比例的意义教学设计

时间:2024-04-04 18:15:02 意义 我要投稿

比例的意义教学设计

  在教学工作者实际的教学活动中,常常要根据教学需要编写教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。教学设计应该怎么写呢?以下是小编为大家整理的比例的意义教学设计,欢迎阅读与收藏。

比例的意义教学设计

比例的意义教学设计1

  教学内容

  人教版教材第33-34页比例的意义和基本性质。

  教学目标

  1、理解比例的意义,认识比例各部分的名称。

  2、能运用比例的意义判断两个比能否组成比例,并会组比例。

  3、理解并会应用比例的基本性质。

  教学过程

  一、情境导入,复习比的知识

  教师出示课件,结合画面引入。

  师:同学们请看,这是们祖国各地的风景图片,我们的祖国幅员非常辽阔,却能在一张小小的地图上清晰可见各地位置;科学家在研究很小很小的生物细胞时,想清楚地看见细胞各部分,就要借助显微镜将细胞按比例放大。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。

  教师板书课题:比例的意义和基本性质。

  师:说到比例,我们很容易想起前面学过??(教师拖长声音)

  生:比(几乎异口同声地)

  师:下面就请同学们完成学案的“课前检测”部分,复习一下比的有关知识。

  [设计意图:借助现代电教媒体,用形象、直观的图片,来激发学生的求知欲望,同时也培养了学生爱祖国、爱科学的情感。]

  二、自主探究,学习比例的意义

  1、探求共性,概括意义

  师:刚才第三题10:6 与 4.5:2.7 的比值有何特点?

  生1:我发现这两个比的比值相等 。 师:既然这两个比的比值相等,请你想想用什么符号把这种关系表示出来!

  生2:用等号。(师把左右两个中间板书 = )

  师:同学们现在用了等号表示出这样一个式子,这是一个新的表达式,你能给它起个名字吗?

  生:比例(有几个学生低声说)

  师:这几位同学很聪明,数学上也起名为“比例”(师板书:比例)

  师:你现在想知道什么叫比例吗?

  生:想(学生声音响亮,愿望强烈)

  师:那就请同学们自学课本32-33页做一做之前的内容,并完成学案上自学引导部分的问题。(5分钟后多数学生停了笔,教师在学生的回答过程中板书比例的概念,并引导学生把文字语言转化成数学符号语言,得出比例的两种表达式: a:b=c:d或 = (b、d不能为0)

  2、根据意义,判断比例

  师:刚刚我们认识了新的式子比例,要是让你来判断两个比是不是能组成比例,你会怎么办?

  生:看比值是不是相等

  师出示课件:下面哪组中的两个比可以组成比例?把组成的比例写出来.(1)6∶10 和 9∶15 (2)20∶5 和 1∶4

  师:比一比 看谁说的又快又好!

  生1:因为 6∶10 = 0.6

  9∶15 = 0.6

  所以 6∶10 = 9∶15

  生2: 因为 20∶5 = 4

  1∶4 = 0.25

  所以 20∶5和1∶4不能组成比例. (学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。)

  师:请同学们自己独立完成学案上的课堂训练

  (一)第1题。(再次巩固判断两个比是否成比例的方法,并熟练解题思路。)

  [设计意图:从学生熟悉的比入手教学,充分重视了学生原有的认知基础,找准了新知识的生长点。然后放手让学生自学,让学生亲自经历知识的发生、发展过程,充分发挥了学生的`主体作用。]

  三、合作探究,学习比例的基本性质

  1、组织看书,认识名称

  师:a:b里比号前面的a叫——(生齐答:前项)比号后面的b叫——(生齐答:后项)。那么在比例里的各部分有哪些名称呢?请同学自学课本,并汇报。然后完成学案上的课堂训练

  (一)第2题进行巩固。

  2、活动探究,总结性质

  小组活动内容:

  ①观察比例的两个内项与两个外项,算一算,你发现了什么。

  ②如果把比例写成分数形式,是否也有上面发现的规律?

  ③是不是每一个比例的两个外项与两个内项都具有这种规律,请你再找几个比例进行验证。

  ④通过以上研究,你发现了什么?(5分钟后,学生基本停止了讨论。)

  师:请汇报你发现的规律。

  生1:两个外项的积等于两个内项的积

  生2:不对,老师,我有个反例:0:1=1:0 0×0=0,1×1=1,所以??

  还没等生2说完,生3迫不及待:不对,比的后项不能为0的,你这个不是比例。

  生2:那我0:1=0:2 (很着急的改了)

  生4:那0×2=0 ,1×0=0,还是两个外项积等于两个内项积。

  师:同学们验证得非常认真,现在我们可以一致公认——(生齐答:任何一个比例里,两个外项的积等于两个内项的积。)

  师:和比的基本性质一样,我们把这种性质叫做比例的——(生齐答:比例的基本性质。)(板书:基本性质)

  3、应用性质,自主判断

  师:刚才我们应用比例的基本性质解决了这两个问题(课件展示刚才的问题:下面哪组中的两个比可以组成比例?把组成的比例写出来(1)6∶10和9∶15 (2)20∶5和1∶4)

  师:学过比例的基本性质后,你有新的方法解决这个问题吗?不一会,就有学生举起了小手。

  生1:第(1)题,只要算一下6×15=90,10×9=90,乘积相等,所以能组成比例.

  生2:第(2)题,20×4=80,5×1=5,乘积不相等,所以不能组成比例.

  师:很好!同学们发现了一种新的判断两个比是否成比例的方法,现在请大家用你发现的方法完成学案课堂训练

  (二)。

  4、总结方法,辨析概念

  师:我们学了比例的意义和基本性质后,你有几种方法判断两个比能否组成比例?

  生:两种,一种是利用比例的意义,通过计算两个比的比值来判断;另一种是利用比例的基本性质,通过计算能够构成内项与外项的两个数的积是否相等来判断。

  师:(惊喜!)这节课我们一直类比着比学习比例,比与比例仅一字只差,它们会有什么区别呢?

  生1:比是两个数相除,是一个算式;比例是两个比相等,是一个等式

  生2:比有两项,比例有四项。

  生3:比与比例各部分的名称不同,比的项分别叫做前项和后项;比例的四项,有两个叫做外项,有两个叫做内项。

  师:同学们的概括能力很强,你们真的很棒!

  师:把你们回答的内容总结一下,边说边展示课件:从意义上、项数上进行对比:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。 [设计意图:以上比例基本性质的教学,把知识的探究过程留给了学生。问题让学生去发现,共性让学生去探索,充分尊重学生主体。将学习内容“大板块”交给学生,体现了学习的自主性和主动性,有利于探究和创新意识的培养。同时小组共同探讨有助于培养学生的合作意识。]

  四、灵活运用,大显身手

  师:以上就是我们这节课学习的内容,大家想要知道自己掌握的情况,请认真完成学案灵活运用与拓展天地的部分。

  [设计意图:这一部分设计了活用知识点与拓展天地两个部分,其中活用知识点侧重于考察基础知识、而拓展天地则侧重于培养学生的发散思维。拓展天地的这个问题要想写出全部的八个比例式,需要综合运用比例的意义与基本性质,难度比较大,而教师的教学设计就是要善于把学生已有的知识引向纵深,并以此为载体促进学生能力的提高。]

  五、归纳小结,交流收获

  师:同学们,通过本堂课的学习,你有什么收获,还有什么疑问?

  [设计意图:培养学生反思自己学习过程的意识,有利于学生掌握、巩固新知,并促使学生能深入思考和探索。

比例的意义教学设计2

  一、内容和内容解析

  1.内容

  反比例函数的意义

  2.内容解析

  本课是反比例函数这一章的第一课时,其主要功能是在学生学习过的一次函数的基础上,通过实际例子帮助学生认识并归纳出反比例函数的意义.反比例函数作为初中三个基本函数(还有一次函数和二次函数)中最特殊的一个,明确其意义是最为重要的内容.另外本节课的学习可以给学生研究其它函数做好引领工作,帮助他们养成良好的思维品质和学习习惯.

  学生需要对从实际问题中得出的三个关系式进行观察、归纳,结合已学知识来得出反比例函数的概念,并且深入的理解其意义.在此过程中,教师需要给学生一些必要的指引,具体到课堂教学实际中就是通过问题的引领,帮助学生做好问题的探究.学生是这个环节的主体,教师是辅助者,在实际教学中要尊重学生所提出的问题和看法,不应该把教师的观点强加给学生.

  基于以上分析,确定本节课的教学重点为:理解反比例函数的概念.

  二、目标和目标解析

  1.教学目标

  (1)理解反比例函数的意义;

  (2)能够根据已知条件确定反比例函数的解析式。

  2.目标解析

  达成目标(1)的标志是:通过对实际问题和数学问题的分析,抽象概括得出反比例函数的概念,知道自变量和对应函数成反比例的特征.

  达成目标(2)的标志是:能根据问题中的变量关系,确定反比例函数的解析式.

  三、教学问题诊断分析

  学生已经学习过了一次函数、二次函数、分式等预备知识,对函数的图象、性质和特征具有了一定的认知能力.再加上小学已经学习过的反比例关系,学生对反比例函数的引入不会感到突然.在对实际问题和数学问题进行分析过程中,需加强对函数概念的理解:对于自变量每一个确定的值,有唯一确定的值与之对应.反比例函数与一次函数、二次函数的不同在于两个变量的乘积为定值.同时,学习过程中要回顾类比反比例关系,分式的概念及其运算.

  但是反比例函数与学生已学过的一次函数、二次函数有着根本的不同.虽然从形式上和正比例函数很类似,但是其自变量取值范围不再是全体实数,所以相比于学生熟悉的函数类型,反比例函数的研究方式会有所不同,而本节课的学习就是所有这些改变的起点.

  本课的教学难点是:抽象得到反比例函数概念的过程.

  四、教学过程设计

  1.创设情境,引入新知

  问题1京广高铁全程为2 298km,某次列车的平均速度v(单位:km/h)与此次列车的'全程运行时间t(单位:h)有什么样的关系?

  问题2冷冻一个0℃的物体,使它的温度下降到零下273℃,每分钟变化的温度(单位:℃)与冷冻时间(单位:分)有什么样的关系?

  师生活动:教师提出问题,学生思考、得出答案.教师板书学生给出的答案,同时提醒学生关注零下273℃的表示方法.

  设计意图:用实际问题引出现实中的反比例关系,为后续的反比例函数的意义教学做好铺垫.创设问题情境,让学生感受量与量之间的函数关系,体会实际问题中蕴涵的函数关系,激发探究兴趣.

  2.观察感知,理解概念

  针对学生的答案,提出一系列问题:问题3这些关系式有什么共同点?问题4这两个量之间是否存在函数关系?

  问题4.1这个变化过程中的常量和变量分别是什么?问题4.2变量x、y在什么范围内变化?问题4.3 y是x的函数吗?

  师生活动:教师针对学生的答案进行提问,引导学生进行思考,并鼓励学生提出问题,以推动对问题的进一步思考.开始渗透研究函数的一般步骤,帮助学生探究函数关系.学生需要调动原有知识储备,经过思考和讨论来回答问题.

  设计意图:通过对问题的讨论分析,让学生学会用函数的观点分析生活中变量之间的关系,并能够用反比例关系式表示出来,初步建立反比例函数的模型.

  3.归纳概括,建立模型问题5这个函数应该如何表示?问题6你能给这个函数起个名字吗?归纳整理出反比例函数的意义:一般地,形如(为常数,)的函数称为反比例函数,其中是自变量,是函数,自变量的取值范围是不等于0的一切实数.

  师生活动:教师提出问题,学生思考、议论后交流.教师应引导学生用规范的数学语言表达反比例函数的概念,并引导学生发现自变量x的取值范围是不等于0的一切实数.

  设计意图:使学生从上述不同的数学关系式中抽象出反比例函数的一般形式,让学生感受反比例函数的基本特征,发展学生用数学语言描述反比例函数的能力,体会从实际问题中抽象出反比例函数的方法.

  4.分析例题,培养能力

  例1已知y是x的反比函数,并且当x=2时,y=6.(1)写出y关于x的函数解析式.(2)当x=4时,求y的值.师生活动:教师提出问题,学生思考、交流,解答问题.教师引导学生理解“y是x的反比函数”这句话的意义,总结得出求反比例函数解析式的方法,正确用反比例函数解析式解决问题.

  设计意图:使学生会根据已知条件求反比例函数的解析式,进一步熟悉函数值的求法.例2已知(1)写出(2)求当与成反比例,并且当

  时,和的函数解析式;

  时的值.

  师生活动:教师提出问题,学生独立思考,解答问题.教师巡视学生完成情况,并请学生展示解答过程,给予适当评价.

  设计意图:已知条件中y与

  成反比例.设为

  (k≠0),看作整体,进一步

  加深对反比例函数概念理解,明确反比例与反比例函数的区别和联系,并会解决实际问题.

  5.归纳小结,反思提高

  教师与学生一起回顾本课所学主要内容,并请学生回答以下问题:

  (1)我们今天学习了反比例函数的哪些知识?如何获得反比例函数的概念?(2)反比例函数中的两个变量的关系是什么?(3)反比例函数对自变量取值有何要求?(4)如何根据已知条件求反比例函数的解析式?

  设计意图:让学生能够梳理知识体系,进一步加深对知识的理解.

  6.布置作业

  教科书习题26.1复习巩固第1,2题.五、目标检测设计

  设计意图:进一步明晰概念,用反比例函数的概念判定函数是否为反比例函数:从形式上看是写成一般式,实质上是两个变量的乘积为定值.

  2.已知y与x?成反比例,并且当=2时,y=-6.(1)写出y关于的函数解析式;(2)当=4时,求y的值;(3)当y=4时,求x的值.设计意图:进一步加深概念理解,明确反比例与反比例函数的区别和联系,并会解决实际问题.

比例的意义教学设计3

  教学内容

  义务教育课程标准实验教科书数学六年级下册P45练习十的第5—8题

  教学目标:

  1、使学生学会解比例的方法,会应用比例的基本性质解比例,进一步理解和掌握比例的基本性质。

  2、让学生在经历探究的过程中,体验学习数学的快乐。

  教学重点:

  学会解比例。

  教学难点

  掌握解比例的书写格式。

  设计理念

  在本课时的设计中,引导学生根据按比例放大图形,把相关数据组成比例,用未知数X来表示比例中的未知项,列出比例式。

  在解比例的教学设计上,重点利用旧知的迁移,通过学生主动探索新知与旧知的联系,在比较分析中,把握规律,掌握解比例的方法。

  教学步骤教师活动学生活动

  一、练习引入

  1、小练笔:

  在()里填上合适的数。

  5:4=():12

  4:()=():6

  2、教师:前面我们学习了一些比例的知识,谁能说一说怎样填空的?

  3、比例的基本性质是什么?这节课我们还要继续学习有关比例的知识。学生练习

  学生回顾比例的基本性质

  二、探索新知

  出示例5,前面我们学习过图形的放大与缩小,李明把照片按比例放大,放大后长是13.5厘米,你能求他的宽吗?

  (1)读题审题,理解题意

  老师帮助学生理解题意。提问:怎样理解“把照片按比例放大”这句话?引导学生理解放大前后的相关线段的长度是可以组成比例

  (2)引导分析,写出比例

  如果把放大后照片的宽设为X厘米,那么,你能写出哪些比例?引导学生写出含有未知数的比例式。

  师介绍:“像上面这样求比例中的未知项,叫做解比例。

  (3)找到依据,变形解答

  讨论:怎样解比例?根据是什么?

  思考:“根据比例的基本性质可以把比例变成什么形式?”

  教师板书:6x=13.5×4。“这变成了什么?”(方程。)

  教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。

  (4)、板书过程,总结思路

  师生把解比例的过程完整地写出来。指名板书。

  师问:第一步计算的.依据是什么?

  师生总结解比例的过程。

  提问:“刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?再怎么做?”(先根据比例的基本性质把比例变成方程。再根据以前学过的解方程的方法求解。)

  (5)、练习提高,再说思路

  做“试一试”,学生独立完成,再说说解题思路。

  学生读题,分析题意

  学生写出含有未知数的比例式

  学生小组交流,大组汇报

  学生交流总结思路:在解比例的过程中第一步是关键,是根据比例的基本性质把比例变成方程。下面和以前学习的解方程的方法一样。

  学生独立练习,小组说明思路。

  三、巩固练习

  1、做“练一练”

  2、做练习十第6、7题。

  3、做练习十第8题

  学生先说说按比例“缩小或放大“的含义。再列出相应的比例式并求解。

  学生独立审题并解题。讲评时重点指导学生解决第(2)问。

  四、比较提高。

  1、通过本课的学习,你有哪些收获?

  2、把你掌握的解比例的方法在小组里介绍一下,并在大组交流。

  五、作业练习九第5、6题。

比例的意义教学设计4

  教学内容:

  教科书第40页的例3,完成随后的练一练和练习九的第3—7题。

  教学目标:

  1、理解比例的意义。

  2、能根据比例的意义,正确判断两个比能否组成比例。

  3、在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。

  教学重点:

  理解比例的意义,能正确判断两个比能否组成比例。

  教学难点:

  在学生观察、操作、推理和交流的过程中,发展学生的探究能力和精神。

  教学准备:

  两张照片。

  预习作业:

  1、预习课本第40页例3,

  2、分别写出每张照片长和宽的比,并比较这两个比的关系,知道什么叫做比例。

  3、在课本上完成第40页练一练。

  教学过程:

  一、预习效果检测

  1、昨天学习了图形的放大和缩小?放大或缩小后的图形与原来的图形有什么关系?

  2、关于比你有哪些了解?(生答:比的意义、各部分名称、基本性质等。)

  还记得怎样求比值吗?希望这些知识能对你们今天学习的新知识有帮助。

  3、什么叫做比例?

  二、合作探究

  1、认识比例

  (1)呈现放大请后的两张长方形照片及相关的数据。要求学生分别写出每张照片长和宽的比。

  (2)比较写出的两个比,说说这两个比有什么关系?你是怎样发现的?(求比值,或把它们分别化成最简比)

  (3)是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:6.4:4=9.6:6。或6.4/4=9.6/6

  数学中规定,像这样的式子就叫做比例。(板书:比例)

  (4)你能说说什么叫比例吗?(让学生充分发表意见,在此基础上概括出比例的意义)

  (5)学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

  2、学以致用

  (1)学习比例的意义有什么用呢?(可以判断两个比是否可以组成比例。)

  (2)分别写出照片放大后和放大前的长的比和宽的'比,这两个比也能组成比例吗?

  学生独立完成,再说说是怎样想的?由此可以使学生对比例意义的丰富感知。

  (3)你能根据以上照片提供的数据,再写出两个比,并将它们组成比例吗?

  3、交流“练一练”的完成情况。

  三、当堂达标检测

  1、做练习九第3题。

  先写出符合要求的比,再说清楚相应的两个比是否能够组成比例的理由。

  2、做练习九第4题

  独立审题,说说解题步骤,在独立完成。同时找两个同学板演。

  3、做练习九第7题

  (1)弄懂什么是“相对应的两个量的比”。如240米是4分钟走的路程,所以240米与4分钟是相对应的两个量。

  (2)分组完成,同时四人板书,再讲评。

  完成后反馈、引导学生进行汇报交流,及时修正自己的答案。

  提出疑问,总结全课。

比例的意义教学设计5

  一、教学目标

  知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。

  过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。

  态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。

  二、教学重点难点

  重点: 理解比例的意义和基本性质。

  难点:判断两个比是否成比例。

  三、教学过程设计

  (一)创设情境,提出问题

  1. 复习导入:

  (1)什么叫做比?

  两个数相除又叫做两个数的比。

  (2)什么叫做比值?

  比的前项除以比的后项所得商,叫做比值。

  (3)求下面各比的比值:

  12:16= 4、5:2、7= 10:6=

  谈话:今天我们要学的知识也和比有着密切的关系。

  2、创设情境,提出问题。

  谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学

  出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。

  这是它两天的运输情况:

  一辆货车运输大麦芽情况

  第一天 第二天

  运输次数 2 4

  运输量(吨) 16 32

  根据这个表格,让学生提出有关比的数学问题。同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得最好,提出的问题最多。

  谈话:谁来交流?跟大家说一下你的问题是什么?

  学生可能出现以下的问题:

  货车第一天的运输量与运输次数的比是多少? (16 : 2)

  货车第二天的运输量与运输次数的比是多少?(32 :4)

  货车第二天的运输量与第一天运输量的比是多少?(32 :16)

  (师根据学生的回答,将答案一一贴或写于黑板)

  2 :16; 4 :32; 16 :2; 32 :4;

  16 :32; 2 :4; 32 :16; 4 :2。

  1、认识比例及各部分名称。

  谈话:学习数学,我们不仅要善于提问,还要善于观察。现在就请你观察这两个比(16 :2;32 :4)看能发现什么?(学生会发现比值相等)

  思考:这个比值所表示的实际意义是什么?(每次的运输量)

  既然它们的比值相等,那我们可以用什么符号将两个比连接起来?

  学生用等号连接,并请学生把这个式子读一下。

  试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习本上写写看。(学生独立完成)

  介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。我们知道,比有前项、后项,比例的各部分也有自己的名字。组成比例的四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项,2、32位于中间的两项叫做比例的内项。比例,也可以写成分数形式。

  学生先把2 :16=4 :32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。

  自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。(学生独立完成)

  2、比和比例有什么区别?

  比

  4︰6

  比例

  2︰3=4︰6

  3.判断下面两个比能否组成比例?

  6∶9 和 9∶12

  总结方法:判断两个比能不能组成比例,要看它们的比值是否相等。

  4.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。我不是这样想的,可能很快就判断好了,想知道其中的秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?

  那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!

  5、学生先独立思考,再小组交流,探究规律。

  出示研究方案:

  ①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。

  ②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。

  ③通过以上研究,你发现了什么?

  6、全班交流。

  (1)哪个小组愿意将你们的发现与大家分享?

  (2)还有其他发现吗?

  (3)你们组所发现的是不是个偶然现象呢?咱们最好是怎么办?

  7、验证发现,共享成功。

  师:对,举例验证,这可是一种非常好的数学方法。那现在,咱们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的.比例都是两个外项的积等于两个内项的积。(学生独立验证)

  8、利用一个比例通过课件形象的展示两个外项的积等于两个内项的积。

  9、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。也就是,在比例里,两个外项的积等于两个内项的积。数学上我们把这条规律,叫做比例的基本性质。这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。运用它,我们可以解决许多数学问题。

  10、比例的基本性质的应用:

  应用比例的基本性质,判断下面两个比能不能组成比例.

  6∶3 和 8∶5

  方法:a、先假设这两个比能组成比例

  b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。

  c、根据比例的基本性质判断组成的比例是否正确。

  (二)自主练习,拓展提升

  1、判断下面每组中两个比能否组成比例?

  1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5

  让学生根据比例的意义进行判断,教师结合回答板书:

  1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5

  2、连线:自主练习第3题。

  3、填空:自主练习第6题。

  4、自主练习第10题:

  2:1=4:( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5

  5、下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个)。

  2、3、4 和 6

  因为 2 × 6 = 3 × 4 所以这四个数可以组成比例

  2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4

  2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4

  练习时,给学生充足的时间让学生独立完成,然后交流沟通。

  (三)回顾总结

  在这节课中你又有什么新的收获?

比例的意义教学设计6

  教学内容:

  九年义务教育六年制小学数学第十二册P64——65

  教学目标:

  1、使学生经历从具体实例中认识成反比例的量的过程,初步理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。

  2、使学生在认识成反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

  3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

  教学重点:

  认识反比例的意义

  教学难点:

  掌握成反比例量的变化规律及其特征

  设计理念:

  课堂教学中注重从学生的已有的生活经验出发,引导学生观察、分析,从而发现成反比例量的规律,概括成反比例量的特征。努力为学生提供探究的时空,让学生自己发现、自己探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去。

  教学步骤教师活动学生活动

  一、复习铺垫

  1、怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系?

  2、判断下面两种量是否成正比例?为什么?

  时间一定,行驶的路程和速度

  除数一定,被除数和商

  3、单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例?

  4、导入新课:

  如果总价一定,单价和数量的变化有什么规律?这两种量又存在什么关系?今天,我们就来研究和认识这种变化规律。

  学生口答,相互补充

  二、探究新知1、出示例3的表格(略)

  学生填表

  2、小组讨论:

  (1)表中列出的。是哪两种相关联的量?它们分别是怎样变化的?

  (2)你能找出它们变化的规律吗?

  (3)猜一猜,这两种量成什么关系?

  3、全班交流

  学生初步概括反比例的意义(根据学生回答,板书)

  4、完成“试一试”

  学生独立填表

  思考题中所提出的`问题

  组织交流,再次感知成反比例的量

  5、抽象表达反比例的意义

  引导学生观察例3和“试一试”,说说它们的共同点。启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,反比例关系可以用怎样的式子来表示?

比例的意义教学设计7

  教学目的:

  1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。

  2.使学生进一步认识事物之间的相互联系和发展变化规律。

  3.初步渗透函数思想。

  教学重点:

  认识反比例关系的意义,掌握成反比例量的变化规律及其特征。教学难点:能够比较有条理的叙述判断过程。教学过程

  一、谈话导入:

  师:上一节课我们研究了正比例关系,现在谁能说一说判断两个量是不是成正比例的依据是什么?指名说

  师:咱们一块做几道题判断一下。出示:

  1、除数一定,被除数和商

  2、单产量一定,总产量和面积

  3、加数一定,和和另一个加数

  4、每张纸厚度一定,总厚度和纸的张数指名说并说请判断依据

  师:看来大家对正比例知识理解掌握得不错,学完正比例接下来我们该学习什么了?(生答)是啊,有正就有反,这节课我们就来探究反比例的有关知识(板书:反比例)

  二、学习

  师:既然正与反意义是相反的,大家猜想一下,成反比例的两个量的关系是怎样的呢?(生猜想)

  师:到底同学们的猜想是否正确?我们要用事实来验证。独立填写研究单,然后在组内交流

  学生自己填,在小组活动,师巡视学生台前展示交流

  师:这两个情境中的两个量有什么共同点?这和之前我们推测的.一样吗?你能根据我们这两道题总结一下什么是反比例关系吗?指名说,出示大屏幕定义,齐读

  师:对于这句话大家有什么不理解的吗?判断两个量是否成反比例的要点是什么?

  指名说,(大屏幕出示红色字)

  师:你能举出一些生活中成反比例的关系的例子吗?指名举例,追问:相关联的量是哪两种?不变的量是什么?

  师强调:要想判断两个量是不是成反比例,除了要相关联,最重要的一点就是要保证这两个量乘积一定。

  今天我们学习了反比例关系,大家想想它和我们之前研究的正比例关系有什么相同和区别?指名说出示表格,明确正比例和反比例的异同点。

  师:还记得正比例关系图象是什么样的吗?反比例关系也可以用图象来表示,(出示研究单中的两幅图),它和正比例关系图象有什么不同?对,它们是一条

  光滑的曲线。拿第二道题举例,你能看出杯子的底面积分别是40平方厘米,50平方厘米时,水的高度分别是多少吗?指名说

  师:今天我们学习了反比例关系,对于今天学过的内容,大家还有疑问吗?

  三、练习

  1、书上51页8、9、10题,独立写,集体交流。

  2、书上51页11题,指名交流,说理。

  四、总结

  师:这节课你有什么收获?指名说

  师:我们不仅收获了知识,更重要的是运用学过的知识学习了新的内容,掌握了这种学习方法,并且不断反思,不断总结,相信我们会在数学的道路上越走越远。

比例的意义教学设计8

  【教学内容】

  苏教版P40页例3、练一练及练习九的3----7题。

  教学目标:

  1.理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。

  2.通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。

  教学重点:理解比例的意义。

  教学难点:应用比例的意义判断两个比能否组成比例,并能正确地组成比例。

  教学过程:

  一、创设情境,导入新课

  师:同学们,每周一的早上我们学校都要举行庄严的升国旗仪式,那么,你们对国旗都有哪些了解呢?(生自由回答)

  师:同学们都说出了自己的想法,说明你们都很热爱我们的国家,希望你们以后一定要好好学习,做一个有用的人,把我们的国家建设的更加美好!五星红旗是庄严而美丽的,并且它与我们数学也有着密切的联系,这也就是我们今天所要研究的内容:比例(板书课题:比例)

  师手指课题:从课题中我们不难看出,比例和比有一定的关系,你们还记得比的意义吗?(学生回答)

  好,那下面我们就先来用比的知识解决几道题。(出示四幅图在一起的)

  2厘米

  3.2厘米

  4.8厘米

  3厘米

  6.4厘米

  4厘米

  9.6厘米

  6厘米

  二、新授

  师:画面上出现了四幅不同大小的国旗,请同学们任选两面国旗来算一算它们各自长与宽的比值是多少?然后观察结果,你能发现什么?

  (学生板演,观察到比值相等,教师板书:两个比相等)

  师:那我们就可以将这两个比用等号连接。(教师板书学生汇报的两个相等的。比)

  教师边指着这组相等的比一边说:好,像这样表示两个比相等的式子就叫做比例。(把定义补充完整)。这就是比例的意义(把课题板书完整)请同学们齐读。

  请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?(学生回答,等式;有两个相等的比)

  (教师再强调:一定是比值相等的两个比才能组成比例。)

  师:你还能从四面国旗中找出哪些比例?

  (学生写在练习本上,然后汇报。教师板书)

  师:我们在学习比的时候,可以把比写成分数的形式,比如:60:40=60/40,那比例也能写成分数的形式吗?怎么写?(学生口答)

  ?师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?

  学生从形式上区分:比由两个数组成;比例由四个数组成。

  学生从意义上区分:比表示两个数之间的倍数关系;比例表示两个比相等的式子。

  三、巩固应用

  (一)数的.比例

  课本。40页练一练。(学生汇报比值是否相等,所以成不成比例。教师板书比例式)

  (二)形的比例

  出示两个具有放大关系的三角形

  3厘米

  5厘米

  4.5厘米

  7.5厘米

  师:哪位同学能分析一下这个图形?(学生讲这是两个相似的三角形,几个数字分别是它们的底和高。然后汇报比例)

  (三)生活中的比例

  师:通过刚才的几组题,我们进一步弄清了比例的意义,现在让我们一起来看看生活中的比例吧!

  1、课本41页第3题(学生独立完成,小组订正交流。)

  2、小明买了3本笔记本花了9元钱,李刚买了5本同样的笔记本花了15元。(你能根据题中的数据写出几组比例式吗?并说出理由。)

  四、总结

  师:这节课,大家都非常的积极和认真,老师相信你们的收获肯定很多,那谁来说说本节课有什么收获?(学生自由说)

  师总结:同学们说的很好,通过这节课的学习,我们认识了比例,并会判断两个比能否组成比例,还会自己根据数据组比例,看来同学们这节课真是掌握了不少的知识。

  五、课堂检测

  1、下面哪些组的两个比可以组成比例?如果能,在()打对号。

  10:2和35:42()0.6:0.2和:()

  :4和3:():和12:8()

  2、在下面的六个比中,选择两个比组成比例。

  ::4:71.4:2.8:10:15

  3、写出比值是的两个比,并组成比例。

  4、小强3分钟走了180米,小刚1小时走了3.6千米。小强说他们各自所走的路程和时间的比能组成比例,小刚说不能组成比例。请问:谁说的对?

  六、布置作业

  课本练习九4题、7

比例的意义教学设计9

  教学目标:

  1 使学生理解什么是相关联的量。

  2 掌握正比例的意义及字母表达式。

  3 学会判断两个量是否成正比例关系。

  教学过程:

  一、导入

  师(板书:关联):知道关联是什么意思吗?

  生:指事物之间有联系。

  生:也可以指事物之间相互影响。

  师:对,关联就是指事物之间发生牵连和影响。

  师:能举一些生活中相互关联的例子吗?

  生:天气热了,我们身上穿的衣服就少一些;天气冷了,穿的衣服就会多一些,气温与我们穿的衣服是相关联的。

  生:我的考试分数多了,爸爸妈妈就很高兴;如果少了,他们的脸上就会阴云密布,所以我的考试分数与家长的脸色也是相关联的。(其他学生大笑)

  生:我想姚明打球时,姚明的动作与防守他的对方队员的动作也是相关联的,即姚明怎么动,对方总有一个相应的对策,不可能永远不变。

  这时,一名学生干脆带着他的同桌走到讲台上,两个人当着全班学生的面,做起了学生经常玩的推手游戏,即一人推手,另一人立刻向后闪开。然后这位学生说:“我们刚才的动作也是相关联的。”

  生:上星期,我们班举行智力竞赛,每个小组每答对一题就得到10分,答对两题得到20分……答对的题目越多,分数也就越高。因此,我认为答对的题目与最后的成绩也是相关联的。

  二、新授

  师:好一个答对的题目与最后的成绩相关联!我们把它们的情况列成下面的表格,可以吗?

  师:从这个表格中。你还知道什么?

  生:答对一题得10分,答对两题得20分,答对三题得30分……

  师:表中有哪两个量?它们的关系怎样?

  生:答对的题目与最后的成绩,它们是两个相关联的量。

  师:你们能够从中发现什么规律?

  生:从左向右看,答对的题目越多,分数就越高;从右向左看,答对的题目越少,成绩就越低。

  师:还能发现什么呢?

  生:答对的次数扩大多少倍,得分也随着扩大多少倍;反之,答对的次数缩小多少倍,得分也随着缩小多少倍。

  师(小结):也就是说,成绩随着答对的次数变化而变化,像这样的两个量也叫做相关联的'量。

  师:你能在这两种量中,找到一组对应的数吗?谁能说说在成绩和答对的次数两种量中,相对应的数的比吗?比值是多少?

  (随着学生的回答,师板书:10/1=10、20/2=10、30/3=10、40/4=10……)

  师:刚才这位同学在算出比值的时候,你们发现了什么?

  生:不管怎样,它们的比值不变。

  师:这个比值实际上就是什么呀?(板书:每题的分数)

  师:你能用一个关系式表示吗?

  板书关系式:成绩/答对的题目=每题的分数(一定)

  师:我们再来看一道题目。请每个小组的小组长,将桌上信封中的信息单分给每一位同学。同学们可以根据上面的四个问题进行分析,在小组内讨论交流。如果你们遇到了什么问题,可以举手,老师非常乐意帮助你们。(投影出示例1)

  1表中有( )和( )两种量。

  2 路程是怎样随着时间的变化而变化的?

  3 任意写出三个相对应的路程和时间的比,并算出它们的比值。

  4 比值实际上表示( ),请用式子表示它们的关系。

  (学生交流汇报,师板书关系式)

  师(指着刚刚学习的两个表格):这是我们刚才分析过的两个表,它们有什么共同点吗?(板书:两个相关联的量)它们之间有什么关系呢?

  (结合学生的发言,教师逐一板书,最后由学生通过看书,归纳出正比例的意义,由此完成概念教学)

  反思:

  从学生感兴趣的事情入手,关注学生已有的知识与经验,并通过现实生活中的生动素材引入新课 ,使抽象的数学知识具有丰富的现实基础,为学生的数学学习创设了生动活泼的情境,课堂气氛活跃。

  以往教学此内容时,学生理解相关联的量仅仅局限于“比值一定”,与后面学习“反比例的意义”教学未能形成有效的联系,因而教学收效不大。此次教学,首先从教学目标上进行修改,增加了第一个教学目标,即“理解什么是相关联的量”。教学设计大胆开放,真正关注学生的经验和兴趣。教材的重点并不一定是学生学习的难点在这里得到了充分的体现,给抽象的数学知识赋予了浓厚的现实背景,体现了新课程标准的教学理念,改变了传统教学强调接受、机械训练的学习方式。最后,由学生独立得出结论,培养了学生解决问题的能力。看似在新授之前浪费了不少时间,实则高效地完成了教学任务,使学生有了更多自主、个性探究的机会,值得借鉴与提倡。

比例的意义教学设计10

  比例的意义和基本性质导学案

  教学内容:比例的意义和基本性质教学目标:

  (1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。

  (2)认识比例的各部分名称。

  (3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。教学重点难点:

  理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。教学过程:

  一、趣味导课

  1、谈话

  师:大家或许曾在电视节目中看到过这样的情节:一个侦探,只要发现了罪犯的脚印,就可估计出罪犯身材大约的高度,这是为什么呢?其实是因为在我们人体上存在着许多有趣的比!例如:将拳头翻滚一周,它的长度与脚的长度的比大约是1:1,身高与双臂平伸长度的比大约也是1:1,身高与胸围长度的比大约是2:1……那么这些有趣的比还有什么用处呢?比如:你到商店去买袜子,只要将袜底在你的拳头上绕一周,就会知道这双袜子是否适合你穿。像这些生活中的例子,实际上就是用这些有趣的比去组成一个个的比例来进行计算的。这节课我们就一起来学习“比例的意义和基本性质”。板书课题

  2、复习

  (1)、什么叫做比?什么是比值?(2)、怎样求比值?(3)、求比值

  6:10

  9:15

  1/2:1/3

  6:4

  :

  学生求出各比的比值后,再提问:观察一下,这几个比的比值有什么特点?因为这两个比的比值相等,所以我们可以用一个符号连起来。板书:像这样表示两个比相等的式子叫做比例

  二、探究新知

  (一)深入探讨:(1)比例有几个比组成?

  (2)是不是任意两个比都能组成比例?

  (3)判断两个比能不能组成一个比例,关键要看什么?

  (二)做一做出示课件中的做一做

  (三)教学比例的基本性质

  1、自学比例各部分的名称。

  教师:下面我们就来看看组成比例的四个数分别被叫做比例的什么?(学生看书第二页中间内容后回答)随着学生的回答教师出示:

  : = 60: 40

  └-内项-┘

  └------外项-------┘

  师:那下面谁能来说一说这个比例当中各部分的名称呢?()

  2、研究比例的基本性质及应用。(1)小游戏——我是诸葛亮

  三、系列训练

  1、应用比例的意义和基本性质判断3:4和6:8,:2和7:10能不能组成比例。

  先一起做第一个,然后指名回答第二个。

  2、把下面的.等式改写成比例:(能写几个写几个)16 × 3 = 4 × 12学生写后根据学生回答教师板书:16:4=12:3

  4:16=3:12 16:12=4:3

  4:3=16:12 3:4=12:16

  12:16=3:4 3:12=4:16

  12:3=16:4

  四、总结归纳

  1、“比”和“比例”两个概念有什么区别?引导学生从意义上、项数上进行对比。

  最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

  2、比例的基本性质是什么?应用比例的基本性质可以做什么?课堂总结:根据比例的基本性质,如果知道了比例中的任何三项,就可以求出另外一项,这是我们下节课要研究的内容“解比例”。大家可以想想这句话的意思来联想一下“解比例”的做法。

  板书

  比例的意义和基本性质

  表示两个比相等的式子:=10:6第一种—— 12:16=112 :2 16:4=20 : 5因为16×5=80 4×20=80所以16:4=20:5

  第二种—— 3:4和6:8

  因为3×8=24 4×6=24 3×8=4×6

  所以3:4 = 6:8

比例的意义教学设计11

尊敬的各位评委:

  你们好!我将从教材分析、学況分析、教学目标、教学重难点、教法学法、教学准备、教学过程、效果预测几个方面对本课进行介绍。

  一、教材分析

  1、教学内容:人教版六年级下册P39正比例的意义。

  2、教材的地位和作用:这部分内容是在学生学习了比和比例的基础上进行教学的,着重使学生理解正比例的意义。正比例关系是比较重要的一种数量关系,学生理解并掌握这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的实际问题。同时通过正比例的教学进一步渗透函数思想,为学生今后学习打下基础。

  3、教学重点,难点、关键:

  教学重点是理解正比例的意义,难点是能准确判断成正比例的`量,关键是发现正比例量的特征。

  4、教学目标:

  根据本课的具体内容,新课标有关要求和学生的年龄特点,我从知识技能、过程与方法、情感态度三个方面确立了本课的教学目标。

  知识与技能:学生认识成正比例的量以及正比例关系,并能正确判断成正比例的量。

  过程与方法:学生经历从具体实例中认识成正比例的量的过程,通过察、比较、分析、归纳等数学活动,发现正比例量的。特征,并尝试抽象概括正比例的意义。

  情感态度:在主动参与数学活动的过程中,进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

  二、学况分析

  六年级学生具备一定的分析综合、抽象概括的数学能力。在学习正比例之前已经学习过比和比例,以及常见的数量关系。本节课在此基础上,进一步理解比值一定的变化规律。学生容易掌握的是:判断有具体数据的两个量是否成正比例;比较难掌握的是:离开具体数据,判断两个量是否成正比例。

  三、教法

  遵循教师为主导,学生为主体,训练为主线的指导思想,通过游戏引入、自主探究、合作学习等方式进行教学,让学生在自主、合作、探究的过程中归纳正比例的特征。

  四、学法

  引导学生在观察比较的基础上,独立思考、小组合作交流。具体表现在学会思考,学会观察,学会表达,并对学生进行激励性的评价,让学生乐于说,善于说。

  五、教学过程

  本节课我安排了六个教学环节

  第一个环节:游戏导入,激发兴趣

  用游戏的方法将学生带入轻松愉快的学习氛围,激发学生的学习兴趣,活跃课堂气氛,同时也为后面教学做好了铺垫,使学生很快进入学习状态。

  第二环节:引导观察,启发思考

  教学中让学生自己计算游戏得分,并引导学生进行观察,从而得出:得分随着赢的次数的变化而变化,他们是两种相关联的量,初步渗透正比例的概念。

  第三环节:创设情景,观察实验

  用多媒体呈现数据的获取过程,让学生直观地感受到水的体积和高度是两个相关联的量以及二者之间的变化规律。

  第四环节:探究成正比例的量

  学生在反复观察、思考,讨论、交流的过程中自己建立概念,深刻的体验使学生感受到获得新知的乐趣。

  第五环节:巩固练习,拓展提高

  第六环节:全课小结

  六、效果预测

  在教学的始终,我一直引导学生主动探索正比例的意义,加上课件的辅助教学和课堂练习,学生在理解掌握并且运用新知上,一定会轻松自如。所以,我预测本节课学生在知识、能力和情感上都能全面促进,达到预定的教学目的。

  本节课在教学设计和具体环节的安排上,可能还存在不足的地方,恳请各位评委给予批评指正。

比例的意义教学设计12

  一、教材分析

  反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。

  二、学情分析

  由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。

  三、教学目标

  知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.

  解决问题:能从实际问题中抽象出反比例函数并确定其表达式. 情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.

  四、教学重难点

  重点:理解反比例函数意义,确定反比例函数的表达式.

  难点:反比例函数表达式的确立.

  五、教学过程

  (1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;

  (2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单

  位:m)随宽x(单位:m)的变化而变化。

  请同学们写出上述函数的表达式

  14631000(2)y= tx

  k可知:形如y= (k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=

  是自变量,y是函数。

  此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际. 由于是分式,当x=0时,分式无意义,所以x≠0。

  当y= 中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。

  举例:下列属于反比例函数的是

  (1)y= (2)xy=10 (3)y=k-1x (4)y= -

  此过程的目的.是通过分析与练习让学生更加了解反比例函数的概念 问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)

  已知y与x成反比例,则可设y与x的函数关系式为y=

  k x?1

  k已知y+1与x成反比例,则可设y与x的函数关系式为y+1= xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=

  已知y+1与x-1成反比例,则可设y与x的函数关系式为y+1= k x?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。

  例:已知y与x2反比例,并且当x=3时y=4

  (1)求出y和x之间的函数解析式

  (2)求当x=1.5时y的值

  解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2

  和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业

  通过此环节,加深对本节课所内容的认识,以达到巩固的目的。

  六、评价与反思

  本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式.应该对这一方面的内容多练习巩固。

比例的意义教学设计13

  教学目标:

  1、在具体的情境中经历比例的形成过程,理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。

  2、通过自主探索发现比例的基本性质,能运用比例的性质进行判断。

  3、通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。

  4、通过探索国旗中蕴含的数学知识,渗透爱国主义教育。

  教学重点:理解比例的意义和性质。

  教学难点:应用比例的意义和性质判断两个比能否组成比例。

  教学准备:多媒体课件一套。

  教学过程:

  一、渗透情感,导入新课

  1、媒体出示国旗画面,学生观察,激发爱国情操。

  天安门升国旗仪式

  校园升旗仪式

  教室场景

  签约仪式

  师:四幅不同的场景,都有共同的标志——五星红旗,五星红旗是中华人民共和国的象征;这些国旗有大有小,你知道这些国旗的长和宽是多少吗?

  2、媒体出示国旗的长和宽,并提出问题。

  天安门升国旗仪式:长5米,宽10/3米。

  校园升旗仪式:长2.4米,宽1.6米。

  教室场景:长60厘米,宽40厘米。

  签约仪式:长15厘米,宽10厘米。

  师:这些国旗的.大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同点呢?

  师生交流,得出每面国旗的大小不一,但是它们的长和宽隐含着共同的特点,是什么呢?

  3、学生探索,发现问题。

  师:每面国旗的大小不一样,但是它的长和宽中却隐含着共同的特点,是什么呢?

  学生自主观察、计算,发现国旗的长和宽的比值相等。

  二、认识比例,发现特征

  1、引出比例,理解比例的意义。

  媒体出示操场上的国旗和教室里国旗长和宽。学生计算出两面国旗的长和宽的比值。

  并板书:2.4∶1.6 =3/2

  60∶40=3/2

  师指出这两面国旗的长和宽的比值相等,中间可以用等号连接,并指出像这样的式子叫比例。

  并板书:2.4∶1.6 =60∶40

  2、认识比例,知道比例各项的名称。

  (1)学生照样子利用主题图仿写一个比例,并说出自己是怎样写出来的。

  (2)学生尝试说说什么叫比例。

  (3)教学比例的各部分的名称。

  自学课本的第一段话,初步认识比例各项的名称。

  出示其中一个比例,指出比例各部分的名称。

  学生说说自己写的比例的各项的名称。

  (4)教学比例的另一种写法,学生尝试将自己写的比例换一种写法。

  (5)判断下列几个比能不能组成比例。

  媒体出示,学生判断并说出理由。

  下面哪组中的两个比可以组成比例,把组成的比例写出来。

  (6)6∶10和9∶15 (7)20∶5和1∶4

  (8)1/2∶1/3和6∶4 (9)0.6∶0.2和3/4∶1/4

  (10)思考:比和比例有什么联系和区别?

  学生自主思考,集体交流,了解比例和比的联系和区别。

  3、自主练习,发现比例的基本性质。

  (1)媒体出示

  8∶4=()∶() 15:10=()∶4 12∶()=()∶5

  媒体依次出示三道题,学生独立完成并思考:为什么这样填?你有其它的发现吗?

  (2)师提出问题:在一个比例中,它们项有什么特点?

  (3)学生观察以上式子,自主思考,尝试发现比例的基本性质。

  (4)集体交流,发现性质。

  学生自主交流,发现:在比例里,两个外项的积等于两个内项的积。

  (5)观察自己写的其它几个比例,验证发现。

  (6)小结性质

  学生尝试用完整的数学语言说一说自己的发现。

  媒体出示学生的发现,教师指出这就是比例的基本性质。

  三、巩固练习,提高认识

  1、基本练习

  判断,媒体出示

  应用比例的基本性质,判断下面哪组中的两个比可以组成比例

  (1)6∶3和8∶5 (2)0.2∶2.5和4∶50

  (3)1/3∶1/6和1/2∶1/4 (4)1.2∶3/4和4/5∶5

  2、拓展练习。

  比一比,谁写得多。

  在这九个数中,任选四个数组成比例,并说说是怎样写出来的。

  四、总结全课,升华认识

  学生回顾全课,说说比例的意义和基本性质。

  板书设计:

  比例的意义和基本性质

  2.4∶1.6 =3/2

  60∶40=3/2

比例的意义教学设计14

  【教学目标】

  1、理解比例的意义,认识比例各部分的名称。

  2、让学生经历探讨“两内项之积等于两外项之积”的过程,使之更好理解并掌握比例的基本性质。并能运用比例的意义和比例的基本性质判断两个比能否组成比例,会组比例。

  3、培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。

  【教学重点】理解比例的意义和基本性质。

  【教学难点】

  应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。

  【教学准备】课件,扑克牌10张(2~10以及A),圆规一个。

  【教学过程】

  一、复习准备

  (1)一辆汽车4时行160km,路程和时间的比是多少?这个比表示什么?

  (2)求下面各比的比值,你发现了什么?

  121634184、52、、7106

  教师:同学们发现4、52、、7和106的结果是一样的,说明了什么?(这两个比相等。)这两个比你能用等号连接起来吗?(能。)请同学们用等号把这两个比用等号连接起来。

  二、探究新知

  1、提出问题

  这节课我们在比的知识基础上,进一步学习新知识。

  揭示课题——比例的意义和基本性质。板书:比例的意义和基本性质

  2、探究比例的意义

  课件出示例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。列表如下:

  竹竿长(米)26……

  影子长(米)39……

  教师:观察上表,你能写出多少个有意义的比?并求出比值。把这些比都写出来。

  学生讨论并写出比,教师选几个有代表性的比在黑板上板书。

  教师:观察这些比,哪些能用等号连接?把能用等号连接的比用等号连接起来。

  学生口答,教师板书:32=96,62=93……

  教师:这些都是比例。你能用自己的语言说一说什么是比例吗?

  引导学生用自己的语言归纳比例的意义。(板书:比例的意义)

  教师:29和36能组成比例吗?你是怎么知道的?

  指导学生说出“判断两个比能不能组成比例,要看他们的比值是否相等。”再判断

  25和80200能否组成比例?并说明理由。

  组织并指导学生完成书上第50页的课堂活动。

  3、认识比例的各部分

  教师:在一个比例里,有四个数,这四个数分别叫什么名字?同学们看看书就明白了。

  指导学生看书后汇报。

  教师:请同学们分别找出32=96和62=93的内项和外项。

  学生找出后,随学生的汇报教师板书:

  要求学生找出刚才自己说的几个比例的内项和外项,然后引导学生分析归纳出:在比例里,靠近等号的两个数是内项,剩下的两个数是外项;如果写成分数形式,那么可以用交叉的方法找出比例的内项和外项。

  4、教学比例的基本性质

  教师:前面我们已经探究发现了比例的一个秘密,就是组成比例的两个比的比值相等,比例还有一个秘密,你们愿意去寻找吗?(愿意)你们任意找一个比例,把它们的内项和外项分别乘起来,又可以发现什么?

  学生初步发现两个内项的积等于两个外项的积后,教师提醒学生:是不是每个比例都有这个规律,多找几个比例试一试,如果把这个比例写成分数形式,它是不是也有这样的规律呢?

  教师:同学们通过多个比例的探究,发现它们都有这个规律。你能用你自己的语言归纳这个规律吗?

  指导学生归纳后,教师板书:在比例里,两个内项的积等于两个外项的积,并且告诉学生,这就是比例的基本性质。

  5、运用比例的基本性质判断两个比是否能组成比例

  教师:用比例的基本性质,也可以判断两个比能不能组成比例。请同学们用比例的基本性质判断一下,0、425能否和1、275组成比例?为什么?

  学生讨论后回答:因为0、4×75=25×1、2,所以0、425和1、275能组成比例。

  三、巩固提高

  (1)说一说比和比例有什么区别。

  讨论后指名说:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四项。

  (2)在65=3025这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()×()=()×()。

  (3)下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。

  2,3,4和6

  四、全课总结

  先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。

  五、课堂作业

  (1)指导学生完成练习十一的第1题。

  要求:第(1)小题用比的意义来判断,第(2)小题用比例的基本性质判断,第(3),(4)小题学生自由选择方法判断。

  (2)学生独立完成练习十一的第2题,教师订正。

  《比例的意义和基本性质》教学设计7

  教学内容:

  义务教育课程标准实验教科书人教版数学六年级下册。

  教学目标:

  1.理解和掌握比例的意义和基本性质。

  2.能用不同的方法判断两个比能否组成比例,并能正确组成比例。

  3.通过观察比较、自主探究,提高分析和概括能力,获得积极探索的`情感体验。

  教学过程:

  一、认识比例的意义

  1.出示小红、小明在超市购买练习本的一组信息。

  (1)根据表中信息,你能选出其中两个量写出有意义的比吗?

  (学生思考片刻,说出了1.2∶3、2∶5、1.2∶2、3∶5等多个比,并说出每个比表示的意义。教师适时板书。)

  (2)算算这些比的比值,说说你有什么发现。

  (学生说出自己的发现,教师用“=”连接比值相等的两个比。)

  (3)说说什么叫比例。

  (学生各抒己见,师生共同归纳后板书:比例的意义)

  评析:比的意义、求比值是这节课所学新知的“生长点”。对此,教师将教材例题后(相当于练习)的一组信息“前置”,这样设计与处理,一是使题材鲜活,导入更为自然;二是把“一组信息”作为学生思考的对象,给学生提供了一定的思维空间,学生学习的热情和积极性明显提高。“激活旧知”后,教师引导学生主动进行比较、发现、归纳,最终实现了对新知的主动建构。

  2.即时训练。

  A.判断下面每个式子是不是比例,依据是什么?

  (1)10∶11(2)15∶3=10∶2

  a.学生独立思考,小组讨论交流,说说是怎样判断的,进而说明判断两个比能否组成比例的关键是什么。

  b.剩下的(1)(2)(4)三个比中有没有能组成比例的?

  c.上面几个比有没有能和5∶4组成比例的,你能不能帮它找一个“朋友”并组成比例?它的朋友有多少个?这些朋友有什么相同点?

  评析:认知心理学告诉我们,学生对数学概念、规律的认识和掌握不是一次完成的,对知识的理解总是要经历一个不断深化的过程。因此,上例中教师设计了“即时训练”这一环节。即时训练既有运用新知的直接判断,又有变式和一题多用,较好地体现了层次性、针对性和实效性,它对促进学生牢固掌握新知,灵活运用新知起到了很好的作用。

  3.教学比例各部分的名称。

  (1)引导学生读教材(相关内容),认识比例各部分名称。

  (2)集体交流。(教师板书:内项、外项)

  (3)把比例写成分数形式,指出它的内、外项。

  (4)任意写一个比例,同桌相互说一说比例各部分的名称。

  二、探究比例的基本性质

  1.填数。

  (1)出示比例8∶()=()∶3。想一想,这两个空可能是哪两个数。

  〔刚开始时,学生可能从比例的意义的角度去思考,所以填数相对费时,慢慢地,学生似乎发现了“规律”,填数速度加快。教师将学生的发现(如1和24、2和12、0.5和48……)板书在括号下面,与学生一起判断能否组成比例。〕

  (2)观察思考:在填这些数的过程中,你有什么发现?

  (这一问题满足了学生的心理需求,学生发现每次所填的两个内项之积相等,进而发现“两个内项之积等于两个外项之积”。)

  (3)再次设问:在这些比例中,“两个内项之积等于两个外项之积”,这是一种巧合还是在所有的比例中都有这样的规律呢?(学生意见不一,自发产生验证的需求。)

  A.先验证黑板上的比例式,再验证自己写的比例式。

  B.概括比例的基本性质。同桌相互说一说比例的基本性质。

  (4)学了比例的基本性质有什么作用呢?(学生作答。产生用比例的基本性质去验证能否组成比例的需要。)

  评析:“每个人的心灵深处都有一种根深蒂固的需要,那就是希望自己是个发现者、研究者、探索者。”这一教学环节正是基于满足学生的“心理需求”而设计的。先由开放性问题引入,给予不同认知基础的学生以各自探究的时间和空间,在自主探索、合作交流中学生的认识经历了由“难”到“易”、由“繁”到“简”的过程。通过“你有什么发现”,“这是一种巧合,还是在所有的比例中都有这样的规律”两个问题指明了学生思考的方向,提升了学生思维的层次,使学生人人体验到“发现者”的快乐。在学生主动获取知识的同时,教师还引领学生经历了科学探究的过程,这些“关于方法的知识”对学生终身学习无疑是有益的。

  2.即时训练。

  应用比例的基本性质,判断下面的两个比能否组成比例。

  3.6∶1.8和4∶24∶9和5∶10

  小结:根据比例的基本性质来判断两个比能否组成比例,其实我们是先假设这两个比能组成比例,如果比例的两个外项的积等于两个内项的积,假设成立,两个比能组成比例;如果不相等,就不能组成比例。

  三、巩固新知,解决问题

  1.猜数游戏。

  在下面每个比例中,有一个或两个数被遮掉了,你能根据所学知识把它猜出来吗?

  3∶5=6∶()()∶5=6∶()3∶5=()∶()

  2.你能用3、5、6、10这四个数组成不同的比例吗?把它们都写出来。(学生探索后交流。)

  利用这四个数最多能写出几组比例?怎样写既不重复也不遗漏?(根据时间来安排讨论,也可留作课后进一步探讨。)

  评析:练习设计能紧紧围绕教学目标精选练习内容,注意练习的梯度、层次和思维含量。特别是最后的挑战性问题把学生带入了“欲罢不能”的境界,学生思维活跃,讨论热烈。

  总评:“比例的意义和基本性质”是一堂“老课”,但执教者却能“老课新教”。新授课的巧妙导入,数学化过程的有效展开,训练的精当、扎实、灵活,以及在突出学生是学习的主人,教师是组织者、引导者的课堂师生关系的定位等方面都颇有新意,因而,这是一堂以新课程理念做指导,又保持着数学课“本色”的朴实无华、扎实高效的数学课。

比例的意义教学设计15

  教学内容:人教版新课标小学数学六年级下册《比例的意义和基本性质》P32—34页以及相应的“做一做”,练习六第5题.

  教学目标:

  知识目标:学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别。

  能力目标:能应用比例的意义和比例的基本性质正确判断两个比能否组成比例。

  情感目标:激发学生的学习兴趣,引导学生自主参与知识探究的全过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。

  教学重点:理解比例的意义和基本性质.

  教学难点:应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.

  教学理念:充分发挥学生的主体作用,让学生自主参与知识探究的全过程,主动构建新知,发展学生思维,培养学生研究数学的能力。

  教学准备:课件

  教学过程:

  一、激趣导入

  1、今天能和在座的同学们一起上课我感到非常高兴,听说同学们都非常聪明、爱动脑筋,课上积极回答问题。今天,我和在座的领导老师们想看一看同学们的表现如何,这节课同学们想不想证明一下自己?

  2、请同学们看大屏幕,课件出示P32页四幅图。

  二、探究新知

  1、比例的意义

  师问:

  ①这四幅图中有什么共同的事物?(齐说)

  ②这四面国旗出现在什么场合或什么地点?(指生回答)

  ③这四面国旗的长与宽分别是多少?(指生回答)

  ④这四面国旗的大小相同吗?

  说明:虽然国旗的大小不同,但是,这四面国旗都是按一定的比制作的,那么,我国的国旗法是怎样规定国旗的大小的呢?同学们想不想了解这方面的知识?下面我们就从国旗开始,新知识的学习。

  ⑤请同学们分别写出这四面国旗长与宽的比并求出比值。(指生回答师板书)

  ⑥请同学们看我们写出的国旗长与宽的比及求出的比值,谁发现了我国国旗法是怎样规定国旗的大小的?(国旗法规定:国旗的长与宽的比值是3/2也可以说成国旗长与宽的比是3:2)

  师问:

  ①现在我们选取其中的两个比,如:2、4:1、6和60:40。这两个比的比值都是3/2相等。那么这两个比是什么关系?生:相等。

  那么我们能用什么符号可以把它们连接成等式?生:等号

  谁来用等号把这两个比写成等式?师板书:2、4:1、6=60:40

  ②如果用比的分数形式来表示这个式子也可写成:或2、4/1、6=60/40

  ③根据我们写出的四面国旗长与宽的比及比值,你还能找出这样的两个比并用“=”连接成等式吗?(指生回答并说说是怎样找到这两个比相等的。?)

  师小结:请同学们观察板书的等式,揭示:数学中规定,像这样的式子就叫做比例。(板书:比例)

  师:观察这些式子,你能说说什么样的式子叫比例吗?(找3名同学回答)

  师:同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。

  出示板书:表示两个比相等的式子叫做比例。这就是今天我们学习的第一个新知识。板书:比例的意义

  问题:

  ①从比例的意义可以知道,比例是由几个比组成的?这两个比必须具备什么条件?(板书重点符号)

  ②判断两个比能不能组成比例,关键要看什么?

  ③看大屏幕,刚才我们找出的比都是长与宽的比,现在你能找出这四面国旗宽与长的两个比组成比例吗?(指生回答并说说是怎样找到这两个比相等的?)

  我们已经了解了比例的意义,下面我来考一考大家:

  课件出示P33页做一做1题要求及逐一出示各题,学生回答,教师课件演示。

  2、比例各部分名称

  师:同学们都知道比的各部分都有自己的名称,那么比例各部分名称叫什么呢?下面请同学们自学P34页前两行及例题。同时思考(课件出示)什么是比例的项?什么是比例的外项?什么是比例的内项?你能举例说明吗?

  学生回答上面的问题,教师课件演示。

  做一做:指出下面比例的内项和外项(课件出示)

  4、5∶2、7=10∶6240/160=144/96

  3、比例的基本性质(课件出示)

  观察:2、4∶1、6=60∶40

  思考:两个内项和两个外项之间有什么关系?看看你能发现什么?(可以相互讨论)

  用下面的比例验证你的发现:

  6∶10=9∶158∶2=20∶5

  你能用一句话把发现的规律说出来吗?(找3名同学回答)

  下面我们计算2、4:1、6=60:40的两个內项积与两个外项积,共同验证一下这三位同学发现的规律对不对?集体计算后师问:这三位同学发现的规律对不对?你们发现这个规律了吗?同学们通过自己的观察、计算、验证发现了数学上一个非常重要的规律,同学们真了不起,同学们发现的这个规律就叫做比例的基本性质。(师出示板书,指生读)在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。(这就是今天我们学习的第二个新知识。板书:比例的基本性质)

  师:看大屏幕(课件出示)2、4/1、6=60/40

  问题:如果把比例写成分数形式,根据比例的基本性质我们应该怎样计算两个内项的积和两个外项的积?

  指生回答师小结:把比例写成分数形式,比例的基本性质是不是可以理解为:等号两边的分子和分母分别交叉相乘,积相等。师课件

  演示2、4/1、6=60/40→2、4X40=1、6X60

  4、我们已经理解了比例的基本性质,那么你能根据比例的基本性质来判断两个比是否可以组成比例吗?

  课件出示:你能根据比例的基本性质判断10:2与2、5:0、5是否可以组成比例?

  讲解时可启发:如果这两个比能组成比例,哪两个数是內项,哪两个数是外项,那么根据比例的基本性质,能否计算两个外项的积和两个内项的积。

  因为10X0、5=52X2、5=5,所以假设成立,10:2与2、5:0、5能组成比例,即10:2=2、5:0、5

  5、你会用比例的基本性质判断两个比是否可以组成比例吗?课件出示P34页做一做题目要求及逐一出示各题,学生回答,教师课件演示

  6、师:学习到这里,我们学习了几种判断两个比能否组成比例的方法?

  生:两种。一种是根据比例的意义,看两个比的比值是否相等;另一种是根据比例的基本性质,看两个外项和两个內项的积是否相等。

  三、巩固新知(课件出示)

  做一做,相信你能行!

  1、判断

  ①10∶5=2是比例。()

  ②在比例里,两个外项的积与两个內项的积的差是O、()

  2、填空

  ①在一个比例中,两个外项互为倒数,其中一个內项是1/9,则另一个內项是()

  ②2:9=8:()

  3、用你喜欢的方法判断下面每组中的两个比是否可以组成比例(P37页5题,逐一出示各题,学生回答,教师课件演示)

  四、通过这节课的学习,说说你有什么收获或学到了那些知识?

  五、课后作业:搜集生活中的比例,看看比例在生活中的作用?

  板书设计比例的意义和基本性质

  2、4:1、6=3/260:40=3/2

  2、4:1、6=60:40或2、4/1、6=60/40表示两个比相等的式子叫做比例。

  2、4:1、6=5:10/32、4;1、6=15:10

  5:10/3=15:105:10/3=60:40

  60:40=15:10

  2、4X40=96在比例里,两个外项的积等于两

  1、6X60=96个内项的积。这叫做比例的基本性质。

  《比例的意义和基本性质》教学反思

  本节课是在学生学过比的意义和性质的基础上教学的,它包括比例的意义和组成比例的各部分名称,比例的基本性质。

  教学比例的意义中,我通过出示课本图先了解图意,再写出四面国旗长与宽的比并求比值,根据比值相等进行国旗法教育。然后根据学校里两面国旗的比,得出两个比相等。最后通过四面国旗长与宽的比,写出多个等式,从而概括出比例的意义。其后通过四面国旗宽与长的比巩固比例的意义。比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先通过观察,比较、抽象概括出比例的意义,这样充分发挥了学生的主体作用,让新知不知不觉被学生掌握理解。

  在认识比例的'各部分名称时,比例各部分名称我是让学生通过自主看书学习。设计意图是通过重视自学,培养良好的学习习惯。这部分内容非常容易理解,采用自学的方式,通过两个问题检验,培养学生会看书的习惯。在揭示比例的基本性质时,我先让学生先观察比例式,在思考讨论两个內项和两个外项之间的关系,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。这样学生通过亲身经历的计算、观察、验证、交流表达的活动过程,不仅获得了比例的基本性质,更重要的是在学习科学探究的方法,培养学生主动获取知识的能力。

  习题设计时,旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在巩固新知,开阔视野,培养学生逻辑思维能力。

  通过本节课的教学,我深知有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上,有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在教学中,我对教材进行了有效的处理,让学生在算一算、想一想、说一说中理解了比例的意义,探究出了比例的基本性质,激发了学生学好数学的信心和积极情感。

  我们知道,数学教学的实质是如何教会学生思维。而这节概念课不是对知识简单的复述和再现,恰恰是通过教师的“再创造”,为学生展现出了“活生生”的思维活动过程。于简单的谈话间,简单的提问中,让学生自己观察比较、通过自己分析思考,总结出了“比例”这一数学概念。于不经意的诱导,促使学生自主探究比例的基本性质,通过计算、观察、比较、验证让学生的思维从先前的不知所向到最后的豁然明朗,个个实实在在地当了一名小小“数学家”,经历了一个愉快的探究过程,获得了成功的体验。整节课处处透出浓浓的数学味。

  本节课把比例的意义和基本性质放在一起学习觉得内容较多,完成教学有些困难,同时比例的灵活应用题目没有达到预先的效果有些遗憾,同时比例在生活中的应用再多一些题目就好了,让学生更加深刻地体会到数学和生活的密切联系。

【比例的意义教学设计】相关文章:

比例的意义教学设计12-12

比例的意义教学设计07-26

比例的意义教学设计05-10

比例的意义教学设计03-22

【精选】比例的意义教学设计09-19

比例的意义教学设计【精】03-31

【热】比例的意义教学设计03-31

【精】比例的意义教学设计03-31

【推荐】比例的意义教学设计03-31