二次函数教案

时间:2022-07-31 08:25:10 教案大全 我要投稿
  • 相关推荐

二次函数教案

  作为一名辛苦耕耘的教育工作者,时常需要编写教案,教案是教学蓝图,可以有效提高教学效率。那要怎么写好教案呢?下面是小编整理的二次函数教案,仅供参考,欢迎大家阅读。

二次函数教案

二次函数教案1

  一、教学目标:

  1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

  2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.

  3.能够利用二次函数的图象求一元二次方程的近似根。

  二、教学重点、难点:

  教学重点:

  1.体会方程与函数之间的联系。

  2.能够利用二次函数的图象求一元二次方程的近似根。

  教学难点:

  1.探索方程与函数之间关系的过程。

  2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

  三、教学方法:启发引导 合作交流

  四:教具、学具:课件

  五、教学媒体:计算机、实物投影。

  六、教学过程:

  检查预习 引出课题

  预习作业:

  1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.

  2. 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的`解.

  师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。

  教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。

  设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。

二次函数教案2

  教学目标:

  1、使学生进一步理解二次函数的基本性质;

  2、渗透解析几何,数形结合,函数等数学思想.培养学生发现问题解决问题,及逻辑思维的能力.

  3、使学生参与教学过程,通过主体的积极思维,体验感悟数学.逐步建立数学的观念,培养学生独立地获取知识的能力.

  教学重点:初步理解数形结合的数学思想

  教学难点:初步理解数形结合的数学思想

  教学用具:微机

  教学方法:探究式、小组合作学习

  教学过程:

  例1、已知:抛物线y=x2-(m2-1)x-2m2-2

  ⑴求证:无论m取什么实数,抛物线与x轴一定有两个交点

  ⑵m取什么实数时,两交点间距离最短?是多少?

  解:

  △ =(m2-1)2+4(2m2+2)

  =m4-2m2+1+8m2+8

  =m4+6m2+9

  =(m2+3)2

  m2≥0

  ∴m2+3>0

  ∴△>0

  ∴抛物线与x轴有两个交点

  问题:为什么说当△>0时,抛物线y =ax2+bx+c与x轴有两个交点.(能否从数和形两方面说明)

  设计意图:在课堂上创设让学生说数学的机会,学会合作学习,以达到①经验共享,在思维的碰撞中共同提高.②学会合作,消除个人中心.③发现自我,提高参与度.④弘扬个体的主体性,形成健康,丰富的个性.

  数:点在曲线上,点的坐标满足曲线的方程.反之,曲线方程的每一个实数解对应的点都在曲线上.抛物线与x轴的交点,既在抛物线上,又在x轴上.所以交点的坐标既满足抛物线的解析式,也满足x轴的解析式.设交点坐标为(x,y)

  ∴

  这样交点问题就转化成求这个二元二次方程组的解.代入y =0,消去y,转化成ax2+bx+c=0这个一元二次方程求根问题.根据以前学过的知识,当△>0时, ax2+bx+c=0有两个不相等的实根.∴y =ax2+bx+c

  y =0

  有两个不等的实数解

  ∴抛物线与x轴交于两个不同的点.

  形:顶点在x轴上方,且开口向下.或者顶点在x轴下方,且开口向上.

  设计意图:渗透解析几何的基本思想

  使学生掌握转化思想使学生在解题过程中,感知数学的直观性和形式化这二重性.掌握数形结合,分类讨论的思想方法.逐步学会数学的思维.

  转化成代数语言为:

  小结:第一种方法,根据解析几何的'基本思想.将求曲线的交点问题,转化成求方程组的解的问题.

  第二种方法,借助于图象思考问题,比较直观.发现规律后,再用数学的符号语言将其形式化.这既体现了数学中的数形结合的思想方法,也是探索解数学问题的一般方法.

  思考:试从数、形两方面说明抛物线与x轴的交点个数与判别 式的符号的关系.

  设计意图:数学学习是一个再创造的过程,不能等同于数学知识的汇集,而要让学生经历数学知识的创造过程.使主体积极地参与到学习中去.以数学知识为载体,揭示出蕴涵于其中的数学思想方法,逐步形成数学观念.

  ⑵m取什么实数时,两交点间距离最短?是多少?

  解:设二次函数与x轴的两交点为(x1,0),(x2,0)

  解法㈠ 由⑴可知m为任何实数时, 都有△>0

  解①

  ∴ x1+x2=m2-1

  x1·x2=-2(m2+1)

  ∴│x2-x1│=

  =

  =

  =

  =m2+3

  ∴当m =0时,两交点最小距离为3

  这里两交点间距离是m的函数

  设计意图:培养学生的问题意识.在解题过程中,发现问题,并能运用已有的数学知识,将其一般化,形式化,解决问题,体会数学问题解决的一般方法.培养学生独立地获取数学知识的能力.渗透函数思想

  问题: 观察本题两交点间距离与判别式的值之间有何异同?具有一般的规律吗?如何说明.

  设x1、x2 为ax2+bx+c =0的两根

  可以推出:

  还可以理解为顶点到x轴距离最短.

  设计意图:在对比、分析中,明确概念,揭示知识间的联系,帮助学生建立良好的认知结构.

  小结:观察这道题的结论,我们猜测出规律,将其一般化,推导出这个公式,这是学习数学知识的一般方法.

  解法㈡:用十字相乘法或求根公式法求根.

  思考:一元二次方程与二次函数的关系.

  思考:求m取什么实数时,y =x2-(m2-1)x -2 m2-2被直线y =2所截得的线段最短?是多少?

  练习:

  观察函数 的图象,回答:

  (1)y>0时,x的取值范围如何?

  (2)y=0时,x取什么值?

  (1)y<0时,x的取值范围如何?

  小结:数与形是数学中相互依赖的两个方面.图形比较直观,可以启发思路;而数学的严格证明也是必不可少的.直观性和形式化是数学的两重性.

  探究活动

  探究问题:

  欣欣日用品零售商店,从某公司批发部每月按销售合同以批发单价每把8元购进雨伞(数量至少为100把),欣欣商店根据销售记录,这批雨伞以零售单价每把为14元出售时,月销售量为100把,数学教案-二次函数y=ax2+bx+c 的图象,初中数学教案《数学教案-二次函数y=ax2+bx+c 的图象》。如果零售单价每降价0.1元 , 月销售量就要增加5把.

  (1) 欣欣日用品零售商店以零售单价14元出售时,一个月的利润为多少元?

  (2) 欣欣日用品零售商店为了扩大销售记录,现实行降价销售,问分别降价0.2元、0.8元、1.2元、1.6元、2.4元、3元时的利润是多少?

  (3) 欣欣日用品零售商店实行降价销售后,问降价多少元时利润最大?最大利润为多少元?

  (4) 现在该公司的批发部为了再次扩大这种雨伞的销售量,给零售商制定如下优惠措施:如果零售商每月从批发部购进雨伞的数量超过100把,其超过100把的部分每把按原价九五折(即百分之95)付费,但零售价每把不能低于10元。欣欣日用品零售商店应将这种雨伞的零售单价定为每把多少元出售时,才能使这种雨伞的月销售利润最大?最大月销售利润是多少元?(销售利润=销售款额—进货款额)

  解:(1)(14—8) (元)

  (2)638元、728元、748元、792元、792元、750元。

  (3)设降价 元时利润最大,最大利润为 元

  =

  =

  =

  ∴ 当 时, 有最大值

  元

  (4)设降价 元时利润最大,利润为 元

  (其中 )。

  化简,得 。

  ,

  ∴ 当 时, 有最大值。

  ∴ 。

  数学教案-二次函数y=ax2+bx+c 的图象

二次函数教案3

  本节课在二次函数y=ax2和y=ax2+c的图象的基础上,进一步研究y=a(x-h)2和y=a(x-h)2+k的图象,并探索它们之间的关系和各自的性质.旨在全面掌握所有二次函数的图象和性质的变化情况.同时对二次函数的研究,经历了从简单到复杂,从特殊到一般的过程:先是从y=x2开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c.符合学生的认知特点,体会建立二次函数对称轴和顶点坐标公式的必要性.

  在教学中,主要是让学生自己动手画图象,通过自己的观察、交流、对比、概括和反思[

  等探索活动,使学生达到对抛物线自身特点的认识和对二次函数性质的理解.并能利用它的性质解决问题.

  2.4二次函数y=ax2+bx+c的图象(一)

  教学目标

  (一)教学知识点[

  1.能够作出函数y=a(x-h)2和y=a(x-h)2+k的图象,并能理解它与y=ax2的图象的关系.理解a,h,k对二次函数图象的影响.

  2.能够正确说出y=a(x-h)2+k图象的开口方向、对称轴和顶点坐标.

  (二)能力训练要求

  1.通过学生自己的探索活动,对二次函数性质的研究,达到对抛物线自身特点的认识和对二次函数性质的理解.

  2.经历探索二次函数的图象的作法和性质的过程,培养学生的探索能力.

  (三)情感与价值观要求

  1.经历观察、猜想、总结等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.

  2.让学生学会与人合作,并能与他人交流思维的过程和结果.

  教学重点

  1.经历探索二次函数y=ax2+bx+c的图象的作法和性质的过程.

  2.能够作出y=a(x-h)2和y=a(x-h)2+k的图象,并能理解它与y=ax2的图象的关系,理解a、h、k对二次函数图象的影响.

  3.能够正确说出y=a(x-h)2+k图象的开口方向、对称轴和顶点坐标.

  教学难点

  能够作出y=a(x-h)2和y=a(x-h)2+k的图象,并能够理解它与y=ax2的图象的关系,理解a、h、k对二次函数图象的影响.

  教学方法

  探索比较总结法.

  教具准备

  投影片四张

  第一张:(记作2.4.1 A)

  第二张:(记作2.4.1 B)

  第三张:(记作2.4.1 C)

  第四张:(记作2.4.1 D)

  教学过程

  Ⅰ.创设问题情境、引入新课

  [师]我们已学习过两种类型的二次函数,即y=ax2与y=ax2+c,知道它们都是轴对称图形,对称轴都是y轴,有最大值或最小值.顶点都是原点.还知道y=ax2+c的图象是函数y=ax2的图象经过上下移动得到的,那么y=ax2的图象能否左右移动呢?它左右移动后又会得到什么样的函数形式,它又有哪些性质呢?本节课我们就来研究有关问题.

  Ⅱ.新课讲解

  一、比较函数y=3x2与y=3(X-1)2的图象的性质.

  投影片:(2.4 A)

  (1)完成下表,并比较3x2和3(x-1)2的值,

  它们之间有什么关系?

  X -3 -2 -1 0 1 2 3 4

  3x2

  3(x-1)2

  (2)在下图中作出二次函数y=3(x-1)2的图象.你是怎样作的?

  (3)函数y=3(x-1)2的图象与y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?

  (4)x取哪些值时,函数y=3(x-1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x-1)2的值随x值的增大而减小?

  [师]请大家先自己填表,画图象,思考每一个问题,然后互相讨论,总结.

  [生](1)第二行从左到右依次填:27.12,3,0,3, 12,27,48;第三行从左到右依次填48,27,12,3,0,3, 12,27.

  (2)用描点法作出y=3(x-1)2的图象,如上图.

  (3)二次函数)y=3(x-1)2的.图象与y=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,y=3(x-1)2的图象的对称轴是直线x=1,顶点坐标是(1,0).

  (4)当x1时,函数y=3(x-1)2的值随x值的增大而增大,x1时,y=3(x-1)2的值随x值的增大而减小.

  [师]能否用移动的观点说明函数y=3x2与y=3(x-1)2的图象之间的关系呢?

  [生]y=3(x-1)2的图象可以看成是函数)y=3x2的图象整体向右平移得到的.

  [师]能像上节课那样比较它们图象的性质吗?

  [生]相同点:

  a.图象都中抛物线,且形状相同,开口方向相同.

  b. 都是轴对称图形.

  c.都有最小值,最小值都为0.

  d.在对称轴左侧,y都随x的增大而减小.在对称轴右侧,y都随x的增大而增大.

  不同点:

  a.对称轴不同,y=3x2的对称轴是y轴y=3(x-1)2的对称轴是x=1.

  b. 它们的位置不问.[来源:Www.zk5u.com]

  c. 它们的顶点坐标不同. y=3x2的顶点坐标为(0,0),y=3(x-1)2的顶点坐标为(1,0),

  联系:

  把函数y=3x2的图象向右移动一个单位,则得到函数y=3(x-1)2的图像.

  二、做一做

  投影片:(2.4.1 B)

  在同一直角坐标系中作出函数y=3(x-1)2和y=3(x-1)2+2的图象.并比较它们图象的性质.

  [生]图象如下

  它们的图象的性质比较如下:

  相同点:

  a.图象都是抛物线,且形状相同,开口方向相同.

  b. 都足轴对称图形,对称轴都为x=1.

  c. 在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随x的增大而增大.

  不同点:

  a.它们的顶点不同,最值也不同.y=3(x-1)2的顶点坐标为(1.0),最小值为0.y=3(x-1)2+2的顶点坐标为(1,2),最小值为2.

  b. 它们的位置不同.

  联系:

  把函数y=3(x-1)2的图象向上平移2个单位,就得到了函数y=3(x-1)2+2的图象.

  三、总结函数y=3x2,y=3(x-1)2,y=3(x-1)2+2的图象之间的关系.

  [师]通过上画的讨论,大家能够总结出这三种函数图象之间的关系吗?

  [生]可以.

  二次函数y=3x2,y=3(x-1)2,y=3(x-1)2+2的图象都是抛物线.并且形状相同,开口方向相同,只是位置不同,顶点不同,对称轴不同,将函数y=3x2的图象向右平移1个单位,就得到函数y=3(x-1)2的图象;再向上平移2个单位,就得到函数y=3(x-1)2+2的图象.

  [师]大家还记得y=3x2与y=3x2-1的图象之间的关系吗?

  [生]记得,把函数y=3x2向下平移1个平位,就得到函数y=3x2-1的图象.

  [师]你能系统总结一下吗?

  [生]将函数y=3x2的图象向下移动1个单位,就得到了函数y=3x2-1的图象,向上移动1个单位,就得到函数y=3x2+1的图象;将y=3x2的图象向右平移动1个单位,就得到函数y=3(x-1)2的图象:向左移动1个单位,就得到函数y=3(x+1)2的图象;由函数y=3x2向右平移1个单位、再向上平移2个单位,就得到函数y=3(x-1)2+2的图象.

  [师]下面我们就一般形式来进行总结.

  投影片:(2.4.1 C)

  一般地,平移二次函数y=ax2的图象便可得到二次函数为y=ax2+c,y=a(x-h)2,y=a(x-h)2+k的图象.

  (1)将y=ax2的图象上下移动便可得到函数y=ax2+c的图象,当c0时,向上移动,当c0时,向下移动.

  (2)将函数y=ax2的图象左右移动便可得到函数y=a(x-h)2的图象,当h0时,向右移动,当h0时,向左移动.

  (3)将函数y=ax2的图象既上下移,又左右移,便可得到函数y=a(x-h)+k的图象.

  因此,这些函数的图象都是一条抛物线,它们的开口方向,对称轴和顶点坐标与a,h,k的值有关.

  下面大家经过讨论之后,填写下表:

  y=a(x-h)2+k 开口方向 对称轴 顶点坐标

  a0

  a0

  四、议一议

  投影片:(2,4.1 D)

  (1)二次函数y=3(x+1)2的图象与二次函数y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?

  (2)二次函数y=-3(x-2)2+4的图象与二次函数y=-3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?

  (3)对于二次函数y=3(x+1)2,当x取哪些值时,y的值随x值的增大而增大?当x取哪些值时,y的值随x值的增大而减小?二次函数y=3(x+1)2+4呢?

  [师]在不画图象的情况下,你能回答上面的问题吗?

  [生](1)二次函数y=3(x+1)2的图象与y=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,y=3(x+1)2的图象的对称轴是直线x=-1,顶点坐标是(-1,0).只要将y=3x2的图象向左平移1个单位,就可以得到y=3(x+1)2的图象.

  (2)二次函数y=-3(x-2)2+4的图象与y=-3x2的图象形状相同,只是位置不同,将函数y=-3x2的图象向右平移2个单位,就得到y=-3(x-2)2的图象,再向上平移4个单位,就得到y=-3(x-2)2+4的图象y=-3(x-2)2+4的图象的对称轴是直线x=2,顶点坐标是(2,4).

  (3)对于二次函数y=3(x+1)2和y=3(x+1)2+4,它们的对称轴都是x=-1,当x-1时,y的值随x值的增大而减小;当x-1时,y的值随x值的增大而增大.

  Ⅲ.课堂练习

  随堂练习

  Ⅳ.课时小结

  本节课进一步探究了函数y=3x2与y=3(x-1)2,y=3(x-1)2+2的图象有什么关系,对称轴和顶点坐标分别是什么这些问题.并作了归纳总结.还能利用这个结果对其他的函数图象进行讨论.

  Ⅴ.课后作业

  习题2.4

  Ⅵ.活动与探究

  二次函数y= (x+2)2-1与y= (x-1)2+2的图象是由函数y= x2的图象怎样移动得到的?它们之间是通过怎样移动得到的?

  解:y= (x+2)2-1的图象是由y= x2的图象向左平移2个单位,再向下平移1个单位得到的,y= (x-1)2+2的图象是由y= x2的图象向右平移1个单位,再向上平移2个单位得到的.

  y= (x+2)2-1的图象向右平移3个单位,再向上平移3个单位得到y= (x-1)2+2的图象.

  y= (x-1)2+2的图象向左平移3个单位,再向下平移3个单位得到y= (x+2)2-1的图象.

  板书设计

  4.2.1 二次函数y=ax2+bx+c的图象(一) 一、1. 比较函数y=3x2与y=3(x-1)2的

  图象和性质(投影片2.4.1 A)

  2.做一做(投影片2.4.1 B)

  3.总结函数y=3x2,y=3(x-1)2y= 3(x-1)2+2的图象之间的关系(投影片2.4.1 C)

  4.议一议(投影片2.4.1 D)

  二、课堂练习

  1.随堂练习

  2.补充练习

  三、课时小结

  四、课后作业

  备课资料

  参考练习

  在同一直角坐标系内作出函数y=- x2,y=- x2-1,y=- (x+1)2-1的图象,并讨论它们的性质与位置关系.

  解:图象略

  它们都是抛物线,且开口方向都向下;对称轴分别为y轴y轴,直线x=-1;顶点坐标分别为(0,0),(0,-1),(-1,-1).

  y=- x2的图象向下移动1个单位得到y=- x2-1 的图象;y=- x2的图象向左移动1个单位,向下移动1个单位,得到y=- (x+1)2-1的图象.

二次函数教案4

  一. 教材分析

  1、教材的地位及作用

  函数是一种重要的数学思想,是实际生活中数学建模的重要工具,二次函数的教学在初中数学教学中有着重要的地位。本节内容的教学,在函数的教学中有着承上启下的作用。它既是对已学一次函数及反比例函数的复习,又是对二次函数知识的延续和深化,为将来二次函数一般情形的教学乃至高中阶段函数的教学打下基础,做好铺垫。

  2.教学目标

  (1) 掌握二此函数的概念并能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯。[知识与技能目标]

  (2)让学生经历观察、比较、归纳、应用,以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法,养成既能自主探索,又能合作探究的良好学习习惯。[过程与方法目标]

  (3) 让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦,[情感、态度、价值观目标]

  3、教学的重、难点

  重点:二次函数的概念和解析式

  难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力

  4、 学情分析

  ①学生已掌握一次函数,反比例函数的概念,图象的画法,以及它们图象的性质。 ②学生个性活泼,积极性高,初步具有对数学问题进行合作探究的意识与 能力。

  ③初三学生程度参差不齐,两极分化已形成。

  二、教法学法分析

  1` 教法(关键词:情境、探究、分层)

  基于本节课内容的特点和初三学生的年龄特征,我以“探究式”体验教学法和“启发式”教学法 为主进行教学。让学生在开放的情境中,在教师的 引导启发下,同学的合作帮助下,通过探究发现,让学生经历数学知识的形成和应用过程,加深对数学知识的理解。教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教。

  2、学法(关键词:类比、自主、合作)

  根据学生的思维特点、认知水平,遵循“教必须以学为立足点”的教育理念,让每一个学生自主参与整堂课的知识构建。在各个环节中引导学生类比迁移,对照学习。以自主探索为主,学会合作交流,在师生互动、生生互动中让每个学生动口,动手,动脑,培养学生学习的主动性和积极性,使学生由“学会”变“会学”和“乐学”。

  3、教学手段

  采用多媒体教学,直观呈现抛物线和谐、对称的美,激发学生的学习 兴趣,参与热情,增大教学容量,提高教学效率。

  三、教学过程

  完整的数学学习过程是一个不断探索、发现、验证的过程,根据新课标要求,根据“以人为本,以学定教”的教学理念,结合学生实际,制订以下教学流程:

  (一).创设情境 温故引新

  以提问的形式复习一元二次方程的一般形式,一次函数,反比例函数的定义,然后让学生欣赏一组优美的有关抛物线的图案,创设情境:

  (1)你们喜欢打篮球吗?

  (2)你们知道:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?

  从而引出课题〈〈二次函数〉〉,导入新课

  (二).合作学习,探索新知

  为了更贴近生活,我先设计了两个和实际生活有关的练习题。鼓励学生积极发言,充分调动学生的主动性。然后出示课本上的两个问题,在这个环节中,我让学生在教师的引导下,先独立思考,再以小组为单位交流成果,以培养学生自主探索、合作探究的能力。四个解析式都列出来后。让学生通过观察与思考,这些解析式有什么共同特征,启发学生用自己的语言总结,从而得出二次函数的概念,并且提高了学生的语言表达能力。

  学生在学习二次函数的概念时要求学生既要知道表示二次函数的解析式中字母的意义,还要能根据给出的函数解析式判断一个函数是不是二次函数

  (三)当堂训练 巩固提高

  由于学生层次不一,练习的设计充分考虑到学生的个体差异,满足不同层次学生的.学习需求,实现有“差异的”发展。让每一个学生都感受成功的喜悦。我设计了3道练习题,其难易程度逐步提高,第一道题面对所有的学生,学生可以根据二次函数的概念直接判断,但需要强调该化简的必须化简后才可以判断。第二道题让学生逆向思维,根据条件自己写二次函数,从而加深了对二次函数概念的理解。最后一道题综合性较强,可以提高他们的综合素质。

  (四).小结归纳 拓展转化

  让学生用自己的语言谈谈自己的收获,可以将这一节的知识条理化,进一步掌握二次函数的概念。

  (五)布置作业 学以致用

  作业分必做题、选做题,体现分层思想,通过作业,内化知识,检验学生掌握知识的情况,发现和弥补教与学中遗漏与不足。同时,选做题具有总结性,可引导学生研究二次函数,一次函数,正比例函数的联系.

  四.评价分析

  本节课的教学从学生已有的认知基础出发,以学生自主探索、合作交流为主线,让学生经历数学知识的形成与应用过程,加深对所学知识的理解,从而突破重难点。整节课注重学生能力的培养和习惯的养成。由于学生的层次不一,我全程关注每一个学生的学习状态,进行分层施教,因势利导,随机应变,适时调整教学环节,,实现评价主体和形式的多样化,把握评价的时机与尺度,激发学生的学习兴趣,激活课堂气氛,使课堂教学达到最佳状态。

  五.教学反思

  1.本节课通过学生合作交流,自己列出不同问题中的解析式,并通过观察他们的共同特征,成功得出了二次函数的概念。

  2.本节课设计的以问题为主线,培养学生有条理思考问题的习惯和归纳概括能力,并重视培养学生的语言表达能力。同时不断激发学生的探索精神,提高了学生分析和解决问题的能力。使学生有成功体验。

二次函数教案5

  【知识与技能】

  1.会用描点法画二次函数=ax2+bx+c的图象.

  2.会用配方法求抛物线=ax2+bx+c的顶点坐标、开口方向、对称轴、随x的增减性.

  3.能通过配方求出二次函数=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.

  【过程与方法】

  1.经历探索二次函数=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性.

  2.在学习=ax2+bx+c(a≠0)的`性质的过程中,渗透转化(化归)的思想.

  【情感态度】

  进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.

  【教学重点】

  ①用配方法求=ax2+bx+c的顶点坐标;②会用描点法画=ax2+bx+c的图象并能说出图象的性质.

  【教学难点】

  能利用二次函数=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数=ax2+bx+c(a≠0)的图象.

  一、情境导入,初步认识

  请同学们完成下列问题.

  1.把二次函数=-2x2+6x-1化成=a(x-h)2+的形式.

  2.写出二次函数=-2x2+6x-1的开口方向,对称轴及顶点坐标.

  3.画=-2x2+6x-1的图象.

  4.抛物线=-2x2如何平移得到=-2x2+6x-1的图象.

  5.二次函数=-2x2+6x-1的随x的增减性如何?

  【教学说明】上述问题教师应放手引导学生逐一完成,从而领会=ax2+bx+c与=a(x-h)2+的转化过程.

  二、思考探究,获取新知

  探究1 如何画=ax2+bx+c图象,你可以归纳为哪几步?

  学生回答、教师点评:

  一般分为三步:

  1.先用配方法求出=ax2+bx+c的对称轴和顶点坐标.

  2.列表,描点,连线画出对称轴右边的部分图象.

  3.利用对称点,画出对称轴左边的部分图象.

  探究2 二次函数=ax2+bx+c图象的性质有哪些?你能试着归纳吗?

二次函数教案6

  二次函数的图象与性质

  1.画出函数=2x2-3x的图象,说明这个函数具有哪些性质。

  2. 通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。

  (1)=3x2+2x;

  (2)=-x2-2x

  ( 3)=-2x2+8x-8 (4)=12x2-4x+3

  板书设计

  1、画函数=ax2+bx+c(a≠0)的图象。

  (列表时,应以对称轴为中心,对称地选取自变量的值,求出相应的函数值。)

  2、二次函数=ax2+bx+c(a≠0),

  当a>0时,开口向上,当a<0时,开口向下。

  对称轴是x=-b2a,顶点坐标是(-b2a,4ac-b24a)

  (最值与抛物线的.开口方向及顶点的纵坐标有关。)

  课后反思

  在本节教学中,教学仍从回顾上节人手,使学生掌握二次函数 是由 如何平移得来,并熟练掌握二次函数 图象的开口方向、对称轴和顶点坐标及有关性质。在此基础上,引导学生思考二次函数=ax2+bx+c(a≠0)图像的开口方向、对称轴和顶点坐标?这样激起学生的求知欲望,能进行有目的探究活动,学生变被动为主动,学习方式发生了改变。这节课学生既动手又动脑,体验到学习知识的乐趣。

二次函数教案7

  教学设计

  一 教学设计思路

  通过小球飞行高度问题展示二次函数与一元二次方程的联系。然后进一步举例说明,从而得出二次函数与一元二次方程的关系。最后通过例题介绍用二次函数的图象求一元二次方程的根的方法。

  二 教学目标

  1 知识与技能

  (1).经历探索函数与一元二次方程的关系的过程,体会方程与函数之间的联系。总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根.

  (2).会利用图象法求一元二次方程的近似解。

  2 过程与方法

  经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

  三 情感态度价值观

  通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况培养学生自主探索意识,从中体会事物普遍联系的观点,进一步体会数形结合思想.

  四 教学重点和难点

  重点:方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解。

  难点:二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

  五 教学方法

  讨论探索法

  六 教学过程设计

  (一)问题的提出与解决

  问题 如图,以20m/s的速度将小球沿与地面成30角的方向击出时,球的飞行路线将是一条抛物线。如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系

  h=20t5t2。

  考虑以下问题

  (1)球的飞行高度能否达到15m?如能,需要多少飞行时间?

  (2)球的飞行高度能否达到20m?如能,需要多少飞行时间?

  (3)球的`飞行高度能否达到20.5m?为什么?

  (4)球从飞出到落地要用多少时间?

  分析:由于球的飞行高度h与飞行时间t的关系是二次函数

  h=20t-5t2。

  所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值:否则,说明球的飞行高度不能达到问题中h的值。

  解:(1)解方程 15=20t5t2。 t24t+3=0。 t1=1,t2=3。

  当球飞行1s和3s时,它的高度为15m。

  (2)解方程 20=20t-5t2。 t2-4t+4=0。 t1=t2=2。

  当球飞行2s时,它的高度为20m。

  (3)解方程 20.5=20t-5t2。 t2-4t+4.1=0。

  因为(-4)2-44.10。所以方程无解。球的飞行高度达不到20.5m。

  (4)解方程 0=20t-5t2。 t2-4t=0。 t1=0,t2=4。

  当球飞行0s和4s时,它的高度为0m,即0s时球从地面飞出。4s时球落回地面。

  由学生小组讨论,总结出二次函数与一元二次方程的解有什么关系?

  例如:已知二次函数y=-x2+4x的值为3。求自变量x的值。

  分析 可以解一元二次方程-x2+4x=3(即x2-4x+3=0) 。反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4+3的值为0,求自变量x的值。

  一般地,我们可以利用二次函数y=ax2+bx+c深入讨论一元二次方程ax2+bx+c=0。

  (二)问题的讨论

  二次函数(1)y=x2+x-2;

  (2) y=x2-6x+9;

  (3) y=x2-x+0。

  的图象如图26.2-2所示。

  (1)以上二次函数的图象与x轴有公共点吗?如果有,有多少个交点,公共点的横坐标是多少?

  (2)当x取公共点的横坐标时,函数的值是多少?由此,你能得出相应的一元二次方程的根吗?

  先画出以上二次函数的图象,由图像学生展开讨论,在老师的引导下回答以上的问题。

  可以看出:

  (1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1。当x取公共点的横坐标时,函数的值是0。由此得出方程x2+x-2=0的根是-2,1。

  (2)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3。当x=3时,函数的值是0。由此得出方程x2-6x+9=0有两个相等的实数根3。

  (3)抛物线y=x2-x+1与x轴没有公共点, 由此可知,方程x2-x+1=0没有实数根。

  总结:一般地,如果二次函数y= 的图像与x轴相交,那么交点的横坐标就是一元二次方程 =0的根。

  (三)归纳

  一般地,从二次函数y=ax2+bx+c的图象可知,

  (1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数的值是0,因此x=x0就是方程ax2+bx+c=0的一个根。

  (2)二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。

  由上面的结论,我们可以利用二次函数的图象求一元二次方程的根。由于作图或观察可能存在误差,由图象求得的根,一般是近似的。

  (四)例题

  例 利用函数图象求方程x2-2x-2=0的实数根(精确到0.1)。

  解:作y=x2-2x-2的图象(如图),它与x轴的公共点的横坐标大约是-0.7,2.7。

  所以方程x2-2x-2=0的实数根为x1-0.7,x22.7。

  七 小结

  二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。

  。

  八 板书设计

  用函数观点看一元二次方程

  抛物线y=ax2+bx+c与方程ax2+bx+c=0的解之间的关系

  例题

二次函数教案8

  教学目标:

  1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;

  2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;

  3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。

  教学重点:二次函数的意义;会画二次函数图象。

  教学难点:描点法画二次函数y=ax2的图象,数与形相互联系。

  教学过程设计:

  一. 创设情景、建模引入

  我们已学习了正比例函数及一次函数,现在来看看下面几个例子:

  1.写出圆的半径是R(CM),它的面积S(CM2)与R的关系式

  答:S=πR2. ①

  2.写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系

  答:S=L(30-L)=30L-L2 ②

  分析:①②两个关系式中S与R、L之间是否存在函数关系?

  S是否是R、L的一次函数?

  由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?

  答:二次函数。

  这一节课我们将研究二次函数的有关知识。(板书课题)

  二. 归纳抽象、形成概念

  一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0) ,

  那么,y叫做x的二次函数.

  注意:(1)必须a≠0,否则就不是二次函数了.而b,c两数可以是零.(2) 由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数.

  练习:1.举例子:请同学举一些二次函数的例子,全班同学判断是否正确。

  2.出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。

  (若学生考虑不全,教师给予补充。如: ; ; ; 的形式。)

  (通过学生观察、归纳定义加深对概念的理解,既培养了学生的.实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)

  由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。

  (在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)

  三. 尝试模仿、巩固提高

  让我们先从最简单的二次函数y=ax2入手展开研究

  1. 1. 尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?

  请同学们画出函数y=x2的图象。

  (学生分别画图,教师巡视了解情况。)

二次函数教案9

  【知识与技能】

  1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.

  2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.

  【过程与方法

  经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.

  【情感态度】

  通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.

  【教学重点】

  1.会画y=ax2(a>0)的图象.

  2.理解,掌握图象的性质.

  【教学难点】

  二次函数图象及性质探究过程和方法的体会教学过程.

  一、情境导入,初步认识

  问题1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?

  问题2 如何用描点法画一个函数图象呢?

  【教学说明】

  ①略;

  ②列表、描点、连线.

  二、思考探究,获取新知

  探究1 画二次函数y=ax2(a>0)的图象.

  画二次函数y=ax2的.图象.

  【教学说明】

  ①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.

  ②从列表和描点中,体会图象关于y轴对称的特征.

  ③强调画抛物线的三个误区.

  误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.

  误区二:并非对称点,存在漏点现象,导致抛物线变形.

  误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.

二次函数教案10

  I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:

  y=ax^2+bx+c

  (a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)

  则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的'三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a0)

  顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]

  交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-bb^2-4ac)/2a

  III.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,

  可以看出,二次函数的图像是一条抛物线。

二次函数教案11

  教学目标

  1、经历用三种方式表示变量之间二次函数关系的过程,体会三种方式之间的联系与各自不同的特点

  2、能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题

  3、能够根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究

  教学重点和难点

  重点:用三种方式表示变量之间二次函数关系

  难点:根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究

  教学过程设计

  一、从学生原有的认知结构提出问题

  这节课,我们来学习二次函数的三种表达方式。

  二、师生共同研究形成概念

  1、用函数表达式表示

  ☆做一做书本P56矩形的周长与边长、面积的关系

  鼓励学生间的互相交流,一定要让学生理解周长与边长、面积的关系。

  比较全面、完整、简单地表示出变量之间的关系

  2、用表格表示

  ☆做一做书本P56填表

  由于运算量比较大,学生的运算能力又一般,因此,建议把这个表格的一部分数据先给出来,让学生完成未完成的部分空格。

  表格表示可以清楚、直接地表示出变量之间的数值对应关系

  3、用图象表示

  ☆议一议书本P56议一议

  关于自变量的问题,学生往往比较难理解,讲解时,可适当多花时间讲解。

  可以直观地表示出函数的变化过程和变化趋势

  ☆做一做书本P57

  4、三种方法对比

  ☆议一议书本P58议一议

  函数的表格表示可以清楚、直接地表示出变量之间的`数值对应关系;函数的图象表示可以直观地表示出函数的变化过程和变化趋势;函数的表达式可以比较全面、完整、简单地表示出变量之间的关系。这三种表示方式积压自有各自的优点,它们服务于不同的需要。

  在对三种表示方式进行比较时,学生的看法可能多种多样。只要他们的想法有一定的道理,教师就应予以肯定和鼓励。

二次函数教案12

  通过学生的讨论,使学生更清楚以下事实:

  (1)分解因式与整式的乘法是一种互逆关系;

  (2)分解因式的结果要以积的形式表示;

  (3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式 的次数;

  (4)必须分解到每个多项式不能再分解为止。

  活动5:应用新知

  例题学习:

  P166例1、例2(略)

  在教师的引导下,学生应用提公因式法共同完成例题。

  让学生进一步理解提公因式法进行因式分解。

  活动6:课堂练习

  1.P167练习;

  2. 看谁连得准

  x2-y2 (x+1)2

  9-25 x 2 y(x -y)

  x 2+2x+1 (3-5 x)(3+5 x)

  xy-y2 (x+y)(x-y)

  3.下列哪些变形是因式分解,为什么?

  (1)(a+3)(a -3)= a 2-9

  (2)a 2-4=( a +2)( a -2)

  (3)a 2-b2+1=( a +b)( a -b)+1

  (4)2πR+2πr=2π(R+r)

  学生自主完成练习。

  通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。

  活动7:课堂小结

  从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?

  学生发言。

  通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的'乘法的互逆关系,加深对类比的数学思想的理解。

  活动8:课后作业

  课本P170习题的第1、4大题。

  学生自主完成

  通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。

  板书设计(需要一直留在黑板上主板书)

  15.4.1提公因式法 例题

  1.因式分解的定义

  2.提公因式法

二次函数教案13

  目标:

  1.使学生掌握用待定系数法由已知图象上一个点的坐标求二次函数y=ax2的关系式。

  2. 使学生掌握用待定系数法由已知图象上三个点的坐标求二次函数的关系式。

  3.让学生体验二次函数的函数关系式的应用,提高学生用数学意识。

  重点难点:

  重点:已知二次函数图象上一个点的坐标或三个点的坐标,分别求二次函数y=ax2、y=ax2+bx+c的关系式是的重点。

  难点:已知图象上三个点坐标求二次函数的关系式是教学的难点。

  教学过程:

  一、创设问题情境

  如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶。它的拱高AB为4m,拱高CO为0.8m。施工前要先制造建筑模板,怎样画出模板的轮廓线呢?

  分析:为了画出符合要求的模板,通常要先建立适当的直角坐标系,再写出函数关系式,然后根据这个关系式进行计算,放样画图。

  如图所示,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立直角坐标系。这时,屋顶的横截面所成抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式为: y=ax2 (a<0) (1)

  因为y轴垂直平分AB,并交AB于点C,所以CB=AB2 =2(cm),又CO=0.8m,所以点B的坐标为(2,-0.8)。

  因为点B在抛物线上,将它的坐标代人(1),得 -0.8=a×22 所以a=-0.2

  因此,所求函数关系式是y=-0.2x2。

  请同学们根据这个函数关系式,画出模板的轮廓线。

  二、引申拓展

  问题1:能不能以A点为原点,AB所在直线为x轴,过点A的x轴的垂线为y轴,建立直角坐标系?

  让学生了解建立直角坐标系的方法不是唯一的,以A点为原点,AB所在的直线为x轴,过点A的x轴的垂线为y轴,建立直角坐标系也是可行的'。

  问题2,若以A点为原点,AB所在直线为x轴,过点A的x轴的垂直为y轴,建立直角坐标系,你能求出其函数关系式吗?

  分析:按此方法建立直角坐标系,则A点坐标为(0,0),B点坐标为(4,0),OC所在直线为抛物线的对称轴,所以有AC=CB,AC=2m,O点坐标为(2;0.8)。即把问题转化为:已知抛物线过(0,0)、(4,0);(2,0.8)三点,求这个二次函数的关系式。

  二次函数的一般形式是y=ax2+bx+c,求这个二次函数的关系式,跟以前学过求一次函数的关系式一样,关键是确定o、6、c,已知三点在抛物线上,所以它的坐标必须适合所求的函数关系式;可列出三个方程,解此方程组,求出三个待定系数。

  解:设所求的二次函数关系式为y=ax2+bx+c。

  因为OC所在直线为抛物线的对称轴,所以有AC=CB,AC=2m,拱高OC=0.8m,

  所以O点坐标为(2,0.8),A点坐标为(0,0),B点坐标为(4,0)。

  由已知,函数的图象过(0,0),可得c=0,又由于其图象过(2,0.8)、(4,0),可得到4a+2b=0.816+4b=0 解这个方程组,得a=-15b=45 所以,所求的二次函数的关系式为y=-15x2+45x。

  问题3:根据这个函数关系式,画出模板的轮廓线,其图象是否与前面所画图象相同?

  问题4:比较两种建立直角坐标系的方式,你认为哪种建立直角坐标系方式能使解决问题来得更简便?为什么?

  (第一种建立直角坐标系能使解决问题来得更简便,这是因为所设函数关系式待定系数少,所求出的函数关系式简单,相应地作图象也容易)

  请同学们阅渎P18例7。

  三、课堂练习: P18练习1.(1)、(3)2。

  四、综合运用

  例1.如图所示,求二次函数的关系式。

  分析:观察图象可知,A点坐标是(8,0),C点坐标为(0,4)。从图中可知对称轴是直线x=3,由于抛物线是关于对称轴的轴对称图形,所以此抛物线在x轴上的另一交点B的坐标是(-2,0),问题转化为已知三点求函数关系式。

  解:观察图象可知,A、C两点的坐标分别是(8,0)、(0,4),对称轴是直线x=3。因为对称轴是直线x=3,所以B点坐标为(-2,0)。

  设所求二次函数为y=ax2+bx+c,由已知,这个图象经过点(0,4),可以得到c=4,又由于其图象过(8,0)、(-2,0)两点,可以得到64a+8b=-44a-2b=-4 解这个方程组,得a=-14b=32

  所以,所求二次函数的关系式是y=-14x2+32x+4

  练习: 一条抛物线y=ax2+bx+c经过点(0,0)与(12,0),最高点的纵坐标是3,求这条抛物线的解析式。

  五、小结:

  二次函数的关系式有几种形式,函数的关系式y=ax2+bx+c就是其中一种常见的形式。二次函数关系式的确定,关键在于求出三个待定系数a、b、c,由于已知三点坐标必须适合所求的函数关系式,故可列出三个方程,求出三个待定系数。

  六、作业

  1.P19习题 26.2 4.(1)、(3)、5。

  2.选用课时作业优化设计,

二次函数教案14

  教学目标:

  1.经历探索二次函数y=ax2的图象的作法和性质的过程,获得利用图象研究函数性质的经验。

  2.能够利用描点法作出函数y=ax2的图象,并能根据图象认识和理解二次函数y=ax2的性质,初步建立二次函数表达式与图象之间的联系。

  3.能根据二次函数y=ax2的图象,探索二次函数的性质(开口方向、对称轴、顶点坐标)。

  教学重点:二次函数y=ax2的图象的作法和性质

  教学难点:建立二次函数表达式与图象之间的联系

  教学方法:自主探索,数形结合

  教学建议:

  利用具体的二次函数图象讨论二次函数y=ax2的性质时,应尽可能多地运用小组活动的形式,通过学生之间的合作与交流,进行图象和图象之间的比较,表达式和表达式之间的比较,建立图象和表达式之间的联系,以达到学生对二次函数性质的真正理解。

  教学过程:

  一 、认知准备:

  1.正比例函数、一次函数、反比例函数的图象分别是什么?

  2.画函数图象的方法和步骤是什么?(学生口答)

  你会作二次函数y=ax2的图象吗?你想直观地了解它的性质吗?本节课我们一起探索。

  二 、 新授:

  (一)动手实践:作二次函数 y=x2和y=-x2的图象

  (同桌二人,南边作二次函数 y=x2的图象,北边作二次函数y=-x2的图象,两名学生黑板完成)

  (二)对照黑板图象 议一议:(先由学生独立思考,再小组交流)

  1.你能描述该图象的形状吗?

  2.该图象与x轴有公共点吗?如果有公共点坐标是什么?

  3. 当x0时,随着x的增大,y如何变化?当x0时呢?

  4.当x取什么值时,y值最小?最小值是什么?你是如何知道的?

  5.该图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点。

  (三) 学生交流:

  1.交流上面的五个问题(由问题1引出抛物线的概念,由问题2引出抛物线的顶点)

  2.二次函数 y=x2 和y=-x2的'图象有哪些相同点和不同点?

  3.教师出示同一直角坐标系中的 两个函数y=x2 和y=-x2 图象,根据图象回答:

  (1)二次函数 y=x2和y=-x2 的图象关于哪条直线对称?

  (2)两个图象关于哪个点对称?

  (3)由 y=x2 的图象如何得到 y=-x2 的图象?

  (四) 动手做一做:

  1.作出函数y=2 x2 和 y= -2 x2的图象

  (同桌二人,南边作二次函数 y= -2 x2的图象,北边作二次函数y=2 x2的图象,两名学生黑板完成)

  2.对照黑板图象,数形结合,研讨性质:

  (1)你能说出二次函数y=2 x2具有哪些性质吗?

  (2)你能说出二次函数 y= -2 x2具有哪些性质吗?

  (3)你能发现二次函数y=a x2的图象有什么性质吗?

  (学生分小组活动,交流各自的发现)

  3.师生归纳总结二次函数y=a x2的图象及性质:

  (1)二次函数y=a x2的图象是一条抛物线

  (2)性质

  a:开口方向:a0,抛物线开口向上,a〈 0,抛物线开口向下[

  b:顶点坐标是(0,0)

  c:对称轴是y轴

  d:最值 :a0,当x=0时,y的最小值=0,a〈0,当x=0时,y的最大值=0

  e:增减性:a0时,在对称轴的左侧(X0),y随x的增大而减小,在对称轴的右侧(x0),y随x的增大而增大,a〈0时,在对称轴的左侧(X0),y随x的增大而增大,在对称轴的右侧(x0),y随x的增大而减小。

  4.应用:(1)说出二次函数y=1/3 x2 和 y= -5 x2 有哪些性质

  (2)说出二次函数y=4 x2 和 y= -1/4 x2有哪些相同点和不同点?

  三、小结:

  通过本节课学习,你有哪些收获?(学生小结)

  1.会画二次函数y=a x2的图象,知道它的图象是一条抛物线

  2.知道二次函数y=a x2的性质:

  a:开口方向:a0,抛物线开口向上,a〈0,抛物线开口向下

  b:顶点坐标是(0,0)

  c:对称轴是y轴

  d:最值 :a0,当x=0时,y的最小值=0,a〈0,当x=0时,y的最大值=0

  e:增减性:a0时,在对称轴的左侧(X0=,y随x的增大而减小,在对称轴的右侧(x0),y随x的增大而增大,a〈0时,在对称轴的左侧(X0),y随x的增大而增大,在对称轴的右侧(x0),y随x的增大而减小。

二次函数教案15

  教学目标:

  1、经历描点法画函数图像的过程;

  2、学会观察、归纳、概括函数图像的特征;

  3、掌握 型二次函数图像的特征;

  4、经历从特殊到一般的认识过程,学会合情推理。

  教学重点:

  型二次函数图像的描绘和图像特征的归纳

  教学难点:

  选择适当的自变量的值和相应的函数值来画函数图像,该过程较为复杂。

  教学设计:

  一、回顾知识

  前面我们在学习正比例函数、一次函数和反比例函数时时如何进一步研究这些函数的? 先(用描点法画出函数的图像,再结合图像研究性质。)

  引入:我们仿照前面研究函数的方法来研究二次函数,先从最特殊的形式即 入手。因此本节课要讨论二次函数 ( )的图像。

  板书课题:二次函数 ( )图像

  二、探索图像

  1、 用描点法画出二次函数 和 图像

  (1) 列表

  引导学生观察上表,思考一下问题:

  ①无论x取何值,对于 来说,y的值有什么特征?对于 来说,又有什么特征?

  ②当x取 等互为相反数时,对应的y的值有什么特征?

  (2) 描点(边描点,边总结点的位置特征,与上表中观察的结果联系起来).

  (3) 连线,用平滑曲线按照x由小到大的`顺序连接起来,从而分别得到 和 的图像。

  2、 练习:在同一直角坐标系中画出二次函数 和 的图像。

  学生画图像,教师巡视并辅导学困生。(利用实物投影仪进行讲评)

  3、二次函数 ( )的图像

  由上面的四个函数图像概括出:

  (1) 二次函数的 图像形如物体抛射时所经过的路线,我们把它叫做抛物线,

  (2) 这条抛物线关于y轴对称,y轴就是抛物线的对称轴。

  (3) 对称轴与抛物线的交点叫做抛物线的顶点。注意:顶点不是与y轴的交点。

  (4) 当 时,抛物线的开口向上,顶点是抛物线上的最低点,图像在x轴的上方(除顶点外);当 时,抛物线的开口向下,顶点是抛物线上的最高点图像在x轴的 下方(除顶点外)。

  (最好是用几何画板演示,让学生加深理解与记忆)

  三、课堂练习

  观察二次函数 和 的图像

  (1) 填空:

  抛物线

  顶点坐标

  对称轴

  位 置

  开口方向

  (2)在同一坐标系内,抛物线 和抛物线 的位置有什么关系?如果在同一个坐标系内画二次函数 和 的图像怎样画更简便?

  (抛物线 与抛物线 关于x轴对称,只要画出 与 中的一条抛物线,另一条可利用关于x轴对称来画)

  四、例题讲解

  例题:已知二次函数 ( )的图像经过点(-2,-3)。

  (1) 求a 的值,并写出这个二次函数的解析式。

  (2) 说出这个二次函数图像的顶点坐标、对称轴、开口方向和图像的位置。

  练习:(1)课本第31页课内练习第2题。

  (2) 已知抛物线y=ax2经过点a(-2,-8)。

  (1)求此抛物线的函数解析式;

  (2)判断点b(-1,- 4)是否在此抛物线上。

【二次函数教案】相关文章:

《二次函数》教案02-21

二次函数教案15篇02-20

二次函数知识点总结12-19

正弦函数、余弦函数图像教案02-25

《幂函数》教案11-04

《函数的应用》教案02-26

初中数学函数教案02-23

函数的最值教案02-26

《对数函数》教案03-01