范文资料网>反思报告>教案大全>《《分式的加减法》教案

《分式的加减法》教案

时间:2022-08-27 10:09:51 教案大全 我要投稿
  • 相关推荐

《分式的加减法》教案

  在教学工作者实际的教学活动中,总不可避免地需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么问题来了,教案应该怎么写?以下是小编收集整理的《分式的加减法》教案,希望能够帮助到大家。

《分式的加减法》教案

《分式的加减法》教案1

  一、目标要求

  1.理解掌握分式的四则混合运算的顺序。

  2.能正确熟练地进行分式的加、减、乘、除混合运算。

  二、重点难点

  重点:分式的加、减、乘、除混合运算的'顺序。

  难点:分式的加、减、乘、除混合运算。

  分式的加、减、乘、除混合运算的顺序是先进行乘、除运算,再进行加、减运算,遇有括号,先算括号内的。

  三、解题方法指导

  【例1】计算:(1)[++(+)]·;

  (2)(x-y-)(x+y-)÷[3(x+y)-]。

  分析:分式的四则混合运算要注意运算顺序及括号的关系。

  解:(1)原式=[++]·=[++]·=·==。

  (2)原式=·÷=··=y-x。

  【例2】计算:(1)(-+)·(a3-b3);

  (2)(-)÷。

  解:(1)原式=-+=-+ab

  =a2+ab+b2-(a2-b2)-ab

  =a2+ab+b2-a2+b2-ab=2b2。

  (2)原式=[-]·=-=-====。

  说明:分式的加、减、乘、除混合运算注意以下几点:

  (1)一般按分式的运算顺序法则进行计算,但恰当地使用运算律会使运算简便。

  (2)要随时注意分子、分母可进行因式分解的式子,以备约分或通分时备用,可避免运算烦琐。

  (3)注意括号的“添”或“去”、“变大”与“变小”。

  (4)结果要化为最简分式。

  四、激活思维训练

  ▲知识点:求分式的值

  【例】已知x+=3,求下列各式的值:

《分式的加减法》教案2

  一、目标要求

  1.理解掌握异分母分式加减法法则。

  2.能正确熟练地进行异分母分式的加减运算。

  二、重点难点

  重点:异分母分式的加减法法则及其运用。

  难点:正确确定最简公分母和灵活运用法则。

  1.异分母分式的加减法法则:异分母分式相加减,先通分,变为同分母分式,然后再加减。用式子表示为:±=。

  2.分式通分时,要注意几点:(1)如果各分母的系数都是整数时通分,常取它们的系数的最小公倍数,作为最简公分母的系数;(2)若分母的系数不是整数时,先用分式的基本性质将其化为整数,再求最小公倍数;(3)分母的系数若是负数时,应利用符号法则,把负号提取到分式前面;(4)若分母是多项式时,先按某一字母顺序排列,然后再进行因式分解,再确定最简公分母。

  三、解题方法指导

  【例1】计算:(1)++;

  (2)-x-1;

  (3)--。

  分析:(1)把分母的各多项式按x的降幂排列,能先分解因式的将其分解因式,找最简公分母,转化为同分母的分式加减法。(2)一个整式与一个分式相加减,应把这个整式看作一个分母是1的式子来进行通分,注意-x-1=,要注意负号问题。

  解:(1)原式=-+=-+====;

  (2)原式======;

  (3)原式=--===。

  【例2】计算:。+++。

  分析:此题若将4个分式同时通分,分子将是很复杂的,计算也是比较复杂的。各式的`分母适用于平方差公式,所以采取分步通分的方法进行加减。

  解:原式=++=++=+=+==。

  四、激活思维训练

  ▲知识点:异分母分式的加减

  【例】计算:-+。

  分析:此题如果直接通分,运算势必十分复杂。当各分子的次数大于或等于分母的次数时,可利用多项式的除法,将其分离为整式部分与分式部分的和,再加减会使运算简便。

  解:原式=[x+2-]-[x+3+]

  +[+1]

  =x+2--x-3-++1

  =--+=====。

  五、基础知识检测

  1.填空题:

《分式的加减法》教案3

  教学目标

  (一)教学知识点

  1.异分母的分式加减法的法则.

  2.分式的通分.

  (二)能力训练要求

  1.经历异分母分式的加减运算和通分的过程,训练学生的分式运算能力,培养数学学习中转化未知问题为已知问题的能力.

  2.进一步通过实例发展学生的符号感.

  (三)情感与价值观要求

  1.在学生已有数学经验的基础上,探求新知,从而获得成功的快乐.

  2.提高学生用数学意识.

  教学重点

  1.掌握异分母的分式加减运算.

  2.理解通分的意义.

  教学难点

  1.化异分母分式为同分母分式的过程.

  2.符号法则、去括号法则的`应用.

  教学方法

  启发、探索相结合

  教具准备

  投影片五张

  第一张:做一做,(记作3.3.2 A)

  第二张:例1,(记作3.3.2 B)

  第三张:例2,(记作3.3.2 C)

  第四张:例3,(记作3.3.2 D)

  第五张:补充练习(记作3.3.2 E)

  教学过程

  Ⅰ.创设问题情境,类比异分母分数的加减法引入新课

  [师]大家知道,对于异分母的分数相加减必须利用分数的基本性质,化成同分母的分数相加减,然后才能运算.

  上一节课,我们讨论较简单的异分母的分式加减法.下面我们再来看几个异分母的加减法.(出示投影片3.3.2 A)

《分式的加减法》教案4

  教学目标

  (1)理解通分的意义,理解最简公分母的意义;

  (2)掌握分式的通分法则,能熟练掌握通分运算。

  教学重点:分式通分的理解和掌握。

  教学难点:分式通分中最简公分母的确定。

  教学工具:投影仪

  教学方法:启发式、讨论式

  教学过程

  (一)引入

  (1)如何计算:

  由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。

  (2)如何计算:

  (3)何计算:

  引导学生思考,猜想如何求解?

  (二)新课

  1、类比分数的通分得到分式的通分:

  把几个异分母的分式分别化成与原来的分式相等的同分母的'分式,叫做分式的通分.

  注意:通分保证(1)各分式与原分式相等;(2)各分式分母相等。

  2.通分的依据:分式的基本性质.

  3.通分的关键:确定几个分式的最简公分母.

  通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做最简公分母.

  根据分式通分和最简公分母的定义,将分式通分:

  最简公分母为: 然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为 。通分如下:

  通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的思路过程。

  例1 通分:

  (1)

  分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。

  解:∵ 最简公分母是12xy2,

  小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数.

  解:∵最简公分母是10a2b2c2,

  由学生归纳最简公分母的思路。

  分式通分中求最简公分母概括为:(1)取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的。取这些因式的积就是最简公分母。

  例2 通分:

  设问:对于分母为多项式的分式通分如何找最简公分母?

  前面讲的是单项式,对于多项式首先应该对多项式因式分解,确定各分母所含的因子然后再确定最简公分母。

  解:∵ 最简公分母是2x(x+1)(x-1),

  小结:当分母是多项式时,应先分解因式.

  解:

  将分母分解因式:x2-4=(x+2)(x-2).4-2x=-2(x-2).

  ∴最简公分母为2(x+2)(x-2).

  由学生归纳一般分式通分:

  通分的关键是确定几个分式的最简公分母,其步骤如下:

  1.将各个分式的分母分解因式;

  2.取各分母系数的最小公倍数;

  3.凡出现的字母或含有字母的因式为底的幂的因式都要取;

  4.相同字母或含字母的因式的幂的因式取指数最大的;

  5.将上述取得的式子都乘起来,就得到了最简公分母;

  6. 原来各分式的分子和分母同乘一个适当的整式,使各分式的分母都化为最简公分母。

  练习:教材P.79中1、2、3.

  (三)课堂小结

  1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.

  2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.

  3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.

  六、作业

  教材P.85中1、2.

  七、板书设计

《分式的加减法》教案5

  一、教学目标

  1.使学生根据分数的通分法则及分式的基本性质,分析、归纳出分式的通分法则,并能熟练掌握通分运算。

  2.使学生理解和掌握分式和减法法则,并会应用法则进行分式加减的运算。

  3.使学生能够灵活运用分式的有关法则进行分式的四则混合运算。

  4.引导学生不断小结运算方法和技巧,提高运算能力。

  二、教学重点和难点

  1.重点:分式的加减运算。

  2.难点:异分母的分式加减法运算。

  三、教学方法

  启发式、分组讨论。

  四、教学手段

  幻灯片。

  五、教学过程

  (一)引入

  1.如何计算:2.如何计算:3.若分母不同如何计算?如:

  (二)新课

  1.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

  2.通分的依据:分式的基本性质。

  3.通分的关键:确定几个分式的'公分母。

  通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

  例1通分:

  (1)解:∵最简公分母是,

  小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数。

  (2)解:

  例2通分:

  (1)解:∵最简公分母的是2x(x+1)(x—1),

  小结:当分母是多项式时,应先分解因式。

  (2)解:将分母分解因式:∴最简公分母为2(x+2)(x—2),

  练习:教材P,79中1、2、3。

  (三)课堂小结

  1.通分与约分虽都是针对分式而言,但却是两种相反的变形。约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。

  2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。

  3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。

【《分式的加减法》教案】相关文章:

分式的教案02-25

初中数学分式教案12-29

初中数学分式教案4篇12-31

大班加减法教案06-25

小数的加减法教案04-21

《小数加减法》教案09-03

小学6的加减法教案03-11

《20以内加减法》教案03-12

《5以内的加减法》教案03-07