- 相关推荐
圆的面积教案(通用12篇)
作为一位无私奉献的人民教师,编写教案是必不可少的,教案是保证教学取得成功、提高教学质量的基本条件。那么写教案需要注意哪些问题呢?下面是小编收集整理的圆的面积教案,希望能够帮助到大家。
圆的面积教案 篇1
一、教材内容分析
新人教版上册《圆的面积》这部分内容是平面几何的最后阶段,它既是前面所学直观地认识平面图形及有关计算的延续和发展,又为今后逐步由实验几何阶段转入论证几何阶段作了渗透和准备。因此,在教学时,主要是让学生用转化的思想进行操作、观察和比较,推导圆的面积计算公式。并让他们初步学会用确切、简明的数学语言表述概念的本质特征,引导学生初步接触归纳推导出公式并理解和掌握公式的应用,为以后进一步学习打下基础。
二、学习者特征分析
六年级的学生已掌握了长方形、平行四边形、三角形、梯形的面积公式的推导方法,具有一定的转化和类比推理能力,并具对圆和圆的周长知识已经有了初步的掌握,有强烈的好奇心。因此,易于在转化和类比推理方面进行启发和引导,让学生利用已有的知识和经验,实现《圆的面积》公式的推导,但由于圆是由一条曲线围成的图形,学生很难跟以往由几条线段围成的图形之间建立必然的联系。因此,在利用转化和类比推理基础上,结合操作演示,让学生在学习圆面积公式的推导过程中,提高学习兴趣,掌握学习方法,增加感性的认识,从而真正掌握圆的面积公式的推导过程。并且能应用公式解决一些生活实际问题。
三、教学目标(知识,技能,情感态度、价值观)
1、利用学生已有的知识,引导学生通过观察、操作、分析和讨论,推导出圆的面积公式,并能运用公式解答一些简单的实际问题。
2、使学生经过“感知——动脑——观察——合作探究”等系列活动.逐渐培养学生的抽象思维能力。
3、通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。使学生感受到生活中数学的魅力,让学生体会图形转化的神奇和美。
四、教学策略选择与设计
1、注重情境创设,有意识地激发学生学习知识的兴趣
数学来源于生活,通过实际情境,既创设了生动的生活情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。而且在直观的动画情境中很好地展示了圆的面积概念。使学生体会到实际生活中计算圆的面积的必要性,同时也激发了学生求知的欲望和学习兴趣。
2、 注重实践操作,有意识地培养学生获取知识的能力
学习是学生的内部活动,因此,在课堂教学中既要重视其学习结果,更要重视其学习过程,学生的创造潜能,存在于学习过程、探究过程之中,而不存在于数学结论中,只有实实在在的学习过程、思维过程、探究过程,才能有所创造,培养学生自己探索获取知识的能力。这节课的教学,紧紧抓住“圆面积公式的推导”这一教学重点,敢于放手让学生自己动手操作,归纳整理。通过学生的剪拼,转化,利用等积变形把圆面积转化成了其他的平面图形,进而归纳、概括出圆面积的计算方法。这种多角度的思考,既沟通了新、旧知识的联系,又激发了学生的求知欲,使学生不仅知其然,更知其所以然。
3、 注重学法指导,有意识地引导学生应用转化的方法
本节课中,在求圆面积公式时,不是教师灌输式地教会学生S =πr,而是由学生在原有知识经验的基础上,通过“观察——猜测——操作——分析——探究”, 并在老师的引导下,利用“转化”的思想,将圆变成已学的图形:长方形、三角形、梯形。通过学生自主动手剪拼,然后研究两者之间的联系,实现《圆的面积公式》的推导,从而推导出圆面积公式。整节课,始终围绕这个主题,从创设生活情境,到提出研究的方向与方法,最后引导学生推导出公式,教师只作为组织者、指导者和参与者,适当进行点拨,使学生不但“学会”,而且“会学”。从而培养了学生的空间想象力,又发展了学生的逻辑思维推理能力。
4、 注重媒体应用,有意识地突破学生学习知识的难点
利用计算机和动画课件,辅助课堂教学,有其直观、形象而又生动的特点,它能使静态的画面动态化,抽象的内容形象化,同时还不受时间和空间的'限制。这节课恰当地运用了多媒体课件演示,充分调动了学生的学习兴趣,提高了课堂教学的效率,是其他教学手段无法比拟的。
五、教学环境及资源准备
用多媒体课件,圆形卡片辅助教学
六、教学过程
1、什么是圆的面积?
(1)涂出一个圆的面积
(2)用自己的话说什么是圆的面积?
2、回忆平行四边形、三角形、梯形的面积计算公式用什么方法推导的?
3、能不能用剪、拼的方法把圆转换成我们学过的图形?
4、学生拿附页1进行剪拼,看能转换成我们学过的什么图形?
5、学生汇报后,课件演示。
6、得出结论:分的等份数越多,拼出的图形越接近长方形,无限地分下去,最终拼出的图形就是长方形、
7、转化后的长方形的长和宽与原来的圆有什么关系?
小组合作学习,讨论以下两个问题:
1) 转化后长方形的长相当于什么?宽相当于什么?
2) 你能从计算长方形的面积推导出计算圆面积的公式吗?
8、汇报讨论结果。
9、运用新知识,解决问题。
1)r=5cm,求圆的面积
2)课始主体图中的问题
总结
小结本课知识,提出要求,希望大家能运用我们今天的所学所得解决我们生活中遇到的更多问题。
总之,这节课,我力图从学生已有的知识背景出发,采取观察操作、合作探究的学习方式,帮助学生再实践活动中理解概念,掌握知识形成技能,让课堂充满活力,让学生真正成为学习的主人。
圆的面积教案 篇2
教材分析:
初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。
学情分析:
学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。
教学目标:
1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的.实际问题。
2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。
3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实践和数学交流的能力,体验数学探究的乐趣和成功。
4、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察曲与直的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。
教学重点:
通过观察操作,推导出圆面积公式及其应用。
教学难点:
极限思想的渗透与圆面积公式的推导过程。
教学过程:备注:
活动一:创设情景,提出问题
1、课件出示羊吃草的动画:一个放羊娃将一只小山羊用一根绳子把它拴在木桩上。请问小山羊最多能吃到多大范围的草呢?
2、圆的面积--含义:圆所占平面的大小叫做圆的面积。
3、如果将绳子加长一点,又会出现什么情况?产生这种变化的原因是什么?这说明了什么?
活动二:猜想比较:
出示图
师:看了这两幅图形,你发现了什么?右图小正方形的面积是多少?左图大正方形的面积是多少?你能猜一猜圆的面积和大正方形面积有什么联系吗?
活动三:自主探究,验证猜想
1、引导转化:
师:回忆以前学过的平面图形,它们的面积公式是什么?分别怎么推导出来的?
以上这些图形都是通过剪拼,转化成已学过的图形,再进行推导。那么圆是否也可以把它剪拼转化成为熟悉的平面图形呢?
2、动手操作:
(1)分小组动手操作,把圆剪拼转化成其他图形,看谁拼得好,拼出的图形多。
操作引导:A、剪--怎样剪?剪成几份?B、拼--怎样拼?拼成什么?
(2)展示交流并介绍,选出最合理的剪法。
(3)拼成后的近似长方形和标准长方形比较,你发现了什么?能不能把边再变得直一点?
想象一下,平均分成64份、128份、256份......会是什么情形?(课件演示)
(4)小结:平均分的份数越多,边越直,拼成的图形越接近于长方形。
3、自主推导
(1)小组合作,选择喜欢的1~2个图形,尝试推导公式。
(2)学生展示、介绍自己的推导过程
(3)教师板演圆面积的推导过程
4、情景延续:
(1)如果绳长为5米,计算圆的面积和周长。
(2)将绳子加长为原来的2倍,那么羊能吃到草的面积也是原来的2倍。对吗?
5、小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,你们真了不起!那么,求圆的面积需要什么条件呢?(是否只有知道半径才能求圆的面积?)
活动四:实践运用,体验生活
1、量出自己带来的圆形物体的直径,并计算出面积。
2、社区公园有一个圆形水池(中有假山),请想办算出水面面积。
活动五:全课小结
通过本节课的学习你有哪些收获?
板书设计
圆的面积教案 篇3
【教学内容】
北师大版小学数学第十一册第一单元P16--18圆的面积
【教学目标】
1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。
3、在估一估和探究圆面积公式的活动中,体会化曲为直的思想,初步感受极限思想。
【教学重点】
能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。
【教具准备】
投影仪,CAI课件,等分好的圆形纸片。
【学具准备】
等分好的圆形纸片。
【教学设计】
【教学过程】
【教学过程说明】
一、 创设情境。提出问题
(投影出示P16中草坪喷水插图)
师:请同学们观察这幅插图,说说从图中你能发现数学知识吗?
学生观察并讨论,然后指名回答。
生1:我能发现喷水头转动一周所走过的地方刚好是一个圆形。
生2:对,这个圆形的半径就是喷头喷水的距离,也就是5米;周长也就是喷水所走过的路线;
生3:我补充一点,这个圆形的中心就是喷头所在的地方。
师:同学们说得很好。晴大家说说这个圆形的面积指的是哪部分呢?
生4:被喷到水的草坪大小就是这个圆形的面积。
师:说得很好,今天这节课我们就来学习如何求喷水头转动一周浇灌的'面积有多大。(板书:圆的面积)
二、探究思考。解决问题
1、估计圆面积大小
师:请大家估计半径为5米的圆面积大约是多大?
(让同学们充分发挥自己感官,估计草坪面积大小)
2、用数方格的方法求圆面积大小
①投影出示P16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。
②指明反馈估算结果,并说明估算方法及依据。
生1、我是根据圆里面的正方形来估计的,外面
方格图面积为1010=100平方米,圆里面的正方形面积大约为50平方米,那么这个圆形的面积大约在50--100平方米之间;
生2:我是用数方格的方法来估计的。我把这个圆形平均分成4份,其中一份大约为20平方米,那么这个圆形的面积约有80平方米;
生3:还可以通过计算来得到圆的面积。圆形外面的正方形可以看作边长为2r的正方形,面积就是2r2r=4r2
而圆形里面的正方形可以看作由4个小三角形拼成的正方形,三角形的直角边长为r,则一个三角形的面积是rr2=1/2r2,;那么四个三角形的面积即是41/2r2=2r2,那么圆形面积大约为3r2,
师:同学们的估计很有道理,但是在实际生活中往往要有一个精确的结果,我们接下来就来讨论一个能计算圆面积的方法。
三、探索规律
1、由旧知引入新知
师:大家还记得我们以前学习的平行四边形、三角形、
梯形面积分别是由哪些图形的面积来的吗?
(学生回答,教师订正。
那么圆形的面积可由什么图形面积得来呢。
2、探索圆面积公式
师:拿出我们剪好的图形拼一拼,看看能成为一个什
么图形?并考虑你拼成的图形与原来的圆形有什么关系?(同学们开始操作,教师巡视)
生:我拼成的图形接近一个平行四边形,平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。
师:说得很好,大家看看自己拼成的图形与刚才这个同学说的是否一样呢?
生:我拼成的图形更接近于长方形,这个长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。
(学生在说的同时教师注意板书)
师:现在请大家来观察一下刚才两个同学拼成的图形,哪个更接近长方形呢?
生:等分为32份的更接近长方形。
师:大家想象一下,如果把一个圆等分的份数越多,拼成的图形越接近什么图形呢?
生:等分的份数越多,就越接近长方形。
师:下面请大家观察黑板上的板书,你能否由平行四边形或者长方形的面积公式得到圆形面积公式呢?并说出你的理由。(生说,教师板书)
生1:因为拼成的平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。而平行四边形面积=底高,那么圆形面积公式=圆周长的1/2半径即可。
生2:因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长宽,那么那么圆形面积=圆周长的1/2半径即可。
师:用字母怎么表示圆面积公式呢?
生:S=RR
生:还可以写作S=R2
师:这说明求圆的面积只需要知道半径即可,那我只告诉你们圆的直径又如何求出圆的面积呢,请大家自己把这个公式写出来。教师板书。
3、应用圆面积公式
师:现在请大家用圆面积公式计算喷水头转动一周可
以浇灌多大面积的农田。
(学生独立解答,知名回答)
四、应用圆面积公式解决实际问题
1、P18,NO1
学生独立解答,集体订正的时候要求学生说出每一步
计算过程和依据。
2、P18,NO2
让学生理解题意后,鼓励学生在头脑中想象,猜一猜
结果,然后在地上画一个半径是1米的圆,让学生看看,并试着站一站。在估计半径是10米的圆大约有几个教室大的时候,可以让学生先估计再算一算。
五、小结
师:谁能用自己的话说说圆面积的推导过程。
圆的面积教案 篇4
教学目标:
1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
3.渗透转化的数学思想和极限思想。
教学重点:
正确计算圆的面积。
教学难点:
圆面积公式的推导。
教具准备:
多媒体课件二套,圆片。
一、情景导入
1、 师:(出示图)草地上长满了青草,一只羊被栓在草地的木桩上,请问:它能吃光全部青草吗?它最多能吃到哪个范围内的青草?请大家画出这只羊活动范围的示意图,两位同学到黑板上画。(一位画的是周长,另一位画的是面积。)(动画演示)
师:这个范围的大小指圆的周长还是面积?为什么?谁画的正确,(圆的面积)。
(板书:圆的面积)
2.师:什么是圆的面积?先说,再看书,学生读,(教师用课件演示)
师:看到这个课题后,你们会想到什么?这堂课要解决什么问题呀?
生:这堂课我们要学习圆的面积是怎样求出来的。
生:学生圆的面积公式。
师:你们知道圆的面积公式后,你们还想到什么问题?
生:圆的面积公式根据什么推导出来的。
师:对!刚才这几位同学跟老师想的一样。这堂课我们要解决两个问题。
(通过创设情景,激发学生的学习兴趣,形成良好的学习动机。通过学生提出问题,明确学习目标。)
二、动手操作,探索新知
1. 猜测(每项用课件出示)
师:我们先用一个简单办法,猜想一下圆面积的公式。把一个圆4等分,用半径作边长画一个正方形。这个正方形的面积可用r2表示。在这个圆上可以画同样的4个正方形,它们的面积可以用4 r2 表示,你们观察一下这个圆的面积等不等于4 r2 ?
生:不等。
师:为什么?
生:因为,这个圆面积还要加上外面的4小块,才是4 r2 。
师: 这个圆的面积比4 r2 小,我们再在圆内画一个最大的正方形,这个正方形的`面积怎么求出来?
生:这个正方形是由四个同样大小的三角形组成,每个面积1/2r2,总面积2r2。
师:圆的面积和正方形比较谁的面积大?
生:圆的面积大
师:可以观察出圆的面积范围在2r2-4r2
(这里让学生了解解决问题时要善于观察、敢于猜想。渗透无限等数学思想,)
2. 回忆旧知,
师:圆能不能直接用面积单位支量呢?为什么?
生: 因为圆是由曲线围成的,用面积单位直接量是有困难的。
师:该怎么办呢?(教室沉默)
师: 请同学们看屏幕,(师播放课件)边看边回忆:以前我们研究过平行四边形、三角形和梯形面积的求法,那时我们是怎样处理的?(用投影机放出几种图形的转化图解,边出示,边讨论)
师:这些图形面积公式的推导方法对我们研究圆的面积有什么启示呢?
生:我们可以用图形转化的方法,求圆的面积。(把未知的转化为已知的)
师:这个办法很好。那么把圆形转化成什么图形呢?
[评:启发学生运用转化的数学思想解决问题。这种设计既复习了旧知识,又为学生新知识作好铺垫,能够促进学生充分运用迁移规律把新旧知识联系起来组成一个新的知识结构。]
3.动手操作
(1)师:请同学们动手剪拼一下,看到底能拼成什么图形。(学生动手操作。)
师:谁能向大家汇报一下,你把圆拼成了什么图形?(生答:拼成了。请把你拼好的图形放在实物投影上展示给大家看。一个同学用8等份的圆片摆成近似平行四边形,一个用不着16等份的圆片摆成近似长方形)
(2)师::请看大屏幕,16等份的和8等份谁拼成更接近长方形?
生:16等份拼成的图形就会越接近于长方形。如果分的份数越多,每一份就会越细,)
师:对。这就是说,分的份数是无限的。你们可以闭上眼睛想一想,如果分的份数越多,长边就越接近直线,这个图形就越接近于长方形。课件演示
(3)看拼成的长方形与圆有什么联系?你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。 (教师要求学生观察自己在课桌上拼出的图形,一边讨论,一边逐步写出推导的过程。)
学生汇报讨论结果。生答师继续演示课件。
生答:能,因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。
因为长方形的面积=长宽
所以圆的面积=周长的一半半径
S=r
S=r2
师:结合公式S=r2,说说圆的面积是怎样推导出来的?
(4)师:这个面积公式是不是正确,我们可以通过其它图形来验证一下。有的同学把圆拼成了三角形我们用三角形来验证一下,你能根据三角形计算公式推导圆的面积计算公式吗?(课件演示)
生答:三角形的底相当于圆周长的,高相当于圆半径的4倍。
因为 三角形的面积=底高2
所以 圆的面积=周长的半径的4倍
S=4r2
S=r2
师:我们用三角形也推出了圆的面积公式 S=r2 。同学们还有其它图形来验证吗?
(5)生:我们把圆转化成梯形来验证。(课件演示)
生:梯形的上底与下底的和相当于圆周长的一半,高相当于半径的2倍。
因为梯形的面积=(上底+下底)高2
所以圆的面积=周长的一半半径的2倍
S=2r2
S=r2 用梯形的面积
3.小结:刚才你们把圆转化成为哪些图形,分别推导出圆的面积计算公式?(S=r2)
我们根据拼成的近似平行四边形、长方形、三角形、梯形都推导出了同样的公式:S圆=r2。
唉!我们刚才猜的圆面积是多少?你们真了不起!与r2很接近啊!
圆的面积必需要具备哪些条件?
[评:打破了过去教师演示教具学生看的框框,而是要求每个学生动手操作,并渗透转化、无限等数学思想,让学生自己从尝试中推导圆面积的公式。]
(三)课后巩固
1、 现在你可以求出小羊大约最多能吃到多少面积的青草吗?为什么?请你给它补个条件。
(照应了开头,又学练习了面积的计算。)
2、 根据下面条件求出圆的面积
r =5分米 d =3米
3同学们怎么计算树的横截面的面积,是不是一定把树木锯断?(同学们讨论答出测出周长后师再出题)树的周长是非曲直18.84平方米,求树的横截面的面积?
(用学到的知识来解决生活中的问题,培养学生的应用能力)
(四)师:这堂课大家学到了什么?有什么收获?
(学生热烈发言,最后教师总结,解答了课一开始提出的两个问题。)
[评:课堂小结时间虽短,但能使学生认识升华一步,同时做到前后呼应,使整堂课结构严谨,层次清楚。这堂课最大的特点,是能充分调动学生的主动性和积极性,学生既学得生动活泼,又能充分发展思维。]
圆的面积教案 篇5
教学目的:
1、理解圆面积计算公式的推导过程,掌握圆面积的计算公式;
2、能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。
3、培养学生动手操作能力和逻辑推理能力。
教学重点:圆面积计算公式。
教学难点:圆面积计算公式的推导。
教具、学具:圆的面积演示教具,课件,每人两个大小相等的圆,分别平均分为16等份、32等份。
教学过程:
一、复习。
1.圆的有关概念
2.什么叫长方形的面积?
3.说出平行四边形的面积公式是怎样推导出来的?
我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。(板书课题:圆的面积)
二、新授。
1.圆的面积的含义。
问:面积所指的是什么?(物体的表面或围成的'平面图形的大小,叫做它们的面积。)
以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)
2.圆的面积公式的推导。
怎样求圆的面积呢?如果用面积单位直接去度量显然是行不通的。但我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形——长方形。怎样分割呢?教师拿出圆的面积教具进行演示:
先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)
再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。
向学生说明:如果分的等份越多所拼的图形就越接近长方形。
教师边提问边完成圆面积公式的推导:
①拼成的图形近似于什么图形?
②原来圆的面积与这个长方形的面积是否相等?
③长方形的长相当于圆的哪部分的长?
④长方形的宽是圆的哪部分?
长方形的面积=长x宽
圆的面积=c÷2xr
=2∏r÷xr
=∏rxr
=∏r2
用S表示圆的面积,那么圆的面积可以写成:S=∏r2
3.圆面积公式的应用。
出示例1:一个圆的半径是10厘米。它的面积是多少平方厘米?
学生读题,问:要求圆的面积的条件是否具备?怎样列式?学生回答,教师板书:
=3.14x102
=3.14x100
=314(平方厘米)
答:它的面积是314平方厘米。
例题2:一个圆的直径是40米,它的面积是多少平方米?
40÷2=20(米)
3.14x202
=3.14 x400
= 1256(平方米)
答:这个圆的面积是1256平方米。
三、巩固练习。
1.半径2分米,求圆的面积。
2、圆的周长是6.28分米,圆的面积是多少平方分米?(先提问:题目只告诉圆的周长,你能求出圆的面积吗?怎样算?)
3、绳长10米,问小狗的活动面积有多大?
四.发散思维:如下图:S正方形=3平方厘米,S圆=?
总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式S=∏r2计算。
五、作业。
六、课后反思:
圆的面积教案 篇6
学习目标:
1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积的计算公式。
2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。
3、在估一估和探究圆面积计算公式的活动中,体会“化曲为直”的思想,初步感受极限的思想。
学习重点:
经历圆面积计算公式的推导过程,掌握圆面积的计算公式。
学习难点:
了解圆的面积的含义,并能运用圆面积的知识解决一些简单的实际问题。
教学准备:
等分好的圆形纸片
学习过程:
一、自主复习
写出正方形、长方形、平行四边形、三角形、梯形的面积公式并回忆面积公式的推导过程。
二、自主预习
(一)感知圆的面积。
任意画一个圆,用彩笔涂出它的面积。
我知道:圆所占平面的( )叫做圆的面积。
(二)、观察P16中草坪喷水插图,思考:喷水头转动一周,所走过的地方刚好是一个什么图形?说说这个圆形的面积指的是哪部分呢?圆的半径是多少?
(三)估一估
请你估计半径为5米的圆面积大约是多大?
先独立思考后观察分析书16页的估算方法。你还有其他的方法吗?可以记录下来。
三、小组交流自主预习部分
四、自主探索圆面积公式
1、思考:怎样计算圆的面积呢?我们能不能从平行四边形、三角形、梯形的面积公式推导过程得到启发呢?能不能也将圆通过剪拼成一个我们学过的图形呢?(提示:可以把圆转化成长方形来想一想)
2、动手操作:在硬纸上画一个圆,把圆平均分成若干(偶数)等份,沿半径剪开拉直,再用这些近似等腰三角形的小纸片拼一拼。
拿出我们剪好的图形拼一拼,看看能成为一个什么图形?并考虑你拼成的图形与原来的圆形有什么关系?
第一步:把圆平均分成8份,拼一拼,拼成了一个近似的( )
第二步:把圆平均分成16份,拼一拼,拼成了一个近似的( )
第三步:把圆平均分成32份,拼一拼,拼成了一个近似的( )
如果分的分数越(),拼成的图形就越接近于( )。)比较剪拼前后的图形,发现()变了,()没变。
3、我来推导:把圆转化成平行四边形后,平行四边形的底相当于圆的( ),高相当于圆的()。因为平行四边形的面积等于(),所以圆的面积等于( )。如果用S表示圆的面积,圆的面积公式表示为:()
4、公式的推导:
平行四边形面积=底×高
圆面积=
1、还可以怎样拼接成长方形动手试一试并完成下面的填空
把圆转化成长方形后,长方形的长相当于圆的( ),宽相当于圆的.()。因为长方形的面积等于(),所以圆的面积等于()。如果用S表示圆的面积,圆的面积公式表示为:()
长方形的面积=长×宽
圆面积=用字母表示圆面积公式:
五、小组交流
1、圆面积公式的推导过程
2、如何计算圆的面积
六、全班交流教师总结
七、学习检测
1、填空。
求圆的面积必须知道()利用公式S =()来计算。
2、解决书16页上面喷水池转一周浇灌草坪面积?
3、计算,求圆的面积:
(1)r=2cm
(2)d=10cm
4、一个圆形花坛的周长是6.28分米,它的面积是多少平方分米?
八、交流展示
九、回顾反思
通过今天的学习,你学会了什么?还有那些疑惑?
圆的面积教案 篇7
教学目标
1、使学生理解圆的面积的含义.经历体验圆的面积公式的推导过程,理解和掌握圆的面积公式.
2、使学生能够正确地计算圆的面积,培养学生解决简单的实际问题的能力,渗透类比、极限的思想。
3、通过圆的面积公式推导过程,培养学生的合作精神和创新意识,培养观察、猜想、验证的实验方法与态度。
教学重点
圆面积的公式推导的过程。
教学难点
理解圆经过无数等分剪拼后可以拼成一个近似的长方形。并且发现拼成的长方形的'长相当于圆周长的一半。
教具、学具准备
有关圆面积的课件,彩色圆形纸片(每小组1个),剪刀(每组2把).学生每人准备一个圆形物品。
教学过程
一、创设情境,提出问题
【课件演示】花园里新建了一个圆形花坛,为了让花坛更漂亮,管理员叔叔打算给花坛铺上草坪,需要多少平方米的草坪呢?这实际上是要解决什么数学问题?
揭示课题:圆的面积
二、充分感知,理解圆的面积的意义。
提问:什么叫圆的面积呢?请大家拿出准备好的圆形纸片,用你喜欢的方式感受一下圆的面积,告诉大家圆的面积指的是什么?
课件显示:圆所占平面的大小叫做圆的面积。
你认为圆面积的大小和什么有关?
三、自主探究,合作交流。
1、引导转化:
回忆学过的一些平面图形的面积的推导过程,这些图形面积公式的推导过程有什么共同点?那么能不能把圆也转化成学过的平面图形来推导面积计算公式?
2、动手尝试探索。
(1)分小组动手操作,剪一剪,拼一拼,看能拼成什么图形?
(2)展示交流并介绍:你拼成了什么图形?在拼的过程中你发现了什么?
如果我们再继续等分下去,拼成的图形会怎么样?
小结:随着等分的份数无限增加,可以把圆剪拼成一个近似的长方形。
你能否根据圆与剪拼成的长方形之间的关系想出圆的面积公式?
3、学生合作探究,推导公式
圆的面积教案 篇8
教学目标:
1、学生通过观察、操作、分析和讨论,推导出圆的面积公式。
2、能够利用公式进行简单的面积计算。
3、渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。
教学重难点:
渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。
教学过程
一、尝试转化,推导公式
1、确定“转化”的策略。
师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?
引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。
师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?
师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。
2、尝试“转化”。
师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)
请大家看屏幕(利用课件演示),老师先给大家一点提示。
师:(教师配合课件演示作适当说明)如果我们把一个圆形平均分成16份(如图三),其中的每一份(如图四,课件闪烁其中1份)都是这个样子的。同学们,你们觉得它像一个什么图形呢?
师:是的,其中的每一份都是一个近似三角形。请同学们再想一想,这个近似三角形这一条边(教师指示)跟圆形有什么关系呢?
引导学生观察,明确这个近似三角形的两条边其实都是圆的半径。
师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!
预设:学生利用这种近似三角形拼组图形会有一定的难度,教师要加强巡视和有针对性的指导,既鼓励学生拼出自己想象中的图形,又要引导他们拼出最简单、最容易计算面积的图形。一般情况下,学生会拼出如下几种图形(如图五、图六、图七)。
3、探究联系。
师:同学们,“转化”完了吗?好,请大家来展示一下你们“转化”后的图形。
预设:
分组逐个展示,并将其中“转化”成长方形的一组的作品贴在黑板上。如果有小组转化成了不规则的图形,教师应及时引导他们转化为我们已学过的平面图形。
师:好,各个小组都不错。现在请同学们思考一个问题:你们把一个圆形“转化”成了现在的图形之后,它们的面积有没有改变?请小组内讨论。
师:谁来告诉大家,它们的面积有没有改变?
师:是的,没有改变,就是说:这个近似的长方形的面积=圆的面积。
师:虽然我们现在拼成的是一个近似的长方形,但是如果把圆等分成32份、64份、128份、256份……一直这样下去分成很多很多份,拼成的图形就变为真正的长方形(课件演示,如图八)。
4、推导公式。
师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。
师:好,同学们,谁能首先告诉老师,这个长方形的宽是多少?
预设:
根据学生的回答,教师演示课件,同时闪烁圆的半径和长方形的宽,并标示字母r,如图九。
师:那这个长方形的长是多少呢?(教师边演示课件边说明)这个长方形是由两个半圆展开后拼成的,请大家看屏幕,这个红色的半圆展开后,其中这条黄色的线段就是长方形的长(如图十),请同学们仔细观察(课件继续演示如图十一,半圆展开后再还原,再展开,),这个长方形的长究竟与圆的`什么有关?究竟是多少呢?
预设:
教师引导学生明白:这个长方形的长与圆的周长有关,并且是圆的周长的一半(如果学生有困难的话,教师利用课件演示,如图十二)。并且让学生通过计算得出长方形的长就是πr。
师:现在我们已经知道了这个长方形的长和宽(如图十三),它的面积应该是多少?那圆的面积呢?
预设:
老师根据学生的回答进行相关的板书。
师:你们真了不起,学会了“转化”的方法推导出圆的面积计算公式。现在请大家读一读,记一记,写一写圆的面积计算公式。
二、运用公式,解决问题
1、教学例1。
师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!
预设:
教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。
2、完成做一做。
师:真不错!现在请同学们翻开数学课本第69页,请大家独立完成做一做的第1题。
订正。
3、教学例2。
师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!
师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!
师:找到解决问题的方法了吗?
师:好的,就按同学们想到的方法算一算这个圆环的面积吧!
预设:
教师继续对学困生加强巡视,如果还有问题的学生并给予指导。
交流,订正。
三、课堂作业。
教材第70页第2、3、4题。
四、课堂小结
师:同学们,通过这节课的学习,你有什么收获?
课后作业:完成数练第31页。
圆的面积教案 篇9
一、教学目标
【知识与技能】
掌握圆的面积计算公式,并能利用公式正确解决简单问题。
【过程与方法】
通过操作、观察、比较等活动,自主探索圆的面积计算公式,渗透转化的数学思想方法。
【情感、态度与价值观】
感受数学与生活的联系,激发学习兴趣。
二、教学重难点
【教学重点】
圆的面积计算公式。
【教学难点】
圆的面积计算公式的推导过程。
三、教学过程
(一)导入新课
创设情境:呈现校园中的圆形草坪,提问学生如何求解圆形草坪的占地面积。引导学生通过已有认知,认识到解决这个问题实际就是求这个圆的面积,从而引出课题。
(二)讲解新知
提出问题:之前的图形面积公式是如何推导的?
学生通过回忆,讨论,得到是通过转换成学过的图形来推导得到的。
追问:能否将圆的图形转换成之前的图形?
组织学生动手操作、合作探究,四人为一小组,讨论分享自己的思路与剪拼过程,然后请各组的代表进行全班交流。
预设1:将圆平均分成4份,剪切拼接之后,没有得到之前图形;
预设2:将圆平均分成8份,剪切拼接之后,得到一个近似平行四边形;
预设3:将圆平均分成16份,剪切拼接之后,得到一个近似长方形。
老师在此基础上进行展示:大屏幕展示将圆平均分为32份,64份,128份,256份……的动图,让学生观察其特点。
学生能够发现圆平均分的'份数越多,拼成的图形越接近于长方形。
进一步追问:观察原来的圆和转化后的这个近似长方形,发现他们之前有哪些等量关系?
预设1:长方形的面积等于圆的面积;
预设2:长方形的长近似等于圆周长的一半;
预设3:长方形的宽近似等于圆的半径。
圆的面积教案 篇10
教学目标:
1、使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。
2、使学生进一步体会“转化”方法的价值,培养运用已学知识解决新问题的能力,发展空间观念和初步的推理能力。
3、体会数学来自于生活实际的需要,感受数学与生活的联系,进一步产生对数学的好奇心和兴趣。
教学重点:
探索并掌握圆的面积公式,能正确计算圆的面积。
教学难点:
理解圆的面积公式的推导过程。
教学准备:
圆的面积公式的推导图。
一、回顾旧知,引入新知
1、师:四年级时,我们学习了求长方形和正方形的面积的方法,谁来说一说它们的面积的计算方法。
学生回答,教师予以肯定。
2、提问:圆的周长怎么计算?已知圆的周长,如何计算它的直径或半径?
3、引入:我们已经研究了圆的周长和直径、半径的计算方法,今天这节课我们来研究圆的面积是如何计算的。
(板书:圆的面积)
设计意图通过复习,促进学生对周长和已知周长求直径或半径的理解,唤起学生求长方形和正方形面积的经验,为新课的学习做好准备。
二、合作交流,探究新知
1、教学例7。
(l)初步猜想:圆的面积可能与什么有关?说说你猜想的依据。
(2)圆的面积和半径或直径究竟有着怎样的关系呢?我们可以做一个实验。
(3)出示例7第一幅图。思考:图中正方形的边长与圆的半径有什么关系?图中正方形的面积和圆的半径有什么关系?
(4)学生独立完成填空。
(5)猜测:圆的面积大约是正方形面积的几倍?
学生回笞后,明确:圆的面积小于正方形面积的4倍,有可能是3倍多一些。
(6)出示例7后两幅图,按照同样的方法进行计算并填表。
正方形的面积/
圆的半径/
圆的面积/
圆面积大约是正方形面积的几倍
(精确到十分位)
2、交流归纳:观察上面的表格,你有什么发现?
通过交流,明确
(1)圆的面积是它的半径平方的3倍多一些。
(2)圆的面积可能是半径平方的兀倍。
3、教学例8。
(l)谈话:经过刚才的学习,我们已经知道圆的面积大约是它半径平方的3倍多一些,那么圆的面积究竟应该怎样来计算呢?
(2)操作体验:教师演示把圆平均分成16份,并拼成一个近似的平行四边形。
(3)提问:拼成的图形像什么图形?追问:为什么说它像一个平行四边形?
初步想象:如果把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比有怎样的变化?
(4)进一步想象:如果将圆平均分成64份、128份,也用类似的方法拼一拼。闭上眼睛想一想,随着份数的增加,拼成的图形会越来越接近一个什么图形?
(5)交流后,教师出示推导图。拼成的长方形与原来的.圆有什么联系?在小组中讨论交流。
(6)在集体交流中借助图示小结:长方形的面积与圆的面积相等;长方形的宽是圆的半径;长方形的长是圆周长的一半。
(7)追问:如果圆的半径是r,长方形的长和宽应该怎样表示?根据长方形面积的计算方法,怎样来计算圆的面积?
(8)根据学生的回答,教师板书
长方形的面积一长×宽
圆的面积=
(9)追问:有了这样一个公式,知道圆的什么条件,就可以计算圆的面积了?
4、教学例9。
(1)出示例9,提问:有没有在生活中见过自动旋转X器?
(2)想象一下自动X器旋转一周后喷灌的地方是什么图形,X的最远的距离是什么意思。
(3)学生独立完成计算。
(4)集体交流。
5、教学例10。
(1)请同学读题,解读题意。
(2)找出题中的已知条件。
(3)分析解题过程。
(4)明确各个量之间的转化关系。
三、巩固练习,加深理解
1、完成“练一练”。
(1)学生独立解答。
(2)集体交流。
2、完成练习十五第1题。
(l)学生独立解答。
(2)集体交流。
3、完成练习十五第3题。
(1)学生列式后用计算器计算。
(2)集体交流。
4、完成练习十五第4题。
(1)学生独立解答。
(2)集体交流,指出:已知周长求面积,先要根据周长求出半径。
5、作业:练习十五第2、5题。
四、课堂小结
师:通过今天的学习,你有什么收获?
学生发言,教师点评。
圆的面积
长方形的面积=长×宽
圆的面积
圆的面积教案 篇11
教学目的:
1、通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括力,发展学生的空间观念。
3、渗透转化的数学思想和极限思想。
教学重点:圆面积公式的推导。
教学难点:弄清圆与转化后的近似图形之间的关系。
学具:每四人小组一个彩色圆(教师分好8等分点)、两三个圆、固体胶、卡纸、剪刀。
教具:课件。
教学过程:
一、谈话揭题:
出示图:
你看到了什么?刚才同学们提到的圆的面积就是今天这节课我们要来研究的内容。(出示课题:圆的面积)那么圆的面积和什么有关?(半径、直径)
二、新课教学:
1、猜测:
现在请大家看,这儿有一张正方形的纸,(课件演示)用它剪一个最大的圆,(课件演示)如果圆的半径用r来表示,你知道原来正方形的面积怎么求吗?(2rx2r)整理一下(板书:2rx2r=4r的平方)(按虚线)我们再来看看图,你明白了什么?这样看来,正方形的面积是r的平方的4倍,那么,现在请你猜猜看,圆的面积大概会是多少?
2、验证:
(1)现在我们都认为圆的'面积是r的平方的三倍多一点,那么,圆的面积与r的平方到底有怎样的关系呢?你们准备用怎样的方法来研究它呢?下面请四人小组讨论一下,可以动用桌子上的学具。(教师巡视)
(2)反馈:(三分钟后,低到高)
a:你们为什么不动?你们又是怎么想的?(平均分成若干份,拼成我们学过的图形来研究)同意吗?
b:这儿有一个圆,我们把它平均分成四份,可以吗?那么怎么拼呢?(学生拼,投影演示)看看象什么图形?(平行四边形)象吗?我看不象。怎样使它象呢?(分的份数多一点)刚才我们拼的图形象平行四边形,当然,可能还能拼成别的图形。
c:刚才我们讨论研究出来的方法第一步是等分,第二步是想一想拼成什么图形,再拼一拼,第三步是推导。(板书:等分想、拼推导)当然,也可以用别的方法。(板书箭头)
(3)操作:
你们想试一试吗?现在请组长拿出信封,倒出里面的圆片,我们以四人小组为单位动动手。(小组讨论操作,师巡回指导:表扬拼出与别组不一样图形的小组,提示拼好后可以用胶水粘住。)
3、小组汇报:(举起把圆等分成8份、16份所拼成的长方形或平行四边形给学生看一看,再请平均分成16份拼成长方形或平行四边形的同学汇报)
(1)学生汇报。
(2)有没有疑问?
拼成的长方形是真正的长方形吗?为什么?(边是曲线)
如果把一个圆等分成32份,拼成的长方形会怎样呢?(课件演示)等分成64份,又会怎么样呢?(课件演示)如果等分的份数更多,又会怎样呢?你能得出什么结论?(圆等分的份数越多,拼成的图形越接近于长方形)
(3)板书:
那么长方形的面积是怎么求的?(板书)它的长相当于圆的什么?怎么用字母表示?宽呢?(课件演示:在长方形或平行四边形64等分图的下面出示r,右边出示r,同时板书)那么圆的面积=rxr=r的平方。
(4)还有补充吗?
小组汇报:平行四边形、三角形、梯形面积转化为圆的面积公式。(实物投影仪下显示,最后写成r的平方,14bd的平方)
4、小结:通过刚才我们四人小组的活动,大家有什么结论?(不管拼成什么图形,都能推导出圆的面积是r的平方)那么知道什么可以求出圆的面积?(半径、直径、周长)
三、巩固练习:
1、出示:课本p1302(1)(3)(课件演示)会吗?(草稿本上算,投影反馈)
2、现在来看这个图形(猜测题)如果r=5厘米,你能求什么?(圆面积、正方形的面积、剩下的纸的面积)请你草稿本上算一算。(投影反馈)或口答。
四、机动练习:
教师准备一些实物,分发给四人小组:你们能求出它们的面积吗?(反馈)还可以测什么数据算面积?
五、全课小结:
今天这节课给你印象最深刻的一点是什么?
圆的面积教案 篇12
教学目标
1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。
2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。
3、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。
教学重点
圆面积的计算公式推导和运用。
课前准备
一个大圆、剪刀、小正方形。
课时安排:1课时
授课人
授课时间
教学过程
一、复习引入,导入新课。
教师引导交流:(出示一个圆)我们已经认识了圆,说说你对圆的了解。
学生说出自己的见解。
教师引导交流:如果圆的半径用r表示,周长怎样表示?周长的一半怎
样表示?
学生做出回答。
教师引导交流:圆的周长和直径、半径有关。大家猜想一下,圆的面积与谁有关?
二、探索尝试,解释交流。
教师引导交流:同学们的猜想对不对呢?下面我们就一起来验证一下。
大家可利用昨晚把圆剪开后,拼成的图形展示一下,看看发现了什么?
全班汇报交流:谁想先来展示一下?(学生回答)
教师引导交流:你能让平行四边形的'底再直一点吗?
学生领悟:分成4份其中的一份是扇形,拼成一个近似的平行四边形。
学生领悟:多分几份,平行四边形的底就会直一些。
教师引导交流:对,如果把圆平均分成8份、16份、32份会怎么样?
教师引导交流:请大家闭上眼睛想象一下,分成128份呢?如果把这个圆平均分的份数越来越多呢?
教师引导交流:对,把圆分的份数越多,拼成的就越近似于平行四边形。
教师引导交流:若把其中的一个小扇形平均分成2份,取一份放在另一边,平行四边形就变成了什么图形?
师:这样就把求圆转化成了求长方形。
教师引导交流:你认为转化成的长方形与圆有什么关系?
生:他们的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。
教师引导交流:你能根据它们的关系,推出圆的面积公式吗?
长方形的面积=长×宽
圆的面积=c÷2×r=πr×r=πr2
教师引导交流:如果用s表示圆的面积,那么圆的面积公式可以写成:
s=πr2
教师引导交流:黑板上的这个圆半径是10厘米,它的面积是多少。
三、巩固练习
1、请同学们利用公式,求出“神舟五号”飞船预先设定的降落范围是多大。
建议:可以先画模拟图,然后想办法得出比预定范围小了多少平方米。
2、自主练习第1题。
3、 自主练习第2题。
给出圆的直径求圆的面积,必须先求出圆的半径,再求圆的面积。
4、 自主练习第3题。
总结:通过这节课的学习,你有什么收获?
【圆的面积教案】相关文章:
圆的面积教案11-04
《圆的面积》教案03-06
圆的面积教案09-06
圆的面积教案精选15篇02-27
圆的面积教案15篇02-24
圆的面积教案(15篇)02-24
圆的面积教案15篇02-17
精选圆的面积教案3篇03-25
实用的圆的面积教案4篇06-27
圆的面积教案(通用15篇)03-12