)读题、理解题意,并画出线段图来表示题意:

  (2)结合线段图理解题意,分析题中的数量关,写出等量关系式。_________________

  (

  3)这道题与复习题相比有什么相同点和不同点?

  (4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?

  1”设为χ,列方程来解决问题。 注意解题格式。(将此题在反面按正确格式解答一遍。)

  (5)也可以应用算术方法来解答此题。__________________________________________

  2、阅读例1第(2)个问题,并思考下列问题,若有问题可以小组讨论。

  (1)要求爸爸体重,需要题目中出现的哪两个条件?

  (2)画出线段示意图,将已知条件和问题标注在线段图上。想一想上一题的线段图和这一

  题的线段图有什么区别?

  (3)写出等量关系,列出方程并解答。(在反面)

  三、知识应用:独立完成P38“做一做”,组长检查核对,提出质疑。

  四、层级训练:1、巩固训练:完成P40练习十第1、2、3、5题。

  2、拓展提高:练习十第6、7、8、9题。

  五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

  学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(把你个性化的解答或创新思路写出来吧!)

分数除法教案44

  一、复习引新

  1.说出下面各数的倒数。

  0.36

  2.已知12645=5670,直接说出567045和5670126的得数,再说说你是怎样想的,根据是什么。(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的.积与其中一个因数,求另一个因数的运算。)

  3.引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来学习分数除法。(出示课题)

  二、新授教学

  (一).教学分数除法的意义(课件一下载)

  ①每人吃半块月饼,4个人一共吃多少块月饼?

  半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个?求4个是多少怎样列算式?()

  ②两块月饼,平均分给4人,每人分得多少块?怎样列式?

  列式:24

  ③两块月饼,分给每人半块,可以分给几个人?

  列式后,说一说结果是多少?你是如何得出结果的?

  ④组织学生讨论:分数除法的意义。

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  ⑤练习反馈。

  根据:,写出,(二).教学分数除以整数

  1.出示例1、把米铁丝平均分成2段,每段长多少米(课件二下载)

  ①求每段长多少米怎样列算式?②以小组为单位讨论一下得多少呢?

  米平均分成2段就是要把6个米平均分成2份,每份是3个米是米。

  ③、教师板书整理。

  (米)

  2.教师质疑:如果把米铁丝平均分成3段、6段怎样计算?

  也可以这样想:把米铁丝平均分成3段,就是求米的是多少,列式是:把米铁丝平均分成6段,就是求米的是多少,列式是:3.教师继续质疑:如果把米铁丝平均分成4段每段长多少米?怎样计算?(米)

  为什么采用转化成分数乘法这种方法比较好呢?

  组织学生观察在转变中,什么变了,什么没变?讨论分数除以整数的计算法则。

  4.学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数。

  三、巩固练习

  1.计算下面各题:

  学生独立完成,教师巡视,进行个别辅导。

  2.请同学求未知数①②3.判断。

  ①分数除法的意义与整数除法的意义相同。()

  ②已知两个分数的积与其中一个分数,求另一个分数,用除法解答。()

  ③()

  ④()

  ⑤()

  4.解答下面各题。

  ①把平均分成4份,每份是多少?

  ②什么数乘以6等于?

  ③一个正方形的周长是米,它的边长是多少米?

  四、课堂总结

  这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?

  五、课后作业

  练习七1、2、3、4

  六、板书设计

分数除法教案45

  一、借助实物,初步理解。

  1、创设情境,出示问题:老师出示一个苹果,提出问题:如果把这个苹果平均分给两个同学,每人分几个?谁来分一下?

  生:用小刀把苹果从中间切开,平均分成两份。

  说明每份是这个苹果的二分之一。

  师:谁能列式?

  生:1÷2=0.5(个)。

  师:谁能用分数来表示商?

  生:二分之一。

  师:计算除法,在得不到整数商时,除了可以用小数外,还可以用分数表示,今天我们来研究分数与除法的关系。

  评:开头点题,节省了时间,用学生熟悉的事情吸引了学生的注意力,激发了学生的兴趣。

  2、观察实物,探索原理。

  师:如果我们把这个苹果平均分成4份,该怎样分?

  学生上台分一分。学生边分边说:把一个苹果平均分成4份,每份是四分之一个。

  评:借助实物操作与演示,学生很容易直观理解一个的二分之一就是二分之一个、一个的四分之一就是四分之一个的道理。并且能够迁移类推得出结论:一个的几分之几就是几分之几个。

  二:合作交流,解决问题。

  1、讲故事,提出问题。

  昨天晚上,老师做了3张饼,可香了,刚要吃饭的时候,对门家的小姑娘来了,进门便是客,我们一家三人热情地邀请她与我们共进晚餐,吃完饭后,我一看,三张饼全吃完了,你能计算出我们平均每人吃几张饼吗?

  评:简短的小故事,吸引了学生探索的积极性与主动性。

  2、合作交流,解决问题。

  ⑴想:教师出示三张圆形纸片,说明:用三张圆形纸片代替三张饼,现在如果要平均分给你们组四个人,你该怎样分?每人想出一个办法。

  ⑵评:小组内交流,在组长的带领下,评选出你们认为最合理、最简单的方法。

  ⑶分:根据刚才选出的办法,利用手中的学具(三张圆形纸片、剪刀、彩笔)剪一剪、分一分,并且把组长的那份涂色。

  ⑷汇报:小组间交流汇报,争论、补充。

  生1:我们小组是一张饼、一张饼的分,把每张饼都平均分成4份,每人吃一份。三张饼都吃完后,就是每人吃了3个四分之一,也就是四分之三张。

  生2:我们是把3张饼摞起来,再平均分成4份,每人吃四分之一,再拼起来就是四分之三张。

  生3:我们是先把2张饼从中间切开,每人分半个饼,再把第三张饼平均分成4份,每人一份,又分了四分之一,前面的半个是四分之二张,一共每人吃了四分之三张。

  ⑸评价:自由发表意见,评价哪组的分法最好。

  生1:我认为第一种分法最好,因为我们吃的时候就是这样分的。

  生2:我认为第2种方法好,因为这样分简单,而且先分好了再吃更显得公平。

  师总结:刚才同学们都说的很有道理,而且你们说的清楚明白。说明我们同学的语言表达能力越来越强了。

  师生一起板书出答案。

  评:学生获得知识的过程不单是知道什么,更重要的是知道为什么,小组合作过程是本节课的创新之处,也是学生求知的内在需要和渴望。小组合作过程分:想、评、分、汇报、评价五步完成,要求具体,分工明确,既有独立思考的时间,又有交流、操作的时间,使各个环节都高效有序地进行。体现了小组学习的实效性。

  3、观察比较,寻求规律

  师:观察黑板上三个算式,找出被除数、除数与商中的分子、分母有什么关系。

  学生回答,得出结论:被除数÷除数=被除数/除数

  师:如果用字母a、b表示,该怎样表示?

  生:a÷b=a/b

  师:在除法中,对除数是怎样规定的?

  生:除数不等于0。

  师:那么,分数中应该谁有限制呢?

  生:b≠0。

  评:打破原有学习模式,放手让学生自己通过观察,得出公式,这样在学生头脑中留下深刻的'印象。

  三、练习巩固,加深理解。

  1、阅读课本102—103页内容。

  2、练习题略。

  四、学生回顾,全课小结。

  师:在这节课,你学到了什么知识?你能用这节课学到的知识,编出不同的数学问题来吗?

  总评:“新课标”的重要理念之一是关注学生的生活体验和也已有的生活经验。课始就设计分苹果,既贴近学生生活,又直观容易理解。这样在课的开始,就激发了学生的学习兴趣,使学生获得了愉悦的数学学习体验,同时促进学生主动构建相关的数学知识。

  教学整个过程注重了学生兴趣的激发与主动性的参与,在小组合作中,给予学生充足的时间与空间,让每个学生都能独立思考,与别人交流,动手操作。“动手实践、自主探索与合作交流是学生学习数学的重要方法。”在教学设计中注意体现这一理念,在主动的、互相启发的学习活动中是学生逐步掌握数学的思想方法,受到数学思维的训练,获得知识,发展能力。

分数除法教案46

  设计说明

  本节课通过设置疑问,运用自主探索、合作探究等学习方式理解分数与除法的关系,运用此关系探索假分数与带分数的互化方法,理解假分数与带分数的互化算理,培养学生观察、比较、推理、归纳及交流的能力。本节课在教学设计上主要有以下两大特点:

  1.让学生在生活中感悟数学。

  从生活实际出发,从“分蛋糕”的情境入手,把教材内容与“数学现实”有机地结合起来,符合小学生的认知特点,可以消除学生对数学知识的陌生感,同时增强学生的数学应用意识,唤起学生对数学学习的兴趣。

  2.让学生体验成功的乐趣。

  数学课堂教学要着眼于学生的潜能和可发展性,充分相信学生,给学生提供充分的自主探索的时间与空间,鼓励学生自主地进行观察、实验、猜测、推理、验证、交流等数学活动(探索除法与分数的关系,探索假分数与带分数互化的方法),使学生在自主探索的过程中真正理解和掌握数学基础知识与基本技能、数学思想和方法,从而获得广泛的数学活动经验。

  课前准备

  教师准备 PPT课件

  学生准备 学具 三种颜色的纸条

  教学过程

  第1课时 分数与除法(一)

  ⊙设置疑问,导入课题

  1.下面各题的'商可以分为哪几类?

  36÷6=6 4÷5=0.8 80÷5=16 5÷10=0.5

  3÷7=0.428571428571… 4÷9=0.4444…

  引导学生归纳分类:

  36÷6=6和80÷5=16的商为整数;

  4÷5=0.8和5÷10=0.5的商为有限小数;

  3÷7=0.428571428571…和4÷9=0.4444…的商为循环小数。

  2.师总结:两个自然数相除,不能整除的时候,它们的商还可以用分数来表示。今天我们就来学习这部分内容。[板书:分数与除法(一)]

  设计意图:复习旧知,回顾所学知识的内在联系,引出课题。

  ⊙层层深入,探索分数与除法的关系

  1.出示问题,理解题意,列出算式。

  课件出示:把1块蛋糕平均分给2个小朋友,每人可以分到几块蛋糕?如果把7块蛋糕平均分给3个小朋友呢?

  师引导学生读题,提问(1):把1块蛋糕平均分给2个小朋友,可以写出怎样的算式?把7块蛋糕平均分给3个小朋友呢?

  预设 生:根据除法的意义,可以分别列式为1÷2和7÷3。

  提问(2):把1块蛋糕平均分给2个小朋友,每人分到几块蛋糕?把7块蛋糕平均分给3个小朋友呢?

  预设 生:每人分别可以分到块和块。

  提问(3):与1÷2之间是什么关系?与7÷3呢?

  (学生观察、讨论后可以明确:1÷2=,7÷3=)

  2.初步探索除法与分数的关系。

  师:观察1÷2=,7÷3=,说一说整数除法中被除数和除数与得数中的分子和分母存在着什么样的关系。

  (学生小组讨论交流,汇报)

  师生共同总结:任何一个分数都可以表示为分子除以分母,其中,分子相当于被除数,分母相当于除数。即:被除数÷除数=(除数不为0)。

  如果分别用字母ab表示除法算式中的被除数和除数,分数与除法的这种关系怎样表示?

  质疑:这里的ab是否可以是任意自然数?为什么?

  (不可以,这里的b≠0。在除法中,除数不能为0,所以在分数中,分母也不能为0。教师板书:b≠0)

分数除法教案47

  教学过程:

  一、复习旧知识,引进新课

  1、把8个饼平均分给4个人,每人分得几个?谁能列式?

  2、把4个饼平均分给4个人,每人分得几个?

  这两道题,是我们以前学过的,把一个数平均分成几份,求每一份是多少,

  什么方法来计算?

  二、激思讨论,探讨新知识

  1、教学例1。

  (1)把1个饼平均分给3个人,每人分得几个?怎样列式?

  (2)求每人分得几个?用除法来列式。那每人到底分得多少个饼呢?你是怎么想的?(课件演示:一张饼的1/3就是1/3张饼。)

  2、揭示课题:这节课我们就来研究“分数与除法”。让学生提出学习这一节课想知道的问题。

  【设计意图:运用学生对已有知识“分数的意义”和“除法的意义”的理解,沟通分数与除法的关系,让学生明确在计算除法的时候,往往得不到整数的结果,可以用分数来表示。】

  三、实际操作,寻找规律

  教学例2。

  1、把3张饼平均分给4人该怎么计算呢? “3 ÷ 4”表示什么意思?现在每

  人能分得一张饼吗?

  2、指导学法,让学生动手操作:利用3个圆形纸片,动手折一折、剪一剪、

  分一分,看看平均每人能分到多少块?

  3、各组汇报分法及分的'结果。

  组1:我们是把这3张饼,每个都平均分成4块,一共分成12块,每人得3块。

  组2:一个饼一个饼地分。先将第一个饼平均分成4份,每人分得其中的一份;

  将第二个饼也平均分成4份,每人也分得其中的一份;将第三个饼同样平均分成4份,每人又分得其中的一份。将每个人得到的饼拼在一起,也是3/4张饼。

  组3:三个饼叠在一起,平均分成4份,每人分得其中的一份。每人分得3张饼的1/4,也是3/4张饼。

  4、电脑屏幕显示三种分法,让学生尝试说出推理过程。

  (1)把3个饼平均分成4份,我们可以吧什么看作单位“1”?

  一份是多少个饼?一份是三个饼的几分之几?

  (2)从屏幕显示和操作,我们可以看出:1个饼的3/4就是3个饼的1/4。

  (3)3/4就是哪一算式计算的结果?

  (4)3/4个饼表示什么意义?

  【设计意图:通过分析“把3张饼平均分成4份”,完成了从观察到想象,从个别到其他的思维过渡,同时为充分发现分数和除法的关系创造了条件。】

  四、比较分析,分析规律

  1、观察等式1÷4=1/4,3÷4=3/4,,3÷5=3/5发现除法和分数有怎样的关系?

  2、你发现分数与除法有什么联系?为什么用相当于?

  【设计意图:这个环节重点要引导学生发现:分数恰好是相应除法算式的结果,发现除法算式各部份与分数各部份的关系,并指导学生用准确的语言进行表述,比如“被除数相当于分数的分子”中的“相当于”而不是“就是”,便于学生认识到分数与除法既相联系又相区别。】

  板书:被除数÷除数=被除数/除数这个等式还有注意什么?在分数中分母能是零吗?为什么?

  3、如果用字母a、b分别表示被除数、除数这个等式该怎样写?这里哪个字母不能是零?

  4、联系复习时3÷5=3/5,现在你能运用分数和除法的关系来说明吗?

  5、小结:一个分数不仅可以表示一个得数,也可以看作一个除法算式。

  五、多层练评,反馈总结

  1、75页自主练习1,生独立完成。

  7÷12=( )/( ) 4÷3=( )/( )

  9/5=( )÷( ) 3/8=( )÷( )

  2、单位之间的互化。

  7分米=( )/( )米 3克=( )/( )千克

  23分=( )/( )时 59秒=( )/( )分

  3、解决生活中的问题。

  4、课堂总结:通过这节课学习你有什么收获?

分数除法教案48

  教学目标

  1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。

  2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商

  3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。

  教学重难点

  教学重点:

  掌握分数与除法的关系,会用分数表示两个数相除的商。

  教学工具

  多媒体课件,圆形纸片,剪刀

  教学过程

  一、创设情境,导入新课,

  师:同学们过生日都要吃生日蛋糕,喜欢吃吗?(生:喜欢)

  1.师:今天老师就带来了8个小蛋糕把8个小蛋糕平均分给4个人吃,每人分得多少个?

  怎么列式?生:8÷4=2(个)

  2.师:把8个小蛋糕变成1个大蛋糕把1个大蛋糕平均分给4个人吃,每人分得多少个?

  怎么列式?生:1÷4=

  二、动手操作,探索新知

  1、探索一个物体平均分,体会分数与除法的关系。

  (1)师:每人分得多少个?请同学们利用这张白色的圆形纸片,折一折,分一分,看看到底是多少个?生动手折纸,思考

  生:把1个蛋糕看作单位“1”,把它平均分给4个人,也就是平均分成4份,每人分得其中的一份,也就是这1个蛋糕的1/4,就是1/4个蛋糕

  (2)师:把1个蛋糕平均分给3个人,每人分得多少多少个?怎么列式?

  生独立思考并回答。

  全班交流,明确:求每人分得多少个,要把1个蛋糕平均分成3份,用除法计算;而把“1”平均分成3份,表示这样一份的数,可以用分数()来表示。所以1÷3=()(个)

  2、探索多个物体平均分,体会分数与除法的关系。

  师:把3个蛋糕平均分给4个人,每人分得多少个?

  师:怎样分公平?每人分得多少个?下面,利用你手中的学具3张圆形纸片,小组合作,分一分,剪一剪。

  (1)充分交流、展示学生的想法与做法(可能出现以下几种情况)。

  方法一:一张一张分,把每个蛋糕分别平均分成4份,共12份,每人分到3份,3个(1/4)张拼在一起得到(3/4)个。

  方法二:三个蛋糕摞在一起,平均分成4份,每人分到1份,1份中有3个(1/4)个,拼在一起得到(3/4)个。

  (2)演示:(突出方法二中3个的1/4就是1个的3/4,深化3/4的意义)无论哪一种方法我们都得到:3个蛋糕平均分给4个人,每人分到的就是3/4个蛋糕。即:3÷4=()(个)(板书)

  (3)在这里,3/4就有两层含义:既表示1个的蛋糕的3/4,又表示3个蛋糕的1/4

  (4)师:同学们真了不起,老师还想考考你们:如果把5个蛋糕平均分给7个人,每人分得多少个呢?你能想象一下分的过程吗?好好想一想,并和同学交流一下。

  学生汇报,明确:5个蛋糕的1/7就是1个蛋糕的5/7,即:5÷7=5/7(个)(板书)(5)师:刚才我们是分的蛋糕,现在我们来分分绳子。把3根绳子平均分成5份,每份是多少根?怎么列式?学生思考后回答:3÷5=3/5(根)(课件演示)

  3、总结概括分数与除法之间的关系。

  1÷4=(个)3÷4=(个)

  5÷7=(个)3÷5=(个)

  师:观察黑板上的这些算式,你发现了什么?

  三、观察算式,概括分数与除法的关系。

  (1)请同学们观察这两组算式,你发现分数与除法有什么关系?请观察思考一下,并把你的发现和同学交流一下。

  (2)生汇报:我发现除法算式中的被除数相当于分数的分子,除法算式中的除数相当于分数的`分母,除法算式的除号相当于分数的分数线。师补充:除法算式的商相当于分数的分数值。

  师强调:相当于

  (3)师:请每个同学看着这些算式说一说分数与除法的关系。

  (师板书):被除数÷除数=被除数/除数

  提问:我们能不能反过来说,分数的分子相当于什么?谁来说一说?

  生:分数的分子相当于除法算式中的被除数,分数的分母相当于除数,分数线相当于除号。

  (4)师:如果用a表示被除数,b表示除数,二者的关系可以用字母表示成:a÷b=a/b

  讨论:用字母表示分数与除法的关系,b是否可以是任何数?为什么?补充板书(b≠0)师板书:a÷b=a/b(b≠0)提问:为什么b≠0?(因为除数不能为0,所以b不能为0。)

  师:分数与除法有着如此紧密的联系,那么它们之间有没有区别呢?(学生说不出可以引导)

  小组议一议再全班交流,明确:分数是一种数,也可以表示两数相除;而除法是一种运算。

  三、练习巩固应用

  1、你能很快说出这些算式的商吗?3÷8=5÷9=7÷13=4÷7=40÷56=12÷61=

  2、把1千克葡萄干平均装在2个袋子里,每袋重多少千克?怎么列式?

  把1千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?

  把2千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?

  四、全课小结今天这堂课你有什么收获?还有什么问题吗?

分数除法教案49

  教学目标:

  使学生掌握用方程解答已知一个数的几分之几是多少求这个数的题目。

  教学重点:

  分析题里所含的数量关系,把哪个数看作单位1。

  教学难点:

  怎样列出方程。

  教学过程:

  一、复习

  列式计算,并口述把哪个数看作单位1。

  (1)的是多少? ( )看作单位1。

  (2)14的是多少? ( )看作单位1。

  (3)1的是多少? ( )看作单位1。

  二、新授

  1、板书课题:列方程解文字题

  2、出示例4:一个数的.是,这个数是多少 ?

  (1) 分析数量关系

  提问

  ①这道文字题与刚才复习时的文字题有什么联系和区别?(使学生明白它们的数量关系一样,只是已知未知不同)

  ②硬该把哪个数看作单位1?为什么?

  ③单位1所表示的数知道吗?

  ④怎样求单位1所表示的“这个数”?(引导学生用设未知数X的方法来解决)。

  使学生明确:根据一个数乘以分数的意义。

  由已知:一个数的是,得:一个数×=?

  (2) 列方程解文字题。

  第一步,设未知数为X。教师板书

  解:设这个数是X。

  第二步,根据题意列出方程。教师板书

  X×=

  第三步,解这个方程。教师板书:(略)

  第四步,检验:(略)

  第五步:作答

  3、小结

  (1)怎样设求知数?

  要求单位“1”的量,设单位“1”的量为X。

  (2) 样根据题意列方程?

  找出题中数量之间的等量关系。

  三、巩固练习

  1、教科书第35页“做一做”。

  2、一个数的1倍等于2,求这个数。

  四、课堂练习

  练习九第12、16—19题。

  五、作业

  练习九第13—15题。

  六、课外思考

  练习九思考题。让学生发现规律:第(1)题,后一个数是前一个分数的。第(2)题,把带分数化成假分数。后一个分数的分母是前一个分数分母的2倍;而分子是前一个分数分子的3倍。

分数除法教案50

  单元目标:

  1.理解并掌握分数除法的计算方法,会进行分数除法计算。

  2.会解答已知一个数的几分之几是多少求这个数的实际问题。

  3.理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。

  4.能运用比的知识解决有关的实际问题。

  单元重点:

  理解并掌握分数除法的计算方法,理解比的意义,能用比的知识解决实际问题

  单元难点:

  理解分数除法的算理,列方程解答分数除法问题

  第一课时:分数除法的意义和分数除以整数

  教学目标:

  1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。

  2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

  3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。

  教学重点:

  使学生理解算理,正确总结、应用计算法则。

  教学难点:

  使学生理解整数除以分数的算理。

  教具准备:多媒体课件

  教学过程:

  一、旧知铺垫(课件出示)

  1、复习整数除法的意义

  (1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。

  (2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)

  2、口算下面各题

  ×3 × ×

  × ×6 ×

  二、新知探究

  (一)、教学例1

  1、课件出示自学提纲:

  (1)出示插图及乘法应用题,学生列式计算。

  (2)学生把这道乘法应用题改编成两道除法应用题,并解答。

  (3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。

  2、学生自学后小组间交流

  3、全班汇报:

  100×3=300(克)

  A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)

  B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)

  ×3= (千克) ÷3= (千克) ÷3=3(盒)

  4、引导学生通过整数题组和分数题组的对照,小组讨论后得出:

  分数除法的意义与整数除法相同,都是已知两个因数的积与其

  中一个因数,求另个一个因数。都是乘法的逆运算。

  (二)、巩固分数除法意义的练习:P28“做一做”

  (三)、教学例2

  (1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。

  (2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。

  (3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。

  A、 ÷2= =,每份就是2个。

  B、 ÷2= × =,每份就是的。

  (4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。

  4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的'倒数。

  三、当堂测评(课件出示)

  1、计算

  ÷3 ÷3 ÷20 ÷5 ÷10 ÷6

  2、解决问题

  (1)、一辆货车2小时耗油10/3升,平均每小时耗油多少升?

  (2)、正方形的周长是4/5米,它的边长是多少米?

  学生独立完成。

  教师讲评,小组间批阅。

  四、课堂总结

  1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)

  2、谁来把这两部分内容说一说?

  教学后记

  第二课时:一个数除以分数

  教学目标:

  1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。

  2、培养学生的语言表达能力和抽象概括能力。

  3、培养学生良好的计算习惯。

  教学重点:

  总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。

  教学难点:

  利用法则正确、迅速地进行计算,并能解决一些实际问题。

  教具准备:多媒体课件、实物投影。

  教学过程:

  一、旧知铺垫(课件出示)

  1、计算下面,直接写出得数

  ×4 ×3 ×2 ×6

  ÷4 ÷3 ÷2 ÷6

  2、列式,说清数量关系

  小明2小时走了6 km,平均每小时走多少千米?

  (速度=路程÷时间)

  二、新知探究

  (一)、例3,

  1、实物投影呈现例题情景图。

  理解题意,列出算式:2÷ ÷

  2、探索整数除以分数的计算方法

  (1)2÷如何计算?引导学生结合线段图进行理解。

  (2)先画一条线段表示1小时走的路程,怎么样表示小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的路程)

  (3)引导学生讨论交流:已知小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?

  (4)根据学生的回答把线段图补充完整,并板书出过程。

  先求小时走了多少千米,也就是求2个,算式:2×

  再求3个小时走了多少千米,算式:2× ×3

  (5)综合整个计算过程:2÷ =2× ×3=2×

  (二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。

  (三)、计算÷,探索分数除以分数的计算方法

  1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。

  ÷ = × =2(km)

  2、学生用自己的方法来验证结果是否正确。

  3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。

  三、当堂测评

  1、P31“做一做”的第1、2题。

  2、练习八第2、4题。

  学生独立完成,教师巡回指点,帮助学困生度过难关。

  小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。

  四、课堂总结

  1、这节课你们有什么收获呢?

  2、在这节课上你觉得自己表现得怎样?

  设计意图:

  这两节课的教学我从以下着手:

  1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。

  2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。

  教学后记

  第三课时:练习课

  第四课时:分数混合运算

  教学目标:

  1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。

  2、通过练习,培养学生的计算能力及初步的逻辑思维能力。

  3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。

  4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。

  教学重点:确定运算顺序再进行计算。

  教学难点:明确混合运算的顺序。

  教具准备:多媒体课件。

  教学过程:

  一、旧知铺垫(课件出示)

  1、复习整数混合运算的运算顺序

  (1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。

  (2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。

  (3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。

  2、说出下面各题的运算顺序。

  (1)428+63÷9―17×5 (2)1.8+1.5÷4―3×0.4

  (3)3.2÷[(1.6+0.7)×2.5] (4)[7+(5.78—3.12)]×(41.2―39)

  3、小红用长8米的彩带做一些花,每朵花用2/3米彩带,一共可以做多少朵?

  二、新知探究

  1、教师课件出示例4

  2、课件出示自学提纲:

  (1)例4中的哪些条件和复习中的3相同?问题相同吗?

  (2)自己读题,明确已知条件及问题,想:要求小红还剩几朵花,应先求……

  (3)尝试说说自己的解题思路并解答。

  3、学生根据提纲尝试解题。

  4、全班汇报

  (1)根据学生的回答,归纳出两种思路:

  A、可以从条件出发思考,根据彩带长8m,每朵花用m彩带,可以先算出一共做了多少朵花。

  B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。

  (2)说说运算顺序,再进行计算。

  (1)计算1/5÷(2/3+1/5)×15

  让个别学生说出运算顺序并计算题目的得数。

  教师巡回指点,搜集存在问题。

  教师黑板出示问题,学生上台改正,并说明理由。

  (2)小组间讨论带有中括号的计算题,并正确计算。然后全班校对。

  三、当堂测评

  练习九第1、2、3题:

  注:第2题求楼的楼板到地面的高度,但要注意引导学生意识6

  楼楼板到地面的高度实际上只有5层楼的高度。

  学生独立完成教师点评,解决疑难。

  学生相互得分,评选优胜小组。

  四、课堂小结

  这节课有什么收获?说一说。

  还有什么不懂的?提出来小组内解决。

  设计意图

  1、在课初始,我便从复习整数及小数的运算顺序入手,

  重点让学生回忆、熟悉运算顺序,然后再以例题为载体,让学生发

  现分数的运算顺序同整数、小数的运算顺序相同,继而配合课后练

  习加强计算的训练。

  2、当堂测评题将学生置于提高之处,联系实际生活解决问

  题,让学生体会到数学知识的广泛性和严谨性

  教学后记

  第五课时:练习课

  已知一个数的几分之几是多少求这个数的应用题

  教学目标:

  1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。

  2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

  教学重点:

  弄清单位“1”的量,会分析题中的数量关系。

  教学难点:

  分数除法应用题的特点及解题思路和解题方法。

  教具准备:多媒体课件。

  教学过程:

  一、旧知铺垫(课件出示)

  1、根据题意列出关系式。

  (1)一个数的3/4等于12.

  (2)男生人数的11/12等于220人。

  (3)甲数的5/8是40.

  (4)乙数的4/5刚好是1/6.

  2、解决问题

  根据测定,成人体内的水分约占体重的,而儿童体内的水分约占体重的,六年级学生小明的体重为35千克,他体内的水分有多少千克?

  (1)看看题目中所给的三个条件是否都用得上,并说说为什么。

  选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。

  小明的体重× =体内水分的重量

  (2)指名口头列式计算。

  二、新知探究

  (一)教学例1.

  1、课件出示自学提纲:

  (1)这一例题和复习中的题有什么不同和相同呢?想一想。

  (2)有几个问题?都和哪些条件有关?

  (3)读题、理解题意,并画出线段图来表示题意

  (4)独立解决第一个问题。

  2、全班汇报

  (1)学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。

  小明的体重× =体内水分的重量

  (2)相同点和不同点(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)。

  (3)列方程来解决问题。这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,)

  (4)用算术解来解答应用题。(根据数量关系式:小明的体重× =体内水分的重量,反过来,体内水分的重量÷ =小明的体重)

  3、解决第二个问题:小明的体重是爸爸的,爸爸的体重是多少千克?

  (1)启发学生找关键句,确定单位“1”。

  (2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。

  (3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)

  爸爸的体重× =小明的体重

  ①方程解:解:设爸爸的体重是χ千克。

  χ= 35

  χ=35÷

  χ=75

  ②算术解:35÷ =75(千克)

  4、巩固练习:P38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)

  三、当堂测评(课件出示)

  1、根据题意列出算式,不必计算(每题15分)。

  (1)一个数的2/5是40,这个数是多少?

  (2)一个数的3/8是24,这个数是多少?

  (3)甲数是100,占乙数的4/5,乙数是多少?

  (4)甲数是乙数的2/3,已知甲数是12,乙数是多少?

  2、解决问题(40分)。

  某校有女生160人,正好占男生的8/9,男生有多少人?

  学生独立完成,教师巡回指点,注重学困生的提高。

  小组内订正、互评,做到兵强兵。

  四、课堂总结

  这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果关键句中的单位“1”是未知的话,可以用方程或除法进行解答。

  设计意图:

  本堂课我设计了“题目——线段图——等量关系式——解决问题”这样四个环节来教学例题的第(1)个问题,以使学生很清晰地掌握解题思路,引导学生解决问题的同时教给他们此类问题的解决方法。

  教学后记:

【分数除法教案】相关文章:

《分数与除法 》教案03-08

《分数除法》教案02-23

分数与除法的教案03-05

分数与除法教案12-15

《分数除法练习》教案09-09

人教版分数除法教案10-27

分数除法二教案03-29

《分数与除法的关系》教案03-03

有关分数除法教案01-01