比的意义教案

时间:2024-08-27 18:27:39 意义 我要投稿

比的意义教案

  作为一名辛苦耕耘的教育工作者,时常需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。写教案需要注意哪些格式呢?以下是小编为大家收集的比的意义教案,欢迎大家分享。

比的意义教案

比的意义教案1

  本课教学目标:

  1、使学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。

  2、引导学生加强知识之间的联系,使学生掌握的知识系统化,提高学生分析解决问题的能力。

  教学重点:比与除法、分数的关系

  教学难点:理解比的意义

  教具准备:多媒体课件

  教学过程:

  一、谈话启发,揭示课题

  师:今天很高兴能在这和大家一起学习,我们班的同学都到齐了,看看男生有几人呢?(29人),女生有几人?(25人)在日常的工作和生活中,我们常常把两个数量进行比较。现在你能不能根据我们班男生和女生的人数,提出数学问题,并会用以前学过的什么方法进行比较?

  启发学生提问题,解答后教师板书。

  比差关系:用减法29-25=4(人)

  比倍关系:用除法29÷25=

  25÷29=

  师:从男生和女生的比较中可以知道,比较数量的意义和方法有两种:一种是求一个数量比另一个数量多多少(比差关系)用减法,另一种是求一个数量是另一个数量的几倍或几分之几(比倍关系)用除法。今天这节课,我们要在对两个数量用除法比较的基础上,来学习一种新的数学比较方法——比。

  2、板书课题 (出示教学目标)

  二、新知探究

  l.教学比的意义。

  师问:29÷25是哪个量和哪个量比较?(男生人数和女生人数比较)

  师述:用新的一种数学比较方法,求男生人数是女生人数的几倍,又可以说成男生人数和女生人数的比是29比25。(板书:男生人数和女生人数的比是29比25)

  扶放启发:请同学们想一想,仿上例(指29÷25),那么25÷29又可以怎么说呢?

  (生说后师板书:女生人数和男生人数的比是25比29)

  小结:从求我班男生人数和女生人数的倍比关系知道:谁是谁的几倍或几分之几,又可以说成谁和谁的比。应注意的是:两个数量进行比较要弄清谁和谁比。谁在前,谁在后,不能颠倒位置,否则,比表示的具体意义就变了。(如29比25是男生人数和女生人数的比,25比29是女生人数和男生人数的比。)

  师:同学们真聪明,很快就学会了用“除法”和“比”的方法对我们班的男生和女生人数进行了比较,请同学们再看下面一个例子。

  (投影出示)

  “一辆汽车2小时行驶100千米。每小时行驶多少千米?”

  教师提出如下几个问题启发学生思考:

  (投影出示)

  (1)求汽车行驶的速度应怎样计算?

  [用除法计算:100÷2=50(千米/小时)]

  (2)题中的100千米是汽车行驶的什么?2小时呢?(路程、时间)

  (3)汽车的速度又可以说成哪个量和哪个量的比,是几比几?

  学生回答后教师板书:路程和时间的比是100比2。

  引导学生总结出比的意义:

  师启发:从上面两个例子可以看出,比较两个数量的倍比关系可以用什么方法?(用除法)又可以用什么方法?(比的方法)那么表示两个数的相除关系又可以怎样说呢?板书:

  两个数相除又叫做两个数的比。(完善板书:比的意义)

  接着帮助学生深化理解比的意义(提出如下问题启发):

  (l)两个数的比是表示两个数之间的什么关系?(相除关系)

  学生回答后教师在“相除”两字下面点上着重号,然后让学生齐读两遍。

  (2)上面两例,它们的解法有什么共同点?(都用除法,又可以说成几比几)

  (3)两个例中的各个比有什么不同点?(第一个例子中的比是同类量的比,第二个例子中的比是不同类量的比。不同类量比,得到的是一种新的量,如路程和时间的比表示的意义是速度。)

  2.教学比的'读写法、各部分名称、求比值的方法及比同除法的关系。

  (一)课件出示自学提纲。

  1、比的读、写法2、比的各部分的名称分别叫什么??3、怎样求一个比的比值?

  4、比值可以怎样表示 ??5、比和比值有什么联系与区别?

  (二)各小组根据提纲自学。

  教师巡回查看,了解学生学习中的疑难,以便有目的的开展教学。

  (三)逐步汇报并举例。

  1、两个数相除,又叫做两个数的比。

  2、“:”是比号,读作“比”。比号前面的数,叫做比的前项,比号后面的数叫做比的后项。

  3、15比10 记作15∶10 10比15 记作10∶15

  4、比的前项除以后项所得的商,叫做比值。

  例如:3 ∶ 2= 3÷2 =

  引导学生根据比值的定义,弄清比值是一个数。(通常用分数表示,也可以用小数表示,有时也可能是整数)。

  5、理解比和比值的联系和区别。

比的意义教案2

  教学目标:

  1、知识目标:

  (1)使学生进一步掌握比的意义、基本性质,能正确迅速地化简比和求比值;

  (2)进一步理清比与分数、比与除法的关系。

  2、能力目标:通过教师引导整理知识框架,提高学习的系统性,培养学生归纳、总结等自我梳理能力,加强生与生之间的合作学习能力和综合运用数学知识解决实际生活问题的能力。

  3、情感目标:在复习活动中让学生体验数学与生活实际的密切联系,培养学生的数学应用意识,激发学生成功学习数学和自信心和创新意识,渗透事物间是相互联系的辩证唯物主义观点。

  教学重点:进一步掌握比的意义、基本性质及比同分数、除法之间的关系,能正确迅速地化简比和求比值。

  教学难点:知识间的疏理、沟通

  教学准备:多媒体课件

  教学过程:

  一、直接导入

  今天这节课我们一起来复习有关比和比例的知识。(板书课题:比和比例)

  二、归纳整理

  1、复习比的意义,比的意义主要应用在哪里?

  练习:(求比值)16:12

  2、复习比与除法、分数的关系。

  你能说一说比与除法和分数有什么联系和区别吗?

  (1)如果用a和b分别表示比的前后项,你能用字母表示出比、除法和分数的关系吗?。指名学生口答写出的等式。

  板书:a:b=a÷b=a/b(b≠0)

  让学生说明为什么b≠0?(0不能作除数,没有意义)

  练习:12÷( )=4/9=16:( )=( )

  7:14=( )÷28=35/( )=( )

  3、复习比的基本性质。

  (1)什么是比的基本性质?

  (2)比的基本性质有什么应用吗?(板书:化简比)

  (3)练习:4:1.8

  指名两人板演,其余学生做在练习本上。集体订正。追问:我们是按怎样的方法化简比的?

  提问:运用比的基本性质,把比的前项和后项同时乘或者除以一个不为0的`数,化简的结果是一个什么?(还是一个比)

  强调:要化成最简整数比,也就是前项和后项一定是整数并且要互质,4、比较求比值和化简比。

  引导比较。

  现在请同学们把刚才求比值和现在的化简比来比较一下,它们各自的依据和方法有什么区别,结果有什么区别?(根据学生的回答,整理成书上的对比表。强调两者在解答的根据、方法和表示的结果上的不同点。)

  5、复习比例的意义和基本性质。

  6、比例的基本性质有什么应用?(解比例)

  练习:

  ①解比例0.25:x=15:100

  ②判断是否能组成比例

  7、复习比的应用:在生活中比和比例的应用很广泛,同学们看这两道题:(按比例分配、解比例应用题)

  三、课堂总结,评价自己

  今天这节课我们一起复习了“比”的知识,通过复习,你有什么收获?

比的意义教案3

  教学内容:教科书第76页的例1、例2,第76页做一做中的题目和练习十八的第1-2题。

  教学目的:

  1、使学生理解小数加、减法的意义,初步掌握计算法则,能够比较熟练地笔算小数加、减法。

  2、培养学生的迁移类推的能力。

  教学重点:初步掌握计算法则,能够比较熟练地笔算小数加、减法。

  教学难点:培养学生的迁移类推的能力。

  教学过程

  一、复习

  1.少先队采集中草药。第一小队采集了1250克,第二小队采集了986克.两个小队一共采集了多少克?

  让学生先解答,再说一说整数加法的意义和计算法则。

  2.笔算。

  4.67+2.5=6.03+8.47=8.41-0.75=

  让学生列竖式计算,指名说一说自已是怎样算的,并注意检查学生竖式的书写格式是否正确。

  二、学习新知

  1、学习例1。

  (1)通过旧知识引出新课.

  教师再出示一次复习的第l题,把已知条件和问题稍作改动,变成例1让学生读题;理解题意。

  (2)引导学生比较整数加法和小数加法的意义。

  教师:例1与复习中的第1题有什么相同的`地方?例1应该用什么方法计算?为什么要用加法算?

  引导学生通过比较说出从复习的第1题可以看出整数加法的意义是把两个数合并成一个数的运算,从例1可以看出小数加法的意义和整数加法的意义相同,也是把两个数合并成一个数的运算。因为要把两个小队采集中草药的千克数合起来,所以要用加法计算.

  (3)引导学生理解小数点对齐的道理。

  教师板书横式以后,让学生说一说怎样写竖式,并提出以下问题进行讨论

  (1)为什么要把小数点对齐?

  (2)整数加法应该怎样算?

  然后让学生计算,算完后接着讨论:

  (3)得数7.810末尾的0怎样处理?能不能去掉?为什么能去掉?

  2.让学生做第76页做一做中的题目。

  让学生独立做,教师巡视,检查学生是否把小数点对齐了,最后集体订正。

  3.引导学生比较小数加法和整数加法的计算法则。

  教师:小数加法与整数加法在计算上有什么相同的地方?启发学生说出小数加法和整数加法都要把相同数位上的数对齐,小数加法只要把小数点对齐就能使相同数位对齐。

  4.学习例2。

  (1)引导学生通过比较得出小数减法的意义。

  教师:例2的条件和问题与例1比有什么变化?例2的数量关系是什么?启发学生说出例2是已知两个小队采集中药材的总数和第一小队采集的千克数,求第二小队采集的千克数;

  可以看出小数减法也是已知两个加数的和与其中的一个加数;求另一个加数的运算,所以它的意义与整数减法的意义是相同的。

  (2)利用知识迁移使学生理解小数点对齐的算理。

  让学生联系小数加法小数点对齐的算理,说一说小数减法小数点为什么要对齐。

  然后教师把千克数改写成克数并列出竖式,提问:个位上是几减几?接着让学生看小数减法竖式,提问:被减数千分位上没有数计算时怎么办?利用小数的性质使学生理解被减数千分位上没有数可以添0再减,也可以不写0,把这一位看作0来计算,以后在计算时遇到这种情况也可以这样处理。接着让学生计算,教师巡视,检查学生小数点是否对齐,被减数千分位的处理是否正确,得数的小数点点得是否正确。

  5.比较小数减法与整数减法的计算法则。

  让学生讨论小数减法与整数减法在计算上有什么相同的地方。使学生明确这和小数加法与整数加法在计算上的关系是一样的。

  6、小结。

  教师:通过学习上面的知识,小数加法和小数减法的计算法则有什么共同的地方?启发学生说出小数加减法计算时都要把小数点对齐(也就是相同数位上的数对齐),都要从最低位算起。然后教师把小数加减法的计算法则完整地说一说。并让学生看书上的法则,齐读一遍。

  7、做第78页最上面做一做中的题目。

  订正时,让学生说一说是怎样计算并验算的。

  三、巩固练习

  做练习十八的第1-2题。

  1.做第1题,教师先说明题意,要根据加法算式来写减法算式的得数,不用再列式计算。学生做完之后,可以提问:你是根据什么来写减得的差的?使学生加深对小数减法的意义和加减法关系的认识。

  2.做第2题,让学生独立做,可以要求学生验算。教师巡视,进行个别辅导。订正时,针对学生易出错的地方重点说一说。

  板书设计:小数的加法和减法

  例1:少先队采集中草药,第一小队采集了3.735千克,第二小队采集了

  4.075千克,两个小队一共采集了多少千克?

  3.735+4.075=7.81(千克)

  答:一共采集了7.81千克。

  例2:少先队采集中草药,两个小队一共采集了7.81千克。第一小队采集了3.735千克,第二小队采集多少千克?

  7.81-3.735=4.075(千克)

  答:第二小队采集了4.075千克。

比的意义教案4

  教学内容

  课本43-44页以及相关练习

  教学目标:

  1、使学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。

  2、引导学生加强知识之间的联系,使学生掌握的知识系统化,提高学生分析解决问题的能力。

  教学重点:

  理解比的意义以及比与除法、分数的关系

  教学难点:

  弄清比和比值的联系和区别。

  教学准备:

  课件,投影。

  教学过程:

  一、创设情境,生成问题

  师:同学们,你们知道我国的第一艘载人飞船叫什么吗?(出示情境图)

  问:怎样用算式表示国旗长与宽的关系?(引导学生说出:可以求长是宽的几倍?或求红旗的宽是长的几分之几?)

  小结:长和宽的倍数关系可用除法表示。

  二、探索交流,解决问题

  1、比的意义

  (1)两个同类量的比

  比较这两个数量之间的关系,除了除法,数学上还有一种表示方法,即“比”。可以说成是:长和宽的'比是15比10,或宽和长的比是10比15。

  不论是长和宽的比还是宽和长的比,都是两个长度的比,相比的两个量是同类的量。

  思考:两个数量组成比时,谁比谁,谁在前,谁在后,可以交换位置吗?为什么?(小组交流,汇报补充,深层体会比的意义)

  (2)两个不同类量的比

  “神舟”五号进入运行轨道后,在距地350km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252km。怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?

  (算式:42252÷90,依据是速度可以用路程÷时间表示)

  对于这种关系,我们也可以说:飞船所行路程和时间的比是42252比90,这里的42252千米与90小时是两个不同类的量。

  问:路程和时间的比表示什么含义?(生自由发言,理解“路程比时间”表示速度)

  (3)归纳比的意义。

  通过上面两个例子,你认为什么是比?(学生试说,教师总结:两个数相除,又叫做两个数的比。)

  2、比的写法

  (1)阅读课本自学

  问题:几比几怎样写?怎样读?

  比的各部分名称是什么?

  怎样求比值?比值可以怎样表示?

  比和比值有什么联系和区别?

  (2)小组交流汇报。

  3、比、除法和分数的联系

  (1)比与除法的关系

  问:比的前项相当于什么?后项相当于什么?比值相当于什么?比的后项可以是零吗?为什么?

  小组交流汇报。

  (2)比与分数的关系。

  根据分数与除法的关系,可以推知比与分数有什么关系?(引导学生回答:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。)

  三、巩固应用,内化提高

  1、完成课本“做一做”。

  2、练习十一第1、2题。

  四、回顾整理,反思提升

  通过这节课的学习,你有什么收获?

  课后延伸:

  在生活中找一找,在哪里存在比?表示什么含义?

  板书设计:

  比的意义

  15:10=15÷10=3/2

  前项比号后项比值

比的意义教案5

  一、教学目标

  (一)知识与技能

  使学生初步学会根据乘法的意义,解决生活中有关求总价是多少的实际问题,初步渗透单价数量=总价这一数量关系。

  (二)过程与方法

  初步培养学生从具体情境中发现信息,提出问题并根据问题筛选有用信息进而解决问题的能力。

  (三)情感态度和价值观

  在解决问题的过程中感受数学与生活的联系,培养学生的应用意识。

  【目标分析】学生初步了解了乘法的意义,学习了2~8的乘法口诀,并在生活经验的基础上,运用知识解决生活实际问题,经历将现实问题抽象成数学问题的过程,从而培养学生的问题意识、应用意识以及解决问题的能力。

  二、教学重难点

  教学重点:根据乘法的意义解决求总价是多少的实际问题。

  教学难点:引导学生能根据问题选择有价值的信息,正确解决问题。

  三、教具准备

  情境图,课件等。

  四、教学过程

  (一)情境导入,揭示课题

  1.情境导入。

  教师:老师要给同学们颁发奖品。看,老师给大家准备了好多卡通橡皮。

  (1)课件演示:

  (2)说一说:一共有多少块橡皮?该怎样列式呢?

  (3)想一想:这里求一共多少块橡皮,就是求几个几相加呢?(5个4相加)

  2.揭示课题。

  求几个几相加,我们可以用乘法计算。今天,我们继续学习用乘法的知识解决生活中的实际问题。

  【设计意图】通过情境激发学生学习的积极性,同时复习旧知,让学生根据乘法的意义列出乘法的算式;通过追问几个几相加使学生理解乘法计算的道理。

  (二)自主探究,构建新知

  1.收集信息,明确问题。

  (1)学生看图,交流信息。(课件呈现主题图)

  (2)说说每种文具的价钱,如:一盒铅笔3元,一块橡皮2元,一个文具盒8元,一本日记本4元。

  (3)说说所求的问题:买3个文具盒,一共多少钱?

  2.根据问题,选择信息。

  学生明确:要求买文具盒的总钱数,必须选取什么信息?(一个文具盒的`价钱)

  3.小组合作,解决问题。

  (1)画一画:教师先在黑板上画一个文具盒标上8元,然后由每组学生用画图的形式表示题目中的已知信息和问题。如:

  (2)说一说:一个文具盒8元,求3个文具盒的总钱数,就是求几个几元呢?(3个8元)

  (3)算一算:如果有学生列加法算式,教师可以引导学生根据乘法的意义列出乘法算式并解答,并根据学生的汇报板书:

  83=24(元)

  口答:一共24元。

  (4)练一练:如果想买5个这样的文具盒要多少钱呢?6个呢?7个呢?小组内算一算。

  (5)议一议:你有什么发现?

  (6)小结方法:求买文具盒的总钱数,可以用1个文具盒的价钱乘买的个数来计算。

  【设计意图】在学生获得信息的基础上要引导学生懂得根据问题选择有效信息。通过画一画、说一说、算一算懂得解决文具盒总钱数的问题用乘法计算的道理;通过练一练和议一议,发现1个文具盒的价钱不变,买的文具盒个数不同,总钱数也不一样,从而顺利地总结出用乘法求买文具盒总钱数的方法。

  (三)分层练习,运用方法

  1.基础练习。

  (1)完成教材第78页想一想。

  买7块橡皮,一共多少元?

  学生独立解决,而后汇报交流想法和解法。

  (2)再次看情境图,自由提问,独立解答。

  要求:提出用乘法解决的问题,如:6本日记本多少元?

  ①交流提出的问题和解决的方法。

  ②引导学生进一步归纳出求购买物品总钱数的方法:可以用物品的单价乘买的数量。

  (3)练习十九第3题。

  一套《童话故事》共有8本,每本7元。小亮买一套,要多少元?

  学生列式前可以先画一画,再说一说是求几个几相加,然后独立解答。

  2.提升训练。

  练习十九第5题。

  小红和爸爸、妈妈、爷爷和奶奶一起到平安公园游玩,门票价钱:成人8元/人,儿童4元/人。门票一共要花多少钱?

  引导学生挖掘隐含信息,同时理解成人8元/人,儿童4元/人的意思。

  【设计意图】本课练习设计了两个层次,基础练习注重方法的巩固和总结,进一步明确数量关系;提升训练乘加两步计算的实际问题,需要学生能解读隐含信息,从而提高分析问题和解决问题的能力。

  (四)总结全课,畅谈收获

  这节课,你学到了什么知识呢?还有什么问题吗?

比的意义教案6

  教学目标:

  1.整理知识,构建小数的知识结构;

  2.巩固学生对小数的意义和性质的理解;

  3.用小数的知识解决实际问题;

  4.培养学生交流合作的意识。

  教学过程:

  一、谈话引入

  出示:“龙湾是浙江省温州市三大城区之一,位于瓯江入海口南岸,区域陆地面积279平方千米,总人口约48万人(其中户籍人口29.77万人),区人民政府驻永中街道,辖永中、蒲州、海滨、永兴、海城5个街道和状元、瑶溪、沙城、天河、灵昆5个镇。”

  师:哪个数比较特别?(板书:小数29.77)

  师:我已简单介绍了自己的家乡,那你们也来介绍一下自己或自己班里的一些情况,每个同学准备一句话,这句话里至少有一个小数,谁先来?

  生(举例)师板书小数。

  师:同学们说了这么多小数,看来小数在我们生活中无处不在,今天这节课我们就来复习“小数的意义和性质”。(板书课题:小数的意义和性质单元复习)

  二、用数与概念造句,再现知识

  师:看到这些小数,回忆一下小数的意义和性质这单元我们都学了哪些知识呢?

  生:……

  根据回答,师板书:

  意义

  读法和写法

  基本性质

  大小比较

  小数点的位置移动

  名数转化

  求近似数(改写)

  师:谁能用上我们学过的这些知识,然后选择黑板上的一个数来说一句话吗?

  如:1.65米就是165厘米。

  生:……

  随着学生的发言,小数的各个知识点都展示出来,并及时得到了训练。

  三、综合运用知识,解决问题

  师:下面我们来检验一下本单元的知识。

  1、比一比

  大米油洗衣粉

  850g 2千克3.25kg

  它们所使用的单位完全不同,你有办法比出它们的轻重吗?

  方式:先学生自己比较,再同桌互谈想法。

  学情预设:(1)先交流比较的结果。(2)重点介绍比较的过程、转化的方法。

  2、读一读,写一写

  (1)龙湾区是温州的工业强区、经济大区。截至2006年底,全区实现生产总值14347000000元,城镇居民人均可支配收入达到10101元。

  方式:读数,改写成用“万”或“亿”作单位的数。

  (2)截止到5月26日,在四川地震中共有65080人遇难。

  方式:先改写成用“万”作单位,再精确到十分位、百分位。

  3、猜一猜

  (1)两斤九层糕,比5元贵一些,比6元便宜一些,这两斤九层糕的价格可能是多少?

  方式:学生开火车说

  预设:在讲完5.1到5.9后。追问火车还能不能继续开,引出5.11……有无数个,但是结合实际,一般表示几元几角几分,没有5.11111元。

  (2)老师这里有一组小数,你能猜测出它可能是表示什么的小数吗?

  A、35.5千克B、2.29米C、8844.43米D、2.5

  方式:学生自由选择一个数来说。

  小结:同样的数,添上不同的单位就能解释出不同的意义,数学想像的力量真是非常强大啊!

  4、判一判

  (1)小数都比1小。()

  (2)大于0.67而又小于0.69的数只有0.68。()

  (3)小数的位数越多,这个小数越大。()

  (4)一个整数的'末尾有几个0,读数的时候只读一个零。()

  (5)把2.345扩大1000倍,只要把小数点向右移动三位。()

  (6)2.98保留一位小数是3。()

  (7)在小数的末尾添上零或者去掉零,小数的大小不变。()

  四、质疑问难,总结全课

  通过今天这节课的复习,你对“小数的意义和基本性质”的知识还有什么疑问?请及时提出和交流。当然有关小数的知识还有很多,以后我们还会继续学习。(补充完板书)

比的意义教案7

  教学内容:九年义务教育六年制小学数学教科书人教版五年级下册第60-62页。

  教学目标:

  1、在具体的情境中进一步认识分数,发展数感,体会数学与生活的密切联系。

  2、理解有关单位 “1” 的数学内涵,进而揭示分数的意义,认识分数单位的含义。

  教学重点:分数意义的归纳与单位“1”的抽象。

  教学难点:把多个物体组成的一个整体看作单位“1”。

  课前谈话:

  同学们猜一猜,在课堂上,老师最喜欢什么样的学生?(用心听讲的学生;踊跃发言,并且敢于表达和坚持自己的观点;)老师会不会批评回答错误的学生?(孩子是什么?错误中成长的天使。)

  教学过程:

  一、创设情境,引入新课

  老师想考考同学们,看看同学们能不能从现实生活中发现数学问题,敢接受老师的挑战吗?同学们一定要认真听啊。星期天,亮亮妈妈去逛商场了,商场里的沙发坐垫正在打折,亮亮妈妈想买一套。但是,她遇到麻烦了,她不知道家里沙发的长和宽呀。亮亮妈妈就给家里打了个电话:亮亮,量一量家里沙发的长和宽,好吗?遗憾的是亮亮找不到的尺子。亮亮呀可聪明了,他想了一个绝妙的办法。他说,妈妈,家里还有一条丝巾,和你戴的丝巾一模一样,我用丝巾量好吗?用丝巾量,这个办法很好啊。亮亮开始量沙发了:沙发的长正好是两个丝巾的长,沙发的宽么,哦,沙发的宽比丝巾的长度短许多,亮亮把丝巾对折后再量,沙发的宽比对折后的丝巾短一些,亮亮把丝巾折了三次后再量,这时沙发的宽正好是三折后丝巾的长。

  板书课题:分数的意义

  二、导学导探,建构分数

  1、整体感知

  ①请同学们思考,你们能结合下面的图形说说1/4的含义吗?

  ②请看第5副图,老师有点纳闷,2个面包和1/4是什么关系?

  ③这5个图形的形状、大小、数量都不一样,为什么都能用1/4来表示呢?

  师总结:上面的这些物体都可以看做一个整体,都平均分成了4份,都取出了其中的一份,所以都可以用1/4来表示。

  ④一个整体还可以用什么来表示呢?下面老师告诉同学们一个知识点,谁来念一遍:一个整体可以用自然数1来表示,通常把它叫做单位“1”。

  强调:一个圆形的面积、长方形的面积、香蕉的个数、一条线段、8个面包都可以用单位“1”来表示。这里的1不仅可以表示一个物体,还可以表示多个物体,它的含义非常特殊,所以1的上面需加上双引号。

  谁来举一个单位“1”的例子。

  改写板书:1/4的意义该怎么修改呢:把一个整体改为单位“1”,即把单位“1”平均分成4份,表示这样一份的数就是1/4。

  2、抽象概括

  ①1/4的意义明白了,谁来说说5/7的意义(把4和1擦掉)

  ②师:出示5/(),让学生说把单位 “1”平均分成……(这里有几种不同的声音出现),表示这样5份的数。

  ③师:出示()/(),谁又能说说它表示的意义。

  出示自学提纲

  板书:5/6分数单位1/6

  三、拓展延伸,加深理解

  今天。我们学习了分数的意义,你们学得怎么样,老师要检验一下:

  1、图中的涂色部分表示几分之几?(糖块)(挑几个说分数的意义和分数单位)

  2、 3、书上的题

  4、判断

  5、写出合适的分数:

  四、自我小结,升华认识

  师:今天我们进一步学习了分数的`意义,分数的意义是:把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数。马上下课了,老师想说一句含有一个分数的话:今天我们班有3/4的学生发言积极,有4/5的学生语言流畅,有5/6的学生思维敏捷,如果老师有机会再来上课的话,老师希望100%的学生都是好样的。中午回家给爸爸妈妈说一句话,让这一句话里含有一个分数。

  板书设计

  分数的意义

  分数:把单位“1”平均分成若干份,表示这样的一份或者几份的数。

  分数单位

比的意义教案8

  第一课时

  教学内容:分数意义的认识

  教学目标:

  1、使学生了解分数的产生,单位“1”的含义,理解分数的意义。

  2、培养学生的观察能力和抽象概括能力。

  教学过程:

  一、复习

  1、把一块蛋糕平均分成3份,其中的1份用分数()表示

  2、把一个圆平均分成4份,其中的一份用分数()表示。

  3、把一条线段平均分成8份,其中的1份用分数()表示。

  4、用分数表示下面各图中的阴影部分。(p.67第1题)

  5、用下面分数表示图中的阴影部分,对不对?为什么?

  二、教学新课

  1、一个食物、一个图形、一条线段都可以看作单位“1”。

  2、举几个“1”。

  3、其实一把铅笔、一群小羊、一盘苹果、一项工程等组成的整体,都可以看作单位“1”。

  4、再举几个单位“1”。

  5、把4支铅笔看做一个整体,平均分成4份,每份(1支)是这个整体的1/4,3份是整个整体的1/3。那么两份呢,4份呢。

  6、把6只小羊看作一个整体,平均分成3份,每份(2)只是这个整体的1/3。2份是这个整体的2/3。

  7、把12只苹果看作一个整体,平均分成4份,每份(3只)是这个整体的1/4,2份是这个整个的1/4。

  8、一个食物,一个图形,组成一个整体一把铅笔,一群小羊都可以看作单位“1”。

  9、判断题:单位“1”只能是一个物体、吗?

  10、教学分数的概念:把单位”1“平均分成若干份,表示这样的一份或者几份的数,叫做分数。

  理解若干份的`意思:1份、2份、3份、4份………..

  11、1/2、1/3、1/4、2/5、3/6、5/8

  以上这些分数表示把单位“1”平均分成()份,表示这样的()份。

  11、教学分母、分子

  在分数里,表示把单位“1”平均分成多少份的数叫做分母。

  表示这样多少份的数,叫做分子。其中的一份,叫做分数单位。

  三、教学例1用直线上的点表示1/5和3/5。

  想:直线上从0到1表示单位“1”,把他平均分成5分,这样的一份用1/5表示,这样的3份,可以用3/5表示。

  试一试:指出下面直线上A、B、C各点分别表示几分之几?

  四、巩固练习:

  1、把15个圆平均分成5份,其中的2份用分数()来表示。

  2、把12面小红旗平均分成6分,其中的5分用分数()来表示。

  3、把12根小棒平均分成3份,每份是():如果平均分成2分,每份是()。

  4、说出下面每一个数的分数单,位,并指出每个分数含有多少个分数单位。

  1/75/83/104/159/20xx/100

  5、4/5是()个1/5。

  五、反馈总结。

  六、布置作业。

  反思:对于单位“1”的教学不够到位,应通过多种例子举例说明。让学生知道单位“1”不仅指一个物体,也可以指一个整体。这是教学的难点。应予以突破。对于分母、分子、分数单位概念的教学不够细腻。应加强。

比的意义教案9

  设计说明

  “分数的产生和意义”这节课是在学生对分数有了初步认识的基础上,进一步对分数的学习和探究,是一节抽象的概念课。针对这一点,在设计此课时主要突出以下两点:

  1.动手操作,帮助学生理解分数的意义。

  动手操作是学生获取知识的一种直观且有效的学习手段,也是《数学课程标准》中提倡的学习方式。在探究分数意义的过程中,让学生通过动手分一分、折一折、涂一涂等操作活动理解单位“1”,感受并理解分数的意义。

  2.充分利用现代化教学手段,帮助学生建立单位“1”的表象。

  利用直观演示,有利于学生理解抽象的数学概念。本设计通过多媒体教学设备进行直观演示,让学生充分感知分数及单位“1”的意义,再经过比较、归纳,突破许多物体组成的一个整体也可以看作单位“1”这一难点,从而深入理解分数的意义。

  课前准备

  教师准备 PPT课件 彩带 米尺 苹果

  学生准备 正方形纸片和圆形纸片 8个小正方形

  教学过程

  ⊙了解分数的产生

  1.测量。

  师生合作测量一条彩带的长度,发现用米尺量了几次后还剩一段,这一段不够一米。

  提出问题:如果用“米”作单位能用整数表示吗?(不能)

  2.分物。

  (教师拿出一个苹果)把这个苹果平均分给2人,每人可以分得多少个?每人分得的.部分能用整数表示吗?(不能)

  3.引入新课。

  人们在实际生产和生活中进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。

  设计意图:在具体情境中理解分数产生的必要性,感受分数就在我们身边,从而对分数产生亲切感,激发学生进一步学习分数的兴趣。

  ⊙探究分数的意义

  (一)分数的意义。

  1.动手操作。

  拿出课前准备的圆形纸片和正方形纸片折一折、涂一涂,表示出,并说出的意义。

  2.把一条线段平均分成4份,说出的意义。

  3.课件出示教材46页香蕉和面包图片。

  (1)说一说,每根香蕉是这把香蕉的几分之几?

  (2)同桌合作分一分这盘面包(用小正方形代替面包),看看有几种分法。

  预设

  生1:把8个面包看作一个整体,平均分成4份,每份是这盘面包的。

  生2:把8个面包看作一个整体,平均分成2份,每份是这盘面包的。

  生3:把8个面包看作一个整体,平均分成8份,每份是这盘面包的,7份是这盘面包的。

  4.认识单位“1”。

  一个物体、一个计量单位或是一些物体等都可以看作一个整体。一个整体可以用自然数1来表示,通常把它叫做单位“1”。

  5.总结分数的意义。

  把单位“1”平均分成若干份,表示其中的一份或几份的数,叫做分数。

比的意义教案10

  执教者:庐山一小 丁微

  教学内容:九年义务教育五年制小学(人教版)教科书第61—62页及练习十七的第1---4题。

  教学目标:

  1.通过教师的讲解及学生的观察、思考、讨论、自学等活动,使学生理解比的意义,掌握比各部分名称,理解比和分数、除法之间的关系。

  2.通过教学比和分数、除法的关系,初步渗透事物是普遍联系的辨证唯物主义观点。

  教学重点:掌握比的意义

  教学难点:把两种量组成比,以及在此基础上进行求比值。

  教学过程:

  一、引探准备

  口答:⒈求一个数是另一个数的几倍或几分之几,怎样计算?

  ⒉分数和除法有什么联系和区别?

  二、引导过程

  ㈠引导探索,使学生由比较两个同类量之间的倍数关系,引出用比表示的方法。

  谈话:同学们,有谁知道,今年的雅典奥运会上,中国代表团共获得多少枚金牌?中华人民共和国的国歌在雅典奥运会上多少次庄严奏起,中华人民共和国的国旗多少次在雅典上空率先升起。“五星红旗啊,我们为你自豪”。

  同学们,你知道国旗的制作标准吗?下面我们就来计算一下。

  投影:这面国旗,长是3分米,宽是2分米。

  ⒈引导再学。出示初学思考题:

  长是宽的几倍,还可以把长和宽的关系说成什么?

  宽是长的几分之几,还可以把宽和长的关系说成什么?

  ⒉讨论回答思考题

  师:长是宽的几倍,还可以把长和宽的关系说成什么?

  生:长是宽的3/2倍,我们还可以把长和宽的关系说成-----长和宽的比是3比2。

  板书 3÷2=3/2 或 3比2

  师:宽是长的几分之几,还可以把宽和长的关系说成什么?

  生:宽是长的2/3,我们还可以宽和长的关系说成-----宽和长的比是2比3。

  板书 2÷3=2/3 或 2比3

  师:由上可知,我们还可以用比来表示长与宽之间的倍数关系。

  ㈡再次探索用比表示两个不同类量之间的除法关系。

  投影:一辆汽车,2小时行驶了100千米。

  出示初学思考题,引导再学。

  ① 题目中有哪几个量?可以求出什么问题?怎样求?

  ② 这两个量间的关系用比怎样表示?

  讨论思考题:

  师:路程和时间的'关系用比来表示怎么说?

  生:汽车所行路程和时间的比是100比2。

  板书 100÷2=50 或 路程和时间的比是100比2

  师:那么汽车所行时间和路程的关系是什么?能用比表示吗?

  引导学生弄清谁与谁比,比的结果、意义不同。

  ㈢引导归纳比的意义,理解掌握比和分数、除法的关系

  学生先阅读课本第62页的内容,再学思考题。

  思考题:①比是表示几个量之间的什么关系?什么叫做比?

  ②比的符号是什么?比的每个部分的名称是什么?

  ③比和除法有怎样的联系和区别?比和分数呢?

  ⑴回答思考题①,师即时板书。

  生:比是表示两个量之间的相除关系,因此两个数相除又叫做两个数的比。

  ⑵回答思考题②:

  师:除法的运算符号是除号,表示比的符号是什么呢?还有其他的表示方法吗?

  生:比的符号是比号,写作“﹕”要写在两个数的中间。比号前面的数叫比的前项,比号后面的数叫比的后项,比的前项除以后项所得的商叫做比值。

  3 比 2记作3﹕2 或3 / 2

  板书 3 ﹕ 2 = 3 ÷ 2 = 1。5

  前项 比号 后项 比值

  师:3/2是比的另一种分数形式的写法,仍读作3比2,不能读作二分之三。

  ⑶回答思考题③:

  生答,师填表

除法




被除数




除号




除数







一种运算







前项




比号




后项




比值




两个数的关系




分数




分子




分数线




分母




分数值




一种数




  三、引探总结

  师生共同小结所学内容:今天这节课主要学习了什么内容?你知道了什么?你还有什么问题吗?质疑:比的后项为什么不能是0?足球比赛中的比和我们今天学习的比相同吗?比和比值有什么不同?……

  四、引探实践

  ⒈课内实践

  ⑴判断分析(练习十七第4题)

  ⑵把下面两个量间的关系用比的形式表述出来。

  200人一年可造林50公顷。

  ⑶把下面用分数描述的两个量间的关系转化为比的形式

  苹果的个数是梨的4/5

  某校初中生人数是是高中生的2倍

  ⑷填空,比值相同的比为下节课学习基本性质作好准备。

  1﹕2 =( )=( )﹕6=0﹒5﹕( )=1/8﹕( )

  ⒉课外实践

  ⑴布置作业

  ⑵预习“比的基本性质”

  出示初学思考题:①什么叫做最简单的整数比?

  ②怎样化简比?

  ③化简比和求比值有什么区别和联系?

比的意义教案11

  教学内容

  教科书第1~3页例1,课堂活动第1题及练习一1~4题。

  1.让学生理解百分数的意义,能正确读写百分数,知道百分数与分数的区别。

  2.在学生探究数学的过程中培养学生的抽象概括能力和比较分析能力。

  3.使学生感受百分数与生活的联系,体会数学的应用价值,激发学生学习数学的兴趣。

  理解百分数的意义。

  教具:小黑板。

  学具:学生收集的生活中的百分数。

  一、联系生活,引入新课

  (1)学生汇报收集的生活中的百分数。

  课前,老师让大家收集生活中的百分数,找到了吗?在什么地方找到的?

  (2)人们在生活中为什么这么喜欢用百分数呢?这节课咱们就一起来研究。(揭示课题)你想了解百分数的哪些知识?

  二、自主探索,学习新知

  1.理解百分数的具体含义

  (1)出示麻辣烫火锅配料成分,根据百分数信息分析麻辣原因。

  辣椒占45%,花椒占38%,其他成分占17%。

  教师:知道火锅为什么这么麻?这么辣吗?

  (2)分析:辣椒占45%表示的意义。

  分母100表示什么?45呢?

  45%是什么数与什么数比较的结果?

  (3)花椒占38%,其他成分占17%的意义又该怎样理解?

  小结:如果把火锅配料的成分看做是100份,辣椒占了其中的.45份,花椒占了38份,其他成分仅仅占了17份,难怪它又麻又辣!

  2.结合身边的实例分析,进一步理解百分数的意义

  出示某市学生近视率的信息。

  (1)说一说其中每个百分数表示的意义。(2)体会百分数的优点,观察比较这组数据,你能发现什么?

  (3)情感目标教育渗透。看到这组数据,你有什么感想?想对同学们说什么?

  3.抽象概括出百分数的意义

  刚才我们了解了每一个具体的百分数的含义,那么现在你能用自己的话说一说百分数表示什么意义吗?(先独立思考,再小组交流)

  三、拓展应用,促进发展

  1.招聘“学校新闻小记者”的活动

  教师:寻找百分数信息,说百分数的意义,谈自己的感想。

  (1)在某市学校附近的小摊中,合格的食品仅是30%。

  (2)按照规划,到20xx年我国城市污水处理率不低于60%,重点城市不低于70%。

  (3)我国的耕地面积占世界总耕地面积的7%,我国人口占世界总人口的22%。

  2.汇报自己手中收集的百分数

  四人小组汇报自己收集的每个百分数的意义。

  3.写百分数

  (1)百分数该怎么写呢?(学生观察,教师示范)

  教师:先写什么?再写什么?写时要注意什么?

  (2)书写比赛。(让学生在20秒的时间内写百分数,看谁写得又快又好。)

  如果老师要求完成的任务是写10个,能用一个百分数表示自己完成的情况吗?

  教师:如果写11个,能用百分数表示吗?

  4.完成练习一的第1题

  5.百分数与分数比较

  (1)百分数跟我们学过的哪种数比较相似?有什么联系与区别?(小组交流)

  (2)判断。下面哪个分数可以用百分数的形式表示。

  2510080100kG……

  小结:百分数是一种特殊的分数,表示两个数之间的倍数关系,它的后面不能写单位名称;而分数既可以表示一个具体的数量,又可以表示两个数之间的倍数关系;如果分数表示具体的数量时,它的后面就可以写单位;如果表示倍数关系时,它的后面就不写单位。

  6.百分数联想风暴

  观察格子图,你能快速地联想到哪些百分数?(涂50个黑色格子,6个红色格子,44个白色格子)

  教师:今天这节课你有什么收获?你能用百分数总结这节课的收获吗?

比的意义教案12

  设计说明

  本节课是第一单元的起始课,是在学生学习了分数的基础上进行教学的,所以要特别重视学生在新知的学习中运用已有知识经验,使学生经历独立思考、自主探究的过程,并将已有知识经验迁移到新知的学习中。因此,本节课在教学设计上有以下特点:

  1.注重学生已有的知识经验。

  在本节课的教学过程中,教师利用元、角、分和米、分米、厘米的现实情境,启发学生从多个角度通过解释元、米是什么意思,认识到与,与是同一个数的不同形式,为探究小数的意义奠定了基础。

  2.给学生创设自主探究的空间。

  本节课创设了让学生借助米尺探究小数意义的活动,并让学生通过独立思考、合作交流,认识一位小数表示十分之几,两位小数表示百分之几充分调动学生学习的积极性。课堂上,学生通过观察、思考,认识一位小数表示十分之几;通过猜测、验证,认识两位小数表示百分之几;通过思考、交流,发现三位小数表示千分之几直至总结概括出小数的意义,学生在自主探究与合作中经历了知识的形成过程,同时在这个过程中锻炼和提高了各方面的能力。

  课前准备

  教师准备:PPT课件,正方形纸

  学生准备:正方形纸,水彩笔直尺

  注:本书“上课解决方案”中的“备教学目标”“备重点难点”见前面的“备课解决方案”。

  教学过程

  ⊙创设情境,导入新课

  1.出示一些商品价格标签,让学生说说商品的单价。(课件出示商品的价格标签)

  2.谈话引入。

  同学们都能正确地读出这些商品的标价,这是因为我们在三年级时学习了“元、角、分和小数”,一些商品的标价用元作单位时,要用小数表示。那除了商品的标价可以用小数表示外,你们还在哪些地方见过小数?

  预设生1:测量身高时,我的身高是米。

  生2:跳远比赛时,我的成绩是米。

  3.过渡:生活中有很多小数,教材中也举了一些例子,请同学们翻到教材2页,自己读一读。这些小数到底表示什么呢?我们一起来学习一下。

  设计意图:从学生熟悉的商品的价格引入小数,既激发了学生的.学习兴趣,又调动了学生学习的积极性,同时也为学习新知做好铺垫。

  ⊙动手操作,自主探究

  活动:探究小数的意义。

  1.做一做,说一说。

  (1)课件出示教材附页1中的图片,根据所给的图片做一做,说一说,元和米分别是什么意思?

  (2)全班交流:元是1元1角1分,1角是1元的,也可以写成元,1分是1元的,也可以写成元。

  1.11米是1米1分米1厘米,1分米是1米的,也可以写成米,1厘米是1米的,也可以写成米。

  2.画一画,涂一涂。

  (1)(出示一张正方形纸)引导学生操作:用一张正方形纸表示“1”,把这张正方形纸平均分成10份,将其中的1份涂色,并想一想涂色部分用分数怎样表示。

  (学生展示操作成果并汇报)

  师:我们把这张正方形纸看成“1”,平均分成10份,涂色部分用分数表示是,用小数表示是。表示把“1”平均分成10份,取其中的1份。比较一下“1”和“”的大小,“1”里面有几个“”?

  预设生:1比大,1里面有10个。

  (2)引导学生讨论:如果把其中的3份涂上颜色,用分数怎样表示?小数呢?

  ①学生先独立思考,然后独立完成。

  ②汇报交流。

比的意义教案13

  教学目标

  1.理解比的意义,掌握比的读法和写法,认识比的各部分名称.

  2.掌握求比值的方法,并能正确求出比的比值.

  3.培养学生抽象、概括能力.

  教学重点

  理解比的意义,掌握求比值的方法.

  教学难点

  理解比的意义,建立比的概念.

  教学过程()

  一、谈话引入

  在日常生活和和工农业生产中,常常需要对两个数量进行比较.比较的方法我们已经学过两种(比较两个数量之间相差关系用减法;比较两个数量之间的倍数关系用除法),今天我们学习一种新的比较方法,叫做比.(板书:比的意义)

  二、讲授新课

  例1.一面红旗,长3分米,宽2分米.长是宽的几倍?宽是长的几分之几?

  板书:3÷2= = 2÷3=

  1.3÷2表示什么?长是宽的几倍也可以说成谁和谁在比?是几比几?长和宽的比是3比2表示什么?

  2.2÷3表示什么?宽是长的几分之几也可以说成是谁和谁在比?是几比几?宽和长的比是2比3表示什么?

  3.小结

  (1)长是宽的几倍,有时也可以说成长和宽的比是几比几;宽是长的几分之几,有时也可以说成宽和长的比是几比几.

  (2)3分米和2分米都表示长度,它们是同一种量,我们就说这两个量的比是同类量的比.

  4.练习

  有5个红球和10个白球,求红球是白球的几分之几,怎么算?也可以怎么说?求白球是红球的几倍,怎么算?也可以怎么说?

  例2.一辆汽车,2小时行驶100千米,每小时行驶多少千米?

  1.求的是什么?谁除以谁?也就是谁和谁进行比较?

  2.汽车行驶路程和时间的比是100比2表示什么?

  3.思考:单价可以说成是谁和谁的比?

  工作效率可以说成是谁和谁的比?

  商可以说成是谁和谁的比?

  4.小结

  通过刚才的例子可以看出,用表示两种数量的数相除,可以得到新的量,这个新的量也可以用两个数的比来表示,我们就说这两个量的比是不同类量的比.

  (三)归纳总结

  引导学生观察板书 ,什么叫比?

  教师板书:两个数相除又叫做两个数的比.

  (四)练习

  1.学校里有10棵杨树,7棵柳树,杨树和柳树棵数的比是( ),柳树和杨树棵树的比是( )

  2.小华用2分钟口算了50道题,小华口算的题量和所用时间的比是( ).

  3.学校食堂买20千克青菜,用了10元钱;买了30千克萝卜,用了42元钱;买萝卜和青菜数量的比是( ),青菜和萝卜单价的比是( ).

  (五)比的各部分名称和求比值的方法(演示课件“比的意义”)

  1.两个数相除又叫做两个数的比,说法变了,书写格式和名称也就变了.

  例如: 3比2 记作:3∶2

  2比3 记作:2∶3

  100比2 记作:100∶2

  2.“∶”叫做比号,读作比(比号在两个数中间,注意与语文中的冒号区别),比号前面的数叫做比的前项,比号后面的数叫做比的后项.比的前项除以后项所得的商,叫做比值.

  板书:

  3.提问:比的前项和后项能随便交换位置吗?为什么 ?

  4.练习:求比值

  教师说明:求比值不写单位名称.

  (六)比、除法、分数之间的'关系(演示课件“比、除法、分数的异同”)

  1.教师提问

  (1)两个数相除又叫做两个数的比,比和除法到底有什么关系?

  (2)为什么要用“相当于”这个词?能不能用“是”?

  (3)在除法中,除数不能是零,那比的后项呢?

  2.比的分数形式

  (1)教师:比还有一种表示方法,就是分数形式.例如:

  板书:3∶2可以写成 ,仍读作“3比2“

  2∶3可以写成 ,仍读作“2比3”

  (2)思考:比和分数有什么关系?

  三、巩固练习

  (一)填空

  两辆汽车,甲车4小时行驶200千米,乙车3小时行驶180千米.

  1.甲车的速度可以说成( )和( )的比,是( )∶( ),比值是( ).

  2.乙车的速度可以说成( )和( )的比,是( )∶( ),比值是( ).

  3.甲、乙两车所行路程的比是( ).

  4.甲、乙两车所用时间的比是( ).

  5.甲、乙两车所行速度的比是( ).

  (二)选择

  1.大卡车载重量是5吨,小卡车载重量是2吨,大小卡车的载重量比是 .( )

  2.如果a是b的3倍,那么a和b的比是1∶3.( )

  3.小强的身高是1米,爸爸的身高是173厘米,小强和爸爸身高的比是1∶173.( )

  (三)思考题

  1.甲乙两队比赛结果是3∶2,是指这节课所学的比吗?

  2.根据男、女生人数的比是4∶5,你可以知道男女生的具体人数吗?

  3.一台机器上有大小两个齿轮,大齿轮有100个齿,每分钟25转;小齿轮有40个齿,每分钟120转.根据所给条件,你可以写出哪些比?

  四、课堂小结

  今天这节课你学到了哪些知识?比和除法、分数之间的联系是什么?区别呢?

  五、课后作业

  (一)应用题,

  1.小红3小时走了11千米.写出她所走的路程和时间的比.

  2.航空模型小组8个人共做了27个航空模型.写出这个小组做的模型总数和人数的比.

  3.商店一共运来8.2吨水果,其中有3.5吨是橘子.写出运来橘子的重量和运来水果的总重量的比.

  (二)求比值.

  4∶5 0.8∶0.4

比的意义教案14

  教学过程:

  活动一

  1、情境引入:出示一面国旗联合国旗的图案,图案长是15厘米,宽是10厘米,根据这两个条件可以提出什么问题?(可提的问题很多,教师有选择地板书。①长是宽的几倍?②宽是长的几分之几?)

  2、揭示课题:长是宽的几倍或者宽是长的几分之几是我们用以前学过的除法对这面旗的长和宽进行比较的,今天我们再学习一种对两个数量进行比较的新的方法。这就是比(板书课题)

  活动二:

  1、教学比的意义。

  有时我们也把这两个数量之间的关系说成:长和宽的比是15比10,宽与长的比是10比15。

  2、进一步理解比的意义。

  神舟五号进入运行轨道后,在距地350千米的高空做圆周运动,平均90分钟绕地球一周,大约运行42252千米。

  (1)你能提出什么问题?

  (2)你能用比表示路程和时间的关系吗?

  3、小组讨论,你是怎么理解比的意义?

  得出:两个数相除又叫两个数的比。

  4、比的写法和各部分名称及求比值的方法

  (1)介绍比号、比表示的方法、比的各部分名称,

  ①中间的:叫做比号,读的时候直接读比。

  ②比的各部分名称是什么呢?请大家看书p44的内容。

  ③介绍比各部分的名称,求比值方法,并板书。

  5、比、除法、分数之间的关系

  (1)比、除法、分数有什么联系和区别?

  联系:a:b=ab=

  区别:比表示两个数关系的式子,分数是一个数,除法是一种运算。

  (2)那比的后项能不能为零呢?既然比的后项不能是0,而足球赛中常出现的2:0的意义是什么?它是一个比吗?

  足球赛中记录的2:0的意义只表示某一队与另一队比赛各得的进球分数,不需表示两队所得分数的倍比关系,这与今天学习数学中的'比的意义不同,它虽然借用了比的写法,但它不是一个比。

  (3)比的另一种表示方法,就是写成分数形式。

  (4)质疑:对本节课的内容你又不清楚的地方吗?

  活动三

  1.填空:

  (1)完成一项工程,甲8天完成,乙12天完成,甲乙两人工作时间的比是():()。

  (2)如果a:b=c,那么a是比的(),b是比的(),c是比的()。

  (3)求比值:72:24,0.8:3.2,1.5小时:20分钟。

  2、完成44页做一做内容。

  3、根据下面的信息,你能想到那些问题?

  (1)六年一班有男生24人,女生26人。

  (2)张师傅5天加工300个零件。

  (3)2枝钢笔11元。

比的意义教案15

  [教材分析]

  这节课是学生在三年级学习了“小数的初步认识”的基础上的继续学习和深入理解。学生在日常生活中感受到小数的大量应用,同时在三年级的学习中,对于小数的读法,小数在价格上表达的具体含义都已有所了解。因此,通过本节课的学习,要使学生对于小数产生的实际价值有所认识,抓住数与数之间的紧密联系,了解小数的来源,掌握小数的意义,能正确地把分母是10、100、1000……的分数改写成小数的形式。同时,通过与整数、分数知识的紧密结合,使学生体会到小数的计数单位和进率,从而对于数有一个比较全面的认识,为后续学习做好准备。

  [教学内容]

  义务教育课程标准实验教科书《数学》人教版四年级下册50页、51页例1。

  [教学目标]

  1.使学生经历实际测量等活动,了解小数的产生过程。

  2.通过实际情境感悟分数可以用小数来表示,理解小数的意义,认识小数的计数单位和进率。

  3.在探讨中培养学生学习数学的兴趣和分析能力、表达能力及逻辑推理能力,并结合小数产生的历史,进行爱国注意教育。

  [教学重点、难点]

  理解小数的意义

  [课前准备]

  课件,课前调查的数据资料

  [教学过程]

  (一)创设情境

  1.感受生活中整数和分数的运用。

  (1)课件出示。

  一张桌子、六把椅子、一个圆形花坛、白色占整个圆形的八分之一

  (2)师:看来在我们的生活中,整数的应用是非常普遍和广泛的`。当我们

  得不到正好的整数结果时,可以用分数来表示。

  2.感受生活中小数的运用,质疑反思,体会小数的产生。

  (1)学生介绍课前搜集到的数据信息

  (2)师:小数在生活中的应用也非常广泛,看到这些,你们有什么疑问吗?

  (3)抓住现实信息引发思考

  提问:生活中,我们在哪些时候会常常用到小数?

  让学生自己动手测量桌子的长度或数学书封面的长和宽

  3.揭示课题:

  看来小数的存在也有它一定的价值,这节课我们就来研究小数的产生及意义。

  (设计意图:在生活中,整数的应用非常广泛,但我们在测量时,往往又得不到整数的结果,可以应用分数来解决。生活中小数的广泛存在又给学生造成认知上的冲突,从而引发学生的疑问,引起探讨。)

  (二)研究改写方法,探究小数的意义

  1.1米

  初步探究一位小数的改写。

  (1)出示线段图。

  (2)提问:看到上面的图,谁能用分数或小数表示出其中的一份?

  ①(学生预设:把1米平均分成10份,每份是米。)

  ②也可以用小数来表示,每一份是0.1米。

  ③其中的两份用小数可以怎样表示,你怎么想?

  (学生预设:把1米平均分成10份,每两份是米,小数是0.2米)

  ④图中还有哪部分表示0.1?(请学生指图)

  (3)理解0.2并感知0.1与0.2有什么关系

  ①哪部分表示0.2?想一想对0.2你还能说些什么?

  ②0.2与0.1有什么关系?

  (0.1+0.1=0.2,0.2是两个0.1…)

  ③对于其中的三份、四份、五份…你有什么想法?选择其中的一个和同学说一说。

  ④对比:米与0.1米,米与0.2米…有怎样的关系?

  ⑤观察米=0.1米,米=0.2米,…你发现了什么?

  ⑥提问:一位小数表示什么?

  2.在迁移辨析中理解两位小数的改写。

  (1)出示教材中的图:如果把1米平均分成100份,其中的1份用分数怎样表示?用小数怎样表示?

  (2)提出要求:100份中的1份大家会改写成小数形式了,那么把其中的几份改写成小数的形式呢?小组合作,涂上阴影,说出分数和小数,并说说小数表示的意义。

  (根据学生的回答板书例如:米=0.01米,米=0.03米,米=0.12米)

  师:同学们你们观察上面这些算式,你们有什么发现?

  (学情预设:分母是100的分数可以写成两位小数。也可以说两位小数表示百分之几)

  (3)练习:说出小数的意义

  课件呈现:0.6、0.09、0.12、0.86、0.1

  (设计意图:让学生根据一位小数表示十分之几,猜想出两位小数和什么样的分数有关?有意识地促进“迁移”,让学生体验成功,培养学生的学习兴趣和信心。)

  3.深入、灵活理解三位小数的改写

  (1)师:如果把1米平均分成1000份,你会把其中的一份或几份改写成小数吗?

  (2)根据前面小数的意义,分母是1000的分数可以改写成几位小数?

  (3)课件出示三组数据。

  第一组:1/100023/100026/1000

  第二组:3/100043/100089/1000

  第三组:9/100065/10008/1000

  (4)提出要求:请小组合作自选一组分数,一边改写一边讨论。

  4.:我们知道了一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。把分数改写成小数的形式,使人们应用起来更加方便、简单。

  5.拓展:请同学们想一想四位小数表示多少?五位小数呢?

  (设计意图:由借助直观认识一位小数表示十分之几,两位小数表示百分之几,三位小数表示…到通过联想认识四位小数,五位小数表示的意义,再到抽象概括小数的意义,学生经历了知识的形成过程,让学生在获取数学知识的同时,获得学习的方法,发展提高能力。)

  (四)认识小数的计数单位和进率。

  1.回顾整数的计数单位

  师:回忆一下,我们都已经学习了哪些计数单位?

  (个、十、百、千、万、十万、百万、千万、亿)

  2.说说它们之间有什么关系?

  3.1个一是10个(),是100个(),是1000个(),是10000个()…

  4.提问:所以小数的计数单位应该是什么?

  5.教师:这十分之一,百分之一,千分之一,万分之一…就是我们今天研究的分母是10的分数写成小数,小数部分是多少表示的就是多少个十分之一,分母是100的分数写成小数,小数部分是多少表示的就是多少个百分之一…,所以,十分之一、百分之一、千分之一…就是小数的计数单位,它与整数计数单位一起形成了数学的一个完整的知识体系。

  6.依照这一体系,你能说说小数的计数单位间的进率吗?

  (五)巩固练习

  1.填数(数学书第51页“做一做”)

  2.比一比(数学书第55页练习九第1题)

  3.对口令游戏:一方说分母是10、100、1000…的分数,另一方说出对应的小数;一方说小数,另一方说出对应的分数。

  (六)畅谈收获

  通过这节课的学习,你有哪些收获?还想了解什么?

  (设计意图:学生自己所学内容,培养了学生的概括能力和语言表达能力。)

  [板书设计]

  小数的产生和意义

  1分米=1/10米=0.1米1厘米=1/100米=0.01米1毫米=1/1000米=0.001米

  2分米=2/10米=0.2米3厘米=3/100米=0.03米127毫米=127/1000米=0.127米

  3分米=3/10米=0.3米12厘米=12/100米0.12米74毫米=74/1000米=0.074米

  一位小数表示十分之几二位小数表示百分之几三位小数表示千分之几

  小数的计数单位:十分之几,百分之几,千分之几…,分别0.1、0.01、0.001……

  每相邻两个计数单位之间的进率为10。

【比的意义教案】相关文章:

比的意义教案02-14

《比的意义》的教案12-21

小数的意义教案模板 小数的意义备课教案08-24

《比例的意义》教学实录_《比例的意义》优秀教案比例的意义优质教案12-06

乘法的意义教案03-17

小数的意义教案12-05

分数的意义教案10-17

方程的意义教案12-21

分数的意义教案09-08

《比例的意义》教案09-30