《方程的意义》教学设计

时间:2024-04-17 13:13:35 意义 我要投稿
  • 相关推荐

《方程的意义》教学设计

  作为一位不辞辛劳的人民教师,就有可能用到教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。如何把教学设计做到重点突出呢?下面是小编为大家收集的《方程的意义》教学设计,希望能够帮助到大家。

《方程的意义》教学设计

《方程的意义》教学设计1

  教学目标:

  1、经历从生活情境到方程模型的建构过程。

  2、理解方程概念,感受方程思想。

  3、通过观察、描述、分类、抽象、概括、应用的学习活动过程达到学习水平的提高。

  教学过程:

  一、情境创设,初建相等关系模型。

  1、师出示天平图,认识吗?

  师:天平可以称出物体的质量是多少。

  2、(媒体出示三幅图)下面的三幅图中,哪一幅能称出两只苹果的质量?

  (左右倾斜各一幅,平衡的一幅。图略)

  学生会选择图3,老师顺着学生的思路出示图3天平平衡图

  图3为什么能称出两只苹果的质量?

  你能用一个式子表示出天平两边物体的质量关系么?

  100+100=200

  图1和图2为什么不能称出两只苹果的质量呢?

  你也能用一个式子表示出天平两边物体的质量关系吗?

  100+100>100、100+100<500

  3、三个式子都是表示物体之间质量的关系,数学上把这样表示两边相等的关系的式子叫做等式。

  你的小脑袋里有等式吗?说一个试试。

  除了用加法表示的还有不一样的吗?(师板书学生说的其它的一些式子)

  师:没想到,同学们对等式是这么的熟悉。

  二、借助基础,拓展等式外延。

  1、下面的几幅图中,天平两边物体的质量关系,哪些可以用等式表示?能表示的试着把它写下来,不能的思考可以用一个什么样的式子表示呢?

  (书上四幅图略)

  选一个等式说一说它表示什么意思?

  天平两边物体的质量关系,一种是用语言表达,一种是用数学式子表示,你愿意选择哪一种?说说你的理由。(突出简洁、清楚)

  2、师:的确,这样的一些数学式子能清楚、简洁地表示出天平左、右两边物体质量之间的关系。

  3、比较:现在写的这些等式与刚才我们说的那些等式有什么不同吗?

  突出含有未知数的等式

  这些含有未知数的等式你见过吗?

  生:没见过;也可能见过,如:用字母表示数中、求未知数x等。

  三、进一步拓宽对等式的理解。

  1、顺着学生的思路组织教学:李老师就为同学们准备了一些生活中同学们常见的一些现象,仔细看一看,这些生活中的现象之间的关系是不是也能用含有未知数的等式来表示呢?

  (师出示四幅生活情境图)

  (1)铅笔盒与笔记本共20元。

  (2)借出的书与剩下的书共150本。

  (3)3瓶相同的.色拉油,每瓶x元,共8元。

  三、明确特征,归纳概念。

  其实呀,数学上给这样一些含有未知数的等式起了个很特别的名字叫方程,这就是我们今天要研究的方程的意义。(板书)

  揭示数学上我们把含有未知数的等式叫做方程。

  四、深刻领悟,挖掘内涵。

  1、黑板上的其它式子为什么不是方程?

  2、师:现在同学们知道什么是方程了吗?下面哪些是等式,哪些是方程?(是等式的男生举手,是方程的女生举手)

  36-7=29、60+x>70、8+x

  6+x=14、7+15=22、5y=40

  活动结束了,但思考却刚刚开始,就等式和方程的关系你现在有什么话想说的吗?

  (在活动中理解等式与方程的关系)

  五、实践应用,拓展外延。

  1、你能看图列出方程吗?

  图1:天平(2x=500)

  图2:四个物体16.8元

  图3:两杯水共有450毫升

  2、从文字表述中找出方程

  (1)小明从家到学校有500米,他每分钟走50米,走了x分钟。

  (2)张师傅每天做x个零件,用了6天做了780个零件。

  (3)王涛放学回家后,去商店买了3本精装笔记本,每本y元。他付给售货员阿姨20元,找回2元。

  3、李老师头脑中有一幅图,我把它用方程表示了出来,猜一猜,老师头脑中可能会是一幅什么样的图?

  出示:5x=200(可提示:如天平图等)

  个别交流的基础上同桌互说。

  六、全课总结:学习到现在你有哪些收获?

  从不能用方程表示到能用方程表示图中的数量关系的一种演变。

  图1:买4个小熊猫玩具,每个x元,120元不够

  图2:买3个,每个x元,120元还不够

  图3:买2个,每个x元,120元正好

  延伸:使两只水杯一样多你能有哪些办法?用方程表示,你能吗?

《方程的意义》教学设计2

  教学目标

  1、知识目标:在自主探究的过程中,理解与掌握方程的意义,弄清方程和等式两个概念的关系。

  2、能力目标:培养学生认真观察、思考分析问题的能力。渗透数学来源于实际生活的辩证唯物主义思想。

  3、情感目标:通过自主探究,合作交流等教学活动,激发学生兴趣,培养合作意识。

  教学重点

  理解和掌握方程的意义。

  教学难点

  弄清方程和等式的异同

  教具准备

  多媒体课件、作业纸

  教学设计

  一、情景导入

  师生谈话:同学们,你们玩过跷跷板吗?

  (课件出示:在美丽的大森林中,山羊、小猴、小狗、小兔在做游戏)

  让学生猜测如果让山羊和小猴玩跷跷板,会出现什么结果。

  (课件演示验证学生的回答,出现跷跷板不平衡的画面)

  提问:怎样才能让小动物开心地玩起来呢?

  学生:让小狗、小兔加入到小猴那边。

  (课件演示:跷跷板逐渐平衡。并能一上一下动起来。)

  教师小结:当两边重量差不多时,跷跷板基本保持平衡,就能很好地玩游戏了。

  [评析]:动物是学生们喜欢的形象,以故事情境导入,创设生动有趣的情景,借助多媒体课件演示的优势,使学生初步感受平衡与不平衡的现象。从而紧紧抓住学生的“心”。

  二、探究新知

  师:在我们的数学学习中,还有一种更为科学的平衡工具,猜猜是什么?

  1、直观演示,激发兴趣

  课件出示一架天平,教师向学生介绍它的工作原理。

  让学生仔细观察,现在天平处于什么状态。

  提问:能用一个式子表示这种平衡状态吗?

  根据学生的回答,教师板书:50+50=100

  2、继续实验,自主发现

  1)分小组实验,让学生自己动手做一做(每个小组发一些有重量的砝码和学生自己手中的书本等)

  要求:三组设计平衡状态,三组设计不平衡状态。并据此列式。

  2)学生实验,教师巡回作指导。

  3)学生交流汇报,教师板书:

  平衡状态的:

  50+10=60

  50=20+书……

  不平衡状态的:

  50+30>两本书

  50;三本书……

  4)学生动手把不平衡状态的天平调平衡并列式

  50+30=四本书

  50+10=三本书

  5)师生一起把书用字母代替:

  50+10=60,50=20+X,50+30>2X,50;3X

  50+30=4X

  50+10=3X

  3、整理分类,认识方程。

  1)学生把上没面的式子进行分类

  2)让学生明确:像这些含有等号的式子都是等式。(板书:等式,标出大集合圈)

  观察右边三个等式与左边一个等式有什么区别?

  学生很快明确:右边的等式里都含有未知数。(在等式前面板书:含有未知数)

  教师总结:我们把右边这三个含有未知数的等式称为方程。

  3)学生齐读方程的意义,同桌互相说出一个方程。

  [评析]:这部分教学设计为学生提供了充分的从事数学活动的机会,让学生动手去操作,去合作。让学生通过观察、思考、尝试分类、交流,积极主动的参与到数学活动中来,并初步渗透了数学中的集合思想。

  三、巩固拓展

  课件出示两个小动物争吵的`画面

  小狗:我知道了,所有的方程一定是等式。

  小兔:不对不对,应该说所有的等式一定都是方程。

  判断谁说的对,并叙述理由。

  四、总结

  学生阅读数学小知识“你知道吗?”

  五、作业

  练习十一的1题

  教学反思

  1、利用兴趣调动学生的积极性,让学生主动参与。

  生活是兴趣的源泉,体验是主动参与的动力。通过直观演示、学生实验,调动了学生的积极性和参与的热情,每一个学生都积极的加入了学习的热流中来。教学当中始终注意激发学生的学习兴趣,增强学生学习的信心。给学生提供了充分的归纳、类比、猜测、交流、反思的时间和空间,使学生的思维能力得到了进一步的提高。

  2、关注情景教学

  在本节课中,将枯燥的方程概念融于浅显生动的情景中。导入利用小动物创设了生动有趣的教学背景,整个教学过程中,学生始终对天平的所有情景保持着浓厚的兴趣。通过天平称重的实验,让学生尝试用数学知识来描述实验现象,使学生获得了等式和不等式的知识。

《方程的意义》教学设计3

  教学目标:

  初步理解方程的意义,会判断一个式子是否是方程。

  会按要求用方程表示出数量关系。

  培养学生观察、比较、分析概括的能力。

  教学重难点:

  会用方程的意义去判断一个式子是否是方程。

  教具准备:

  天平、空水杯、水(可根据实际变换为其它实物)

  教学过程:

  导入新课

  今天我们上课要用到一种重要的称量工具,它是什么呢?对,它是天平。同学们对天平有哪些了解呢?天平由天平称与砝码组成,当放在两端托盘的物体的质量相等时,天平就会平衡,根据这个原理,从而称出物体的质量。

  新知学习

  实物演示,引出方程。

  操作天平:第一步,称出一只空杯子重100克,板书:1只空杯子=100克;

  第二步,往往空杯子里倒入约150毫升水(可在水中滴几滴红墨水),问:发现了什么?天平出现了倾斜,因为杯子和水的质量加起来比100克重,现在还需要增加砝码的质量。

  第三步,增加100克砝码,发现了什么?杯子和水比200克重。现在,水有多重,知道吗?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?100+x>200。

  第四步,再增加100克砝码,天平往砝码这边倾斜。问:哪边重些?怎样用式子表示?让学生得出:100+x;300。

  第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?让学生得出:100+x=250。

  像这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?对,叫方程。请大家试着写出一个方程。

  写方程,加深对方程的认识。

  学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。

  看书第54页,看书上列出的'一些方程,让学生读一读。然后小结:一个式子要是方程需要具备哪些条件?两个条件,一要是等式,二要含有求知数(即字母),这也是判断一个式子是不是方程的依据。

  反馈练习。

  完成做一做,在是方程的式子后面打上“√”。对于不是方程的几个式子要说明其理由。

  小结。

  这节课学习了什么?怎么判断一个式子是不是方程?

  提问:方程是不是等式?等式一定是方程吗?

  看“课外阅读”,了解有关方程产生的数学史。

  练习

  完成练习十一第2题,先让学生说出图意,再根据图意再列出相应的方程。

  独立完成第3题,评讲时,介绍什么叫数量关系要,然后让学生先说出各幅图中的数量关系,再说出相应的方程,同一幅图由于数量关系有不同的形式,因此方程形式也可能不同。

  作业

  练习十一第1题。

《方程的意义》教学设计4

  教学内容:

  教科书第1~2页,例1、例2、试一试、练一练,练习一第1~3题。

  教学目标:

  1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。

  2、通过观察比较,使学生认识到含有未知数的等式是方程,感受等式与方程的联系与区别,体会方程是特殊的等式。

  教学重点:

  理解等式的性质,理解方程的意义。

  教学难点:

  利用等式性质和方程的意义列出方程。

  教学准备:

  多媒体课件

  教学过程:

  一、情景引入

  1、出示天平。

  知道这是什么吗?你知道它是按照什么原理制造的吗?

  说说你的想法。

  如果天平左边的物体重50克,右边的放多少克才能保持天平的平衡的呢?

  二、教学新课

  1、教学例1。

  (1)出示例1图。

  你会用等式表示天平两边物体的.质量关系吗?把它写出来。

  50+50=100(板书)

  说说你是怎样想的?

  (2)指出等式的左边,等式的右边等概念。

  等式有什么特征?(等式的左边和右边结果相等;等式用等号连接)

  能说说什么样的式子叫做等式吗?(左右两边相等的式子叫做等式)

  2、教学例2。

  (1)出示例2图。

  天平往哪一边下垂说明什么?(哪一边物体的质量多)

  你能用式子表示天平两边物体的质量关系吗?

  学生独立完成填写,集体汇报。

  板书:x+50>100x+50=150

  X+50;200x+x=200

  如果让你把这四个式子分类,应分为几类?为什么?

  指出:左右两边相等的式子就叫做等式,而这些等式与前面所看到的等式又有什么不同?(等式中含有未知数)

  知道像x+50=100,x+x=100这样的等式叫什么吗?(方程)

  说说什么是方程?你觉得这句话里哪两个词比较重要?(含有未知数、等式)

  (2)讨论:等式与方程有什么关系?

  小组讨论。

  指出:方程一定是等式,但等式不一定是方程。

  方程是特殊的等式。他们的关系可以用集合圈表示。

  3、教学“试一试”。

  独立完成,完成后汇报方法。

  让学生说一说,每题中的方程哪个更简洁一些?

  指出:像500÷2=x,20-12=x虽然也是方程,但在列方程时应尽量避免这样x单独在等号左边或右边的方法。

  4、完成“练一练。

  (1)完成第1题。

  独立完成判断后说说想法。

  (2)完成第2题。

  (3)完成第3题。

  交流所列方程,说说你为什么这样列?你是怎么想的?

  三、巩固练习

  1、完成练习一第1题。

  能说说每个线段表示的意思吗?方程怎样列呢?

  小组中交流列式。

  2、完成练习一第2题。

  理解题意,说说数量关系是怎样的?

  列出方程并交流。

  3、完成练习一第3题。

  四、课堂总结

  通过学习,你有哪些收获?

  板书设计:

  方程

  等式50+50=100x+50>100x+50=150

《方程的意义》教学设计5

  教材分析

  本节是学生首次学习用列方程的方法解决问题,所以字母表示数是学习本章节元知识的基础。按照教材的编写意图,要利用天平让学生亲自参与操作和实验,借助天平平衡的道理建立等式、方程的概念,以加深理解。因此本信息窗安排了三个内容,第一个首先利用天平平衡原理理解等式的意义。第二和第三个红点部分是学习方程的意义。

  1、这节课要求学生进一步认识并掌握用字母表示数,初步了解方程的.意义,为以后学习运用准备。

  2、本节课是在学生已经初步认识了字母表示数的基础上进行教学的。

  3、学习本节课是今后继续学习代数知识的基础,同时对发展学生的多向思维具有举足轻重的作用。

  学情分析

  本节教学方程的意义,是学生第一次学习有关方程的知识。根据学生的年龄心理特点及生活经验,鼓励学生多观察、多讨论、多探究、多协作、多操作,采用了观察法、讨论法、探索协作学习法和操作法,使学生成为学习的主人。经过探索,掌握方程的特点和意义。

  教学目标

  1。能利用天平,通过动手操作理解等式的意义。

  2。结合具体实例和情景,初步理解方程的意义,会用方程表

  达简单的等量关系。

  3。培养保护动物的意识,感受数学与生活的密切联系,提高

  学习数学的兴趣。

  教学重点和难点

  重点:方程意义的理解难点:建立等式、方程的概念

  教学过程

《方程的意义》教学设计6

  教学内容:人教版小学数学教材五年级上册第62~63页及练习十四第1~3题。

  教学目标:

  1.借助天平及式子的分类操作,使学生初步了解方程的意义;能从形式上判别一个式子是否是方程;理清方程与等式的关系。

  2.能根据简单的线段图、情境图列出方程,并能在教师引导下找到等量关系,经历利用等量关系进行方程模型建构的过程。

  3.在对式子的分类、整理的教学活动中培养学生观察、描述、分类、抽象、概括及应用等能力。

  教学重点:抓住“等式”“含有未知数”两个关键词初步建立方程的概念。

  教学难点:方程与等式的关系;方程中等量关系的建立。

  教学准备:课件、写式子的卡片、磁钉。

  教学过程:

  一、认识天平,谈话铺垫

  教师(出示天平图):这是什么?同学们知道天平的用途吗?

  一般在称东西时,我们在天平的左边放上要称的东西,右边放上砝码。如果天平左右两边达到平衡,左边东西的质量就等于右边砝码的质量。这种平衡的状态如果用一个数学符号来表达,就是──等号。

  二、探究新知

  (一)天平演示,初步感知等与不等。

  1.出示天平图1。

  现在这种状态,你能用一个式子来表示吗?(板书:50+50=100)

  2.(出示天平图2和图3)天平向左倾斜表示什么?如果水的质量用g表示,那么杯子和水共重多少呢?(100+)

  3.如果老师在天平右边再加一个100g的砝码,可能会出现什么样的情况?用式子来表示。

  这三个式子体现在天平上分别是什么样的情况?咱们用手势来表示一下。

  4.来看看究竟是哪种情况?(先出示天平图4,后出示天平图5)用式子来表示一下。

  5.(出示教材第63页最上面的图)这样的图你能用一个式子表示它们的关系吗?

  (板书:)

  【设计意图】通过直观演示,感受等与不等。同时通过反馈和追问,帮助学生感受等式的意义。为下一环节中式子的分类及理解等式和不等式做好准备。从天平到式,再从式到天平图,在学生的头脑中利用天平建立左右相等的等式模型,为突破建立方程中的等量关系这一难点做好铺垫。

  (二)分类整理,建构概念

  1.观察黑板上出现的式子,尝试根据式子的特点进行分类(先请学生独立思考,再同桌进行交流。)

  2.学生反馈,教师根据反馈在黑板上移动式子。

  预设1:按左右相等和不等分类(补充等式和不等式);

  预设2:按是否含有未知数分类。

  注:教师在按照两种分类方式摆放式子时整理成如下表格所示:

  含有未知数

  不含有未知数

  等式

  不等式

  3.(指表格)像这样,含有未知数的等式称为方程(揭题)。

  4.写方程:根据你的理解写2~3个方程,写完之后给同桌看看其是否为方程(教师在巡视过程中选择一些学生到黑板上写一写。)

  5.说说黑板上同学写的是否为方程,并说说判断理由(主要使学生明确,判断一个式子是不是方程,一看是不是等式,二看有没有未知数。)

  (三)概念辨析,理清等式与方程之间的.关系

  1.“做一做”第1题:请学生说说哪些式子是方程,并说说为什么(可以选择其中几个不是方程的式子,请学生说说怎样改一下就可以将其变成方程。)

  2.这两个式子是否是方程呢?

  反馈分析:

  (1)式1:一定是。为什么?

  (2)式2:一定是等式,可能是方程。

  (3)思考:等式和方程有什么联系呢?

  (4)引导画集合图,并引导得出:方程一定是等式,等式不一定是方程。

  【设计意图】方程与等式的关系是本节课的教学难点,教学时,先通过分类整理让学生对等式与方程的关系产生直观、正确的感知;然后通过被蘸了墨水的式子的判别,进一步体会两者的关系;最后,通过韦恩图帮助学生加以明确。不仅突破了教学的难点,而且渗透了初步的集合思想。

  三、实践反思,巩固提高

  1.“做一做”第2题及练习十四第2题:看图列出方程。

  学生练习并进行反馈。

  反馈侧重:使学生明确,可以根据量相等来列出方程。

  2.练习十四第3题:看情境图,思考数量关系再列方程。

  (1)从图上你知道了什么?

  (2)你能根据你知道的数量关系列出方程吗?

  (3)学生自行根据数量关系列出方程,并进行反馈。

  【设计意图】能用方程表达简单情境中的数量关系,也是《义务教育数学课程标准》对本内容的要求,为从数量关系到等量关系的转变做好准备,这对于学生理解和掌握方程的知识至关重要。

  四、总结回顾,介绍历史

  1.你对方程印象最深的是什么?(每个同学说一点,后面的同学要和前面同学不一样。)

  2.教师介绍方程的相关知识。(课件出示教材第63页“你知道吗?”的内容)

  【设计意图】把数学史融入课堂教学当中,一方面可以拓展学生的视野,让学生对方程的产生过程产生比较清晰的认识,知道数学是一个动态成长的科学,体会到数学的每一个理论和发展是一个漫长的过程。让学生在体会数学文化的价值的同时,产生探索的欲望。

《方程的意义》教学设计7

  《方程的意义》一课是人教版小学数学五年级上册第四单元第二节的内容。学生在《方程的意义》之前,在一、二年级的数学学习中均有填算式中的括号,也就是未知数,对于方程的意义有了一定的知识渗透,在本单元中,学生已经学习了用字母表示数,表示数量,表示数量间的关系,都与本节课有着密切的关系。而方程这部分知识,在初等代数中占有重要的地位,对于小学生来说,从具体事物的个数抽象出数是认识上的一个飞跃和,现在由具体的、确定的数过渡到用字母表示抽象的、可变的数,更是认识上的一个飞跃。而且在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式发展到列出方程解,这又是数学思想方法认识上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。方程这部分的学习,能使学生摆脱算术思维方法中的某些局限性,为进一步学习代数知识帮好认识的准备和铺垫。学生从算术方法解决问题到代数方法解决问题的过渡,这节课的概念学习也是后面学习解方程的方法、用方程解决问题的基础,因此,在教学中起着承上启下的作用。

  根据学生的已有知识,以及《方程的意义》的教学内容,我确立了如下的教学目标:

  1、了解方程的意义,弄清方程与等式的联系与区别。

  2、在自主探究的学习过程中,结合教学内容帮助学生建立分类思想,进一步感受数学与生活之间的密切联系。

  3、培养学生的动手操作能力、抽象概括能力,以及在合作学习中的的合作探究能力。

  教学重点是在实践中了解方程的意义,并能根据方程的意义判断出方程,根据数量关系列出正确的方程。

  下面我就将本节课的教学过程及设计意图向大家做以汇报。

  一、谈话导入:

  同学们,你们小时候玩儿过跷跷板吗?(同时出示图片)

  对于这个游戏的`玩儿法与经验,谁能向大家介绍一下?

  其实在生活中,还有一样物品与跷跷板长得很像,它可不是用来游戏的,而是用来测量的。你们认识它吗?(出示天平)

  【跷跷板与天平有许多相似之处,它们都是在中间有一个支点,都靠力臂两端的重量来达到平衡,都是根据杠杆的工作原理。但是对于学生而言,天平比较陌生,而跷跷板与学生的生活密切相关,因此,以此导入,能引起同学们的兴趣,学生回顾玩儿跷跷板的经验,利用已有的生活经验去为认识新事物奠定基础,形成表象】

  二、认识并使用天平

  教师介绍天平:

  这就是一台托盘天平,它是用来测量比较轻的物体的仪器。这两个是天平的托盘,一边放物品,另一边放测量物体的砝码,砝码上都有质量标志。我们通过不断调试砝码,直到中间的指针指向中间为两边平衡,物体的质量就是砝码质量之和。

  教师示范:

  下面我们就一起来进行实际应用天平来测量一下。

  首先我们来应用一下,检查一下砝码的质量是否准确。

  在天平的左边放置20克和30克的砝码各一个,右边我们应该放置一个50克的砝码。看一下,天平中间的指针正好指向刻度盘的中心,说明天平保持平衡了。

  看到天平,你会用等式表示天平两边物体的质量关系吗?

  20+30=50

  这有一个空的水杯,我们先来测量一下它的重量。

  请你估计一下它的重量。我们来试一试。

  通过测量,我们得知,水杯的重量是100克。

  现在我们缓缓向水杯里倒水,你发现天平怎么样了?

  你知道我倒了多少水吗?水的质量是未知的,我们可以用字母x表示,那么现在天平的状态还能用等式来表示了吗?

  100+X>100

  我们继续测量水的质量,同理得出:

  100+X>200

  100+X<300

  100+X=250

  这几个算式都以板书形式呈现。

  【在利用天平写出算式的过程中,我最开始设计的是给每个小组一台天平,让学生实际操作,测量物品的质量,但在实际教学中,发现天平中砝码过小,学生操作起来不方便,而且大部分时间都花费在调节砝码的过程中,而不是讨论方程的意义,与本节课的重难点相背离,因此在修改中,我们还是尊重了教材,以教师的示范为主,我们吸取了学生试验的教训,为了让学生看得真切,我们放弃了实物操作,选择了电脑课件的演示。】

  三、认识方程

  1、根据天平写算式并分类

  刚才我们测量了水的质量,在测量过程中,我们出现了这几种情况,可以用不同的算式表示天平左右两边的位置关系,你明白了吗?下面老师这儿就有几组天平测量的过程,首先请你根据天平写出算式。然后把这些算式按一定的原则分分类,最后在小组内交流一下你们的结果。

  【《20xx年版数学课程标准》中将学生的“双基”增加为“四基”,其中“领悟数学基本思想”是新增加的内容。数学思想是数学知识和方法在更高层次上的抽象与概括,如抽象、分类、归纳、演绎、模型等。在传统教学中,我们比较提倡对概念的演绎,清楚地记得,十年前数学书对方程概念的呈现是这样的:通过天平保持平衡写出等式,然后得到结论。旧的数学课强调的是对概念的理解和应用,而新的课程标准中提倡要在数学学习中,使学生领悟数学的基本思想,积累数学的基本活动经验。因此,新的教材中增加了不等式,增加了不含未知数的算式,通过通过类比、分析、归纳,形成数学模型,在头脑中形成表象,再用严谨的语言来表述。

  在本节课的设计中,我利用天平这一实物图,将数学知识置于情境之中,让学生参与到数学活动中,写出等式及不等式,含有未知数的和不含未知数的,。学生通过分类对比,形成表象,教师引出概念,使学生亲历知识的生成过程。】

  2、交流汇报:

  学生边说,教师边板书:

  等式 不等式

  含有未知数 3x=180 50+2x>180

  100+x=50x3 80<2x

  不含未知数 50x2=100 100+20<100+30

  根据板书,教师讲解:像 3x=180、100+x=50x3这样的含有未知数的等式叫做方程,这就是我们今天所要学习的内容。板书课题。

  反问:什么样的算式叫方程呢?一个算式要成为方程有哪几个条件?

  【通过对比,学生能在脑海中形成一个清晰的方程表象,建立方程的模型,因此在教师讲授概念时,学生很容易地就接受了。教师是学习的组织者、引导者和合作者,但并不意味着教师可以什么都不讲,对于方程这个新知识,如果老师不告诉学生,学生是不能凭借旧知自己总结出来的,因此在概念的呈现上,我选择了讲授法。】

  四、应用概念

  同学们,根据你对方程的理解,你能自己写出几个方程吗?

  判断,他们写得都对吗?

  黑板上刚才我们写得这些算式,有方程吗?

  【通过前面学生的活动归纳出概念,还要对概念进行演绎。练习题中,我先让学生自主写方程,就是考查学生对方程概念的理解,然后再进行判断的基本练习。】

  五、方程产生的文化背景

  早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的资料。一直到三百年前,法国的数学家笛卡儿第一个提出用x、y、z等字母代表未知数,才形成了现在的方程。

  【数学是人类文化的重要组成部分,任何一个数学知识的形成都凝聚着人类智慧与汗水。因此学生在学习前人给我们带来的经验同时,也要了解数学文化。通过这部分知识的讲解,学生对方程的产生有了初步的印象。】

  六、拓展延伸

  在拓展延伸中,我设计了这样几个题目:

  1、 根据线段图写方程

  2、 根据数量关系写方程

  3、 判断是否是方程

  4、 方程与等式的关系

  七、作业:

  利用课余小组时间用天平测量物体的重量。

  再想,天平两边可以如何添加,能使天平继续保持平衡呢?

  【课堂上的时间是有限的,虽然在前面的教学中,学生没有使用天平 ,但对天平都充满了好奇,因此,我把用天平测量物品的质量这个环节延伸到课下,学生不仅满足了自己的愿望,而且也是对本节课知识的巩固,我还设计了“天平两边可以如何添加,能使天平继续保持平衡呢?”发散学生的思维,也为下节课《天平保持平衡的性质》奠定了基础。】

【《方程的意义》教学设计】相关文章:

方程的意义教学设计04-05

方程意义教学设计04-18

方程的意义教学设计04-19

《方程的意义》教学设计10-17

方程的意义教学设计12-19

方程意义教学设计04-07

《方程意义》教学设计03-24

方程的意义教学设计范文12-12

方程的意义教学设计【推荐】04-19