比的意义的反思[经典]
在现实社会中,我们的任务之一就是课堂教学,反思是思考过去的事情,从中总结经验教训。反思应该怎么写呢?以下是小编帮大家整理的比的意义的反思,欢迎阅读与收藏。
比的意义的反思1
一、教材分析
反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。
二、学情分析
由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。
三、教学目标
知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式。
解决问题:能从实际问题中抽象出反比例函数并确定其表达式。情感态度:让学生经历从实际问题中抽象出反比例函数模型的'过程,体会反比例函数来源于实际。
四、教学重难点
重点:理解反比例函数意义,确定反比例函数的表达式。
难点:反比例函数表达式的确立。
五、评价与反思
本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式。应该对这一方面的内容多练习巩固。
比的意义的反思2
比例的意义是在学生对比的意义、性质和比值的意义以及求比值的方法有了较充分认识的基础上进一步学习的。掌握这部知识将为进一步学习正、反比例的意义,用比例的方法解应用题奠定了坚实的基础。
由于经过了很长的时间,学生的知识有了一定的遗忘,而本课的学习是建立了上册比的基础知识上学习的,所以在教学前,我先给学生复习了比的知识。什么叫比?什么是比值?怎样求比值?怎样化简比?而组成比例的两个比比值相等,所以求比值就变得非常重要,我就让学生练习了几题求比值的习题,既复习了以前的知识,又为本节课的学习提供了很好的帮助。为充分调动学生的学习积极性,促进学生有效学习。本节课力求做到以下几点:
一、创造有效学习情境,激发学习主动性
在学习比例的意义时,我先让学生根据要求亲自动手写人以两个数的比,并求出比值。然后,分析这些比的比值,看发现了什么?在学生充分感知的基础上,揭示比例的意义。在此同时还要使学生在学习过程中,理解比值相等时组成比例的核心,在判断两个比能不能组成比例时,关键看这两个比的比值是否相等。为强化理解在这时我安排了两种形式的练习:1、判断。2、组比例。最后通过小组讨论:比与比例的联系与区别,并揭示数学知识不是孤立的,而它们之间都存在着密切的联系让学生通过自己的分析、思考、概括出了较为简洁的数学概念,学生感受到成功的喜悦,参与课堂的主动性被充分调动。
二、变“教教材”为“用教材——拓宽教材”
教材是提供给学生学习内容的一个文本,我根据学生和自己的情况,大胆对教材进行了再思考、再开发和再创造,用活、用实教材。这节课中在四面国旗的尺寸中找比组成比例,学生比较容易找到国旗长与宽的'比,两两可以组成比例。同样国旗宽与长的比,两两也可以组成比例。另外每两面国旗的长之比与它们的宽之比也可以组成比例,课题中通过“你还能找出其它的比吗?”的提问,鼓励学生打开思路,充分发挥合作学习的作用,调动学习的主动性,从不同角度去寻找,以加深对比例意义的认识。在练习中要根据给出的4个数据,组比例,隐含着相似三角形对应边成比例的性质。学生通过迁移比较,小组合作交流,多方验证,大家的思维从先前的不知所问到最后的豁然开朗,个个实实在在地当了一名小小的“数学家”,经历了这个愉快的学习过程,获得了成功的体验。
教后反思这节课,我觉得是突出了常态下如何扎实有效的组织学生学好这一节课的内容,使数学学习与现实生活紧密联系,使学生认识到我们的数学学习是有用的,它能解决我们实际生活中的很多问题,从而提高学生学习积极性,从学生掌握知识、课堂参与情况来看,整节课的设计还是比较适合学生的思维发展。在结构上,注重了前后呼应,使整堂课也显得比较紧凑,效果不错。但是学生的动脑方面还不够。
比的意义的反思3
颇为得意的课前准备,明确而清晰的教学思路,使我在讲《小数的意义》一课颇为顺利,表面上取得了成功。但课后的感觉除了“顺利”二字以外,心中总有一份说不出的忐忑不安,经过反思,我的这份感觉变得清晰起来。还记得讲《小数的意义》,我信心十足地走进教室。
我做了充分准备,不仅对课做了精心设计,而且还对学生可能有困难的地方做了估计。课始的商品竞猜,使学生不仅建立了小数与分数的联系,而且兴致颇高,课上到这里,我挺得意的,想今天这节课肯定会成功。可是问题马上就出现了。我开始了第二个环节的教学,完成几分米、几厘米、几毫米的数用分数和小数表示出来后,我抛出了第一个问题:观察这些数据,你有什么发现?这难不倒他们,学生抢着说出很多。可这些发现和我预设答案却风马牛不相及,很难由此概括出小数的意义。
没办法,只能再详细的引:大家可以一组一组的`观察……。经过短暂的思考以后,有几位学生举起了手,小宇不但把小手举得高高的,而且人已经站了起来,于是我请他回答。他站起来,得意地回答出小数的意义。他说话的语速很快,说完以后一双眼睛热切地望着我,我明白他在等着我的表扬。啊,他把小数的意义完美的说出来了,如果不是在这里,放到后面他这样说那就太好了,可是偏偏在现在。我有点不知所措,这个回答不在我的设想之中,一时之间,出现了好几种想法:请他坐下,请别的小朋友回答,不理他;让他说说他的想法;还是……。
在我犹豫的时候,学生都盯着我,看来想置之不理是不行了。于是,我一边示意他坐下,一边又抛出了问题,“你觉得他说的有道理吗?”大多数学生都陷入了沉思,只有个别学生在东张西望,这时的课堂鸦雀无声,我自己也很紧张。我看见有的学生在暗暗地表示赞同,有的则显得茫然。于是我让学生再观察验证,最后,让学生在小组中交流新发现与前面发现的联系……
“强而勿抑,开而勿达,异而勿牵。”教和学是一个学生感知、感受、感悟的过程。这个重要的过程属于学生,也属于教师。在这个过程中,学生应该处于主体的地位,但这个主体地位不是教师给的,而是教师应该尊重的;在这个过程中教师应该发挥主导作用,但这个主导作用的发挥必须围绕着学生这个主体得到发展这个中心,只要是有利于学生主体发展需要的,就应该是我们教学需要努力的。只有把学生的发展放在心中,这才是我们教学所要追求的。才能守住教学永远不应该改变的东西:把学生放在心中,让学生在“教”与“学”中得到充分主动发展。
回想第一节课,成功与失误都缘于我尊重了学生的个性发展,能够放手并能适时引导,而本课的精彩也由此而产生的。只要教师在课堂上关注学生,关注学生的学,定能让课堂焕发师生生命的活力,带来课堂上难以预约的精彩!
比的意义的反思4
比的意义是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的。比的概念实质是对两个数量进行比较表示两个数量间的倍比关系。任何相关的两个数量的比都可以抽象为两个数的比,既有同类量的比,又有不同类量的比。还有每个比中两项的名称和比值的概念,比值的求法,以及比和除法、分数的关系,注意:比的后项不能是0。本课的教学重点是理解和运用比的意义及比与除法、分数的联系;教学难点是理解比的意义。
在学习比的意义的时候,考虑到学生对“比”缺乏感性上认知,所以在教学时我力求体现以下几点:
一、从生活实际出发,联系学生已有的知识引入新知。
这节课我先出示2杯果汁和3杯牛奶,学生能根据所给的数量提出许多问题,有选择把问题写在黑板上并用算式表示。牛奶的杯数是果汁的几倍,果汁的杯数是牛奶的几分之几,可以用我们学过的除法算式来解决,今天我们来研究对两个量比较的一种新的表示方法,引出比的意义教学。
二、加强知识间的`联系,促进学生主动学习。
在这部分中,因为分数、除法、比有着密切的联系,在教学比的意义后,让学生通过讨论、研究、发现知识间的内在联系,研究分数、比与除法的关系,掌握它们间的内在联系,形成良好的知识网络。
三、教学中注意的问题:
1、比、分数、除法的区别,比表示两个数的关系,分数表示的是一个数,除法的是一种运算。
2、体育比赛中的2:0不是比,足球赛中记录的“2:0”的意义只表示某一队与另一队比赛各得的进球分数,不表示两队所得分数的倍数关系,这与今天学习数学中的比的意义不同,它虽然借用了比的写法,但它不是一个比。
一堂课下来,感觉不足之处还有很多,有些细节地方处理得不是很到位。像在教学比的意义时,对谁是谁的几倍或几分之几也可以说成谁和谁的比,强调的还不够,使学生的对两个数相除也可以说成两个数的比的感悟不深刻;还有习题以下内容包括课堂总结和延伸处理得比较粗糙。总之,还有很多地方需要雕琢。
比的意义的反思5
1.开放内容,富数学以丰富内涵。
一般传统的分数意义教学,都是按照书本顺序,根据一幅幅图示或简单的操作认识一些分数,在此基础上归纳意义。这样的组织教学,是浅薄苍白的,不具有活力的士。没能为学生积累足够丰富的感性经验,在此基础上抽象概括非常困难。所以,有必要改变教科书的这种"传统"的呈现方式,使得它能够有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。因此,我开放教学内容,对教学内容进行重组。一道接着一道现成的、呆板的例题不见了,而是提供给学生真实具体而感兴趣的学习材料,在活动中"做数学";教师引着学生逐字逐句分析,记忆定义的现象消失了,取而代之的是学生的自主探究,合作交流,建构自己的数学知识。在本例中通过学生的活动和充分交流,了解分数的表现方法,建立起生动活泼的表象,并理解了分数在生活中更为厚实宽广的内涵。例可以把一个正方形平均分成二份,表示这样一份;也可以是把橡皮平均分成二份,表示这样的一份;还可以把8个圆片平均分成二份,表示这样的`一份有4个圆片;更可以把6个蛋糕平均分成二份,表示这样的一份有二个蛋糕……或者可以把一张纸平均分成三份,表示这样的一份是三分之一,还可以把这张纸平均分成四份,表示这样的一份是四分之一,二份是四分之二等等。这样的教学,使学生认识到分数是无穷的,生动具体、富有生命力的。
2、关注过程,还数学以本来面貌。
传统的教科书把数学的活动过程"压缩"成了毫无生气的结论,定义是枯燥、抽象的,使学生退避三舍。但是,抽象知识的获取过程却是多姿多彩的。如果能再现活动过程,让学生亲身体验如何"做数学",实现数学的"再创造",使学生从中感受到数学的力量,促进数学的学习。所以有必要改变传统教学的面貌,变重结论、轻过程为重活动、重过程。教学时我从学生的生活经验和已有的体验出发,将教材中的知识结论变成探究的具体情境,还以本来面貌,让学生自己动手、动脑"做数学"。在这样的学习情境中,学生是以"做"而非"听或看"的方式介入学习活动,是在学生全身心投入到观察、实验、猜测、推理和交流中,收集资料的过程中,获得切实的体验。以致学生在活动中会以生活实例来表达自己的想法,将生活中积累的常识与数学知识相结合,完善自身的知识结构,进而培养学生能用数学观点考察周围事物的习惯,提高学生应用数学的能力。这样的活动不仅有助于学生理解所学的知识,而且学生在经历了收集信息、处理信息和得出结论后,学会了一些科学探究的方法,培养科学探索的精神,提高了主动获取知识解决问题的能力。
比的意义的反思6
比的概念实质是对两个数量进行比较表示两个数量间的倍比关系。任何相关的两个数量的比都可以抽象为两个数的比,既有同类量的比,又有不同类量的比。教材还介绍了每个比中两项的名称和比值的概念,举例说明比值的求法,以及比和除法、分数的关系。虽然比和除法、分数有着密切联系,但又不完全等同,比更强调的是量与量之间的倍比关系的直接描述,有时并不关注具体比值是多少,而除法、分数更多的'是强调两个量之间的一种运算关系,通常也会同事关注运算的结果。此外,我们可以用比同事表示两个、三个乃至更多的量之间的倍比关系,而除法、分数一般只能表示两个量之间的倍比关系。通过这节课的教学,学生能够理解比的意义,知道比与分数、除法的关系,但是对它们之间的区别还不够清楚。
比的意义的反思7
这一次学校开展了开课活动,在活动中我备课选定了《方程的意义》一课作为研讨课。这课的难点是区分“等式”和“方程”,为能突破这一难点我设计了这节课的教学过程。
本节课教学《方程的意义》,为准备这节课,我研读了这节课的内容,并与旧教材的进行了对比,思考着新教材为什么这样设计?
旧教材先利用天平认识等式,然后认识方程。而新教材通过情境,先让学生提出问题,学生在解决问题的过程中,学到用含有字母的式子表示数量之间的关系,在此基础上,利用天平理解等式的意义,最后揭示方程的意义。
在设计这节课时,我把方程的意义作为教学重点,不仅让学生了解方程的概念,还要会判断哪些是方程。更多思考的是学生对方程的后继学习与思考,注重知识的渗透。如后面学习的等式的性质、用方程解应用题等等。
课堂上我让学生根据创设的情境,提出数学问题,学生几乎提不出表示两者之间关系的问题,都是些求未知数的问题。这时教师就直接出示要求的问题,然后让学生先找等量关系式,我发现只有极少数孩子能找到等量关系。由于找等量关系式教材中第一次出现,学生不知道从哪入手。学生思考讨论了一段时间,我发现也没有结果,我就引导着学生进行分析信息,找到了等量关系。找到了等量关系式,再列含有字母的式子就简单多了。课下我分析,主要是我在备课时,高估了学生,如何引导还需要多研究。这也是我下一步训练的重点。
为了让学生弄清楚方程与等式的关系,我通过天平的演示,让学生理解等式的意义,学生很容易根据天平列出算式。然后教师指出,我们刚才列出的这些式子都叫等式,在这些等式中,你们又发现了什么?学生很容易得出两种等式:一是不含未知数的等式,一种是含有未知数的等式,在此基础上,让学生比较得出方程的概念,然后通过练习判断哪是方程,那些不是方程?最后,让学生用画图的形式表示出等式与方程的关系,教材中没有出现这个内容,但我补充进去了,我觉得这样有助于学生加深对方程意义的理解。本节课从课堂整体来看,大部分学生思维比较清晰,会表述,但也有部分学生表述不清,发言不够积极。看来,课堂教学还要激活学生的思维,调动起学生的积极性,作为教师,还要多想些办法。
“自主合作探究”一直是我们所倡导的学习方式,但如何有效地实施?我认为,“自主学习”必须在教师的科学指导下,通过创造性的学习,才能实现自主发展。“合作探究”必须在学生独立思考的基础上进行,否则,学生则没有自己的主见,交流则会流于形式,没有深度。有了学生的独立思考,当学生展示交流时,不同的思路与方法就会发生碰撞,教师要尊重学生探求的结果,引导学生对自己的结果与方法进行反思与改进,促使全体参与,加生对知识形成过程的理解,培养梳理概括知识的.的能力。
在整个教学过程中,教师作为主导者,要启发诱导学生发现知识,充分发挥学生的潜能,逐步的引导学生对问题的思考和解决向纵深发展,有利于培养学生的倾听习惯和合作。先引入了天平的演示,然后在天平的左右两边分边放置20g和30g的两只正方体、50g的砝码,并根据平衡关系列出了一个等式,20 +30=50;接着把其中一个30g只转换了一个方向,但是30g的标记是一个“?”天平仍是平衡状态。得出另一个等式20 +?=50,标有?的再转换一个方向后上面标的是x,天平仍保持平衡状态,由此又可以写出一个等式20 +x=50。整个过程注重引导学生通过演示、观察、思考、比较、概括等一系列活动,由浅入深,分层推进,逐步得出“等式”――“含有未知数的等式”――“方程”。
本节课的设计充分关注了学生已有的知识经验,结合具体的问题情境,引导学生通过操作、实验、分析、比较,归纳出了方程的意义。教学中我没有将等式、方程的概念强加给学生,而是充分尊重学生原有知识水平,结合具体情境,引导学生分析数量间的相等关系,再用含有未知数X的等式表示出等量关系,并用天平平衡原理来解释各数量之间的相等关系,使学生理解等式及方程的意义,尊重了学生年龄特点和认知水平。
教学中为学生创设了多次问题情境,引导学生独立思考和小组合作研究。
虽然整个教学任务好象是完成了。但从学生的练习中我们发现还有一部分学生对“等式”和“方程”的关系还是没有真正弄清,例好在练习题中有一道讨论题:“方程都是等式,而等式不一定是方程。”这句话对吗?(答案是对的)但是通过同桌小组同学的合作学习和争论,答案不一。虽然做错的同学最后被做对的同学说服了,但这也说明了“等式”和“方程”的教学过程中还存在问题。学生对其还存在模糊概念。进一步研究。
创建形象、生动、与生活密切联系的数学情境,使学生经历“数学情境――建立模型――解释应用”这一学习过程,新课程标准指出:要让学生自主经历知识的来龙去脉,努力的过程比成功的结论对学生的发展更有意义。学生最开心的,应该是自己经过探索后的发现。整个教学过程,是一个让学生获得丰富情感体验的过程,是一个学生乐学、好学、积极进行情感体验的过程。
比的意义的反思8
《方程的意义》这一课的教学。难点是区分“等式”和“方程”,为突破这一难点我这样设计了这节课的教学过程。
新课前进行三分钟口算。上课开始进行简单的小游戏:把粗细均匀的直尺横放在手指上,使直尺平衡。通过这一简单的小游戏使学生明白什么是平衡和不平衡,以此使学生能明白在方程意义教学过程中什么是相等关系,天平中的平衡的情况是当左右两边的重量相等时(食指位天直尺中央),紧接着引入了天平的演示,在天平的'左右两边分边放置20+30的两只正方体、50的砝码,并根据平衡关系列出了一个等式,20+30=50;接着把其中一个30只转换了一个方向,但是30的标记是一个“?”天平仍是平衡状态。得出另一个等式20+?=50,标有?的再转换一个方向后上面标的是x,天平仍保持平衡状态,由此又可以写出一个等式20+x=50。整个过程注重引导学生通过演示、观察、思考、比较、概括等一系列活动,由浅入深,分层推进,逐步得出“等式”——“含有未知数的等式”——“方程”。虽然整个教学任务是完成了。但从学生的练习中我们发现还有一部分学生对“等式”和“方程”的关系还是没有真正弄清。
教学反思:
本节课的设计充分关注了学生已有的知识经验,结合具体的问题情境,引导学生通过操作、实验、分析、比较,归纳出了方程的意义。教学中教师没有将等式、方程的概念强加给学生,而是充分尊重学生原有知识水平,结合具体情境,引导学生分析数量间的相等关系,再用含有未知数X的等式表示出等量关系,并用天平平衡原理来解释各数量之间的相等关系,使学生理解等式及方程的意义,尊重了学生年龄特点和认知水平。
教学中为学生创设了多次问题情境,引导学生独立思考和小组合作研究。如用含有字母的式子表示出数量关系式,用含有x的等式表示数量变化情况等。
总之,本节课从学生认知规律和知识结构的实际出发,让他们通过有目的的交流、讨论,主动构建自己的认知结构,一方面调动了学生的学习热情,另一方面使学生借助集体思维,加深对方程意义的认识,激发了学生的探究欲望,培养了学生的学习兴趣。在今后的教学中:我们还要注意将“等式”和“方程”进行直接对比。以使学生理解和区分“等式”和“方程”。口算题引入铺垫后,要再回过头来充分利用。在讲完“等式”和“方程”后再回到口算题上,将口算题通过变化由等式到既是等式又是方程,这样进行对比使学生弄明白“等式”和“方程”的关系。
比的意义的反思9
分数的意义是解答生活中分数知识问题的关键,特别是分数的两种形式(带单位和不带单位)在具体情景的灵活运用,更是学习的难点。为帮助学生理解具体情境中的分数意义,我们常用画图的方法帮助学生理解与体验,虽然画图时,有时要画精确,有时并不需要画得十分精确,但任何一种不精确的画法,都是建立在能精确画的基础上的,基于这认识,才有了以上动态生成的一幕,本片断体现了:
(1)教师要善于捕捉信息,增强对信息的敏感性。学生不仅是教学的主体,也是教学资源的重要构成和生成者,教师不仅是知识的呈现者,学习的指导者,更重要的是教学过程中信息的重组者。教师要眼观六路,耳听八方,对学生的每一个信息,及时、准确地判断它的有效性、可利用性,对有价值的信息要组织学生“拾柴、浇油、扇风”把火烧旺。生4的质疑是生成探讨空间,形成思维碰撞的生长元,教师及时细心地捕捉,以启发性的评价“这倒是一个值得研究的问题”,把它作为一个重要的教学资源加以利用,才生成了生6、7、8精彩的思维火花。生4的质疑出乎教师的意料,对此,教师不加轻易的评判与解释,而是将机会留给学生,让学生讨论、探究、展示,使学生在经历学习过程的同时,又体验到成功的快乐。
(2)尊重个体差异。同一问题由于各人的思考深度,广度及原有经验基础的差异构成不同的体验与认识,这种不同的体验与认识在相互碰撞中得到提升。生6、7、8的奇思妙想在宽松的氛围中得到生成。一部分学生在冲突中不断创造自己的精确画法,使这部分人的潜能得到了充分的释放,演绎着他们对这些分数的独特理解,另一部分学生也从同学创造的`画法中,不断加深着自己对分数意义的理解,从而达到让不同的学生得到不同的发展。
(3)开放评价主体,增强互动。关注评价活动的多边性,提倡师生、生生之间的相互交流与评价。片断中,教师在关键处,能即时评价,给学生以启发性的引导(如面对学生的质疑),更注重留给学生相互评价的空间和时间。如面对不同的画法,让学生自由讨论,再作评价。所以也才有了学生大胆的质疑、尖锐的反问、由衷的赞叹。
比的意义的反思10
在学生原有知识经验的基础上,我设计了本学案,旨在帮助学生充分回忆起分数和小数的智慧,并初步感知小数和十分之几、百分之几的关系。
首先,探究一位小数和两位小数的意义是本节课的重点,教学时,利用学生的复习学案内容以及学生已有学习经验组织教学,让学生经历数学知识的形成过程,注重让学生经历探究与发现的过程。从学生熟悉的米尺子图入手,然后再以面积图为主进行直观探究一位小数的意义。两位小数和三位小数则放手给学生,让学生利用手里的学案和三个问题进行自主学习。在学习一位小数之后,学生有了一定的学习经验,能较好的完成任务。
通过一系列的具体操作化抽象为具体,使学生明确了一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几,这样轻松理解了小数的'意义,并运用知识迁移,明确了四位小数、五位小数等多位小数与分数的关系,提高了教学的时效性。
这些都是本节课的重点,而出现这些问题说明本节课教学设计还有一些问题,在教学重点知识时,要慢下来,让学生充分理解、掌握。如何帮助学生理解小数的意义,需要继续探究、改进。
比的意义的反思11
本节课的难点是理解小数的意义。这不仅因为小数的意义具有一定程度的抽象性,学生建构对小数的理解,需要积累丰富的感性认识,经历由具体到一般的归纳过程;而且小数作为一种特殊的分数,它的概念是建立在分数概念基础之上的,但由于学生尚未系统地认识分数,这些显然都会影响到他们对小数意义的理解。针对这一现状,我在教学中充分考虑学生的已有的认知经验,以米尺为桥梁,找出分数与小数的契合点,让学生主动建构小数概念。
三年级下册学生对一位小数有了一定的认识,但时至今日学生难免会有所遗忘,为此,在第一个环节,我借助米尺让学生认识一位小数,并在此基础上去认识两位小数、三位小数....这种无形迁移,不但利于新知识的研究,而且使本来跨度较大的.分段的教学融合为一体,从而可以更具体、更有效地帮助学生理解小数的意义。
在第二个“探索两位小数”环节时,教学安排上主要有两个特点:
一是利用米尺强化用“米”作单位的分数表示1厘米或几厘米的思考过程,引导学生由1分米是十分之一米想到1厘米是百分之一米,由1厘米是百分之一米想到几厘米是百分之几米,帮助他们在一系列的数学思考中,突破“用百分之几米表示几厘米”这一学习难点。
二是让学生及时的进行观察、比较、归纳。在把1厘米和几厘米改写成用米作单位的分数和小数后,我要求学生观察、比较写出的分数和小数有什么共同点,并及时总结出:“这些两位小数都表示百分之几”。这样的归纳,使小数的认识过程更加顺畅。
第三个环节探索三位小数时,主要是注意给学生留出更多独立思考、自主探索的空间。引导学生由两位小数类推出三位小数,在类推中逐步明确三位小数的含义。
第四个环节概括小数意义时,我引导学生在观察、比较的基础上抽象概括出小数的意义,并注意引导学生适当拓展已有的认识,帮助他们相对完整的掌握小数的意义。
在实践运用环节中,我根据学生的知识接受程度的不同为他们设计了三个不同发展层次的练习,由易到难、有具体到抽象,有利于学生从不同角度不断体验、理解小数的意义。不足之处:
1、备课时,备得不够充分,导致课堂上的PPT出现三次明显的错误,我有些犹豫、有些慌张,没有灵活的处理好,这说明教学机智不足。
2、归纳小数的意义是本节课的重难点,按照我们备课组的设想,要想突破重难点,就是要给学生留有充足的时间交流讨论的,但我恰恰在这方面没有做好,流于形式,导致学生在最后一题中理解出现了一些困难。
3、口误较多,语言不够精炼,课堂调控能力还有待提高。一直都是老师在讲,没有注重给时间学生自己探讨,违背新课改的目的。
3、没有与学生进行互动,也没有让学生之间进行交流,上课太死板,没有新意,没有充分的让学生们进行思考。导致这节课很难分辨学生是否已经掌握新知识。
4、在课堂上有的内容重复过多,练习过多,应减少不必要的内容,多空出时间让学生提出问题,和同学及老师一起探讨。把握好与同学之间的交流,让学生自己在探索中掌握新知识。
以上是我的一些粗略的反思,当然我还有很多不成熟的地方,在今后的教学中我会改正自己的不足,根据教学情况对学生做出最适合他们的教学方式,也希望各位老师能给予批评指正。
比的意义的反思12
比的意义这部分内容是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的。比的概念实质是对两个数量进行比较表示两个数量间的倍比关系。任何相关的两个数量的比都可以抽象为两个数的比,既有同类量的比,又有不同类量的比。教材还介绍了每个比中两项的名称和比值的概念,举例说明比值的求法,以及比和除法、分数的关系,着重说明两点:(1)比值的表示法,通常用分数表示,也可以用小数表示,有的是用整数表示。(2)比的后项不能是0。本课的教学重点是理解和运用比的意义及比与除法、分数的联系;教学难点是理解比的意义。
学生是在学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行学习的。高年级学生具有一定的阅读、理解能力和自学能力,所以在教学时,组织学生以小组为单位进行研究、探索、讨论、总结,培养学生的创新意识和自主学习能力。
课后,我对情境的使用产生了很多迷惑,不知怎样使用情境来抽象出比,什么是抽象出,怎样抽象出,生活及生活中的数是真实存在的.,而文字的描述是抽象的,也就是通过生活情境来认知比的存在及它存在的意义。
今天这节课情境很多,并不是利用再利用的问题,问题是让学生通过对这些生活情境的运用明白,哦!生活中的这些倍数关系、量与量之间的相除关系都可以用比来表示,课后我又阅读了教学用书,书中提到“由生活情境中抽象出比的概念,使学生感受到刻画两个量之间的数量关系,体会引入比的必要性以及比在生活中的广泛存在。”由此我想到在情境的运用引出比的意义后让学生多举一些生活中的比来体会比在生活中的广泛存在,就如在举例中学生会提到比赛场上分数之比,加以比较也会让学生明白生活中的比是两个数的倍数关系、两个量相除的关系,这也应该算是我们所要研究的课题的体现吧,运用生活中的比帮助学生直观的认识比、应用比,学生的大量实例会感染其他学生体会到生活中的比,从而达到课题目标的实现。
一堂课下来,感觉不足之处还有很多,有些细节地方处理得不是很到位。像在教学比的意义时,对谁是谁的几倍或几分之几也可以说成谁和谁的比,强调的还不够,使学生的对两个数相除也可以说成两个数的比的感悟不深刻;还有因为时间原因,习题以下内容包括课堂总结和延伸处理得比较粗糙。总之,还有很多地方需要学习改进。
比的意义的反思13
——“数形结合”在教学中的一点尝试
《小数的产生和意义》是人教版四年级下册《数学》教材第四单元第一课时的内容。在教学这一内容时,我运用“数形结合”的思想,进行了两次不同的尝试教学:
第一次教学:“小数的意义”这部分内容我是这样来处理的:借助课件直观形象的优势,让学生在想象、类推中理解“小数的意义”。教学过程如下:
课件演示:把1米平均分成10份。让学生观察后思考:把1米平均分成10份,每份是多少分米?如果用米作单位写成分数是多少米?写成小数是多少米?学生回答后追问:这样的3份或7份用分数和小数又怎样表示呢???学生借助课件写出相应的分数和小数后,引导他们观察板书归纳出“一位小数”的概念。在“两位小数、三位小数”的意义也采用这个方法,让学生在推理、想象中探究。为了让学生更清楚地看到把1米平均分成100份,每份是1厘米,我利用多媒体课件把1厘米放大。然而课件展示1厘米的长度和1分米的长度差不多。给学生一定的误导。结果是:0.1米、0.01米、0.001米的实际长度是多少?学生头脑中一点印象也没有。以至于在后面学习小数的“计数单位”时感到很空洞,他们不知道“计数单位”是指什么?为什么要以0.1、0.01、0.001??作为小数的计数单位?
反思教学上述教学,存在着这样几个问题:其一、没有帮助学生在头脑中建立0.1米、0.01米、0.001米??具体表象。学生以课件为支撑,借助想象去推理。由于缺乏操作体验的过程,学生头脑中的0.1米、0.01米、0.001只是几个概念而已,至于0.1米、0.01米、0.001米??实际长度是多少?头脑中没有印象。这样抽象与表象之间缺乏应有沟通,影响了后面“小数计数单位”的教学。第二学生对小数的计数单位缺乏体验的过程。教学中没有设计用0.1、0.01、0.001??等为计数单位来找小数的体验过程。其三、课件的误导。课件出示1分米、1厘米的放大图,展示给学生的1厘米、1毫米与实际长度相差甚远。反而对学生产生的误导:认为1厘米与1分米的长度相等。
针对上述问题我进行了如下的修改:第一、在运用多媒体课件的同时,加强学生的操作体验。如教学110米就是0。1米时,增加了在直尺上任意找0.1米的活动。让学生知道这个0.1米是指十份当中的任何一份,而不是单指0—1之间的这一份。同时让学生围绕“0.1米”这个基本的计数单位在直尺上找小数的过程:如在米尺上找出0.3米,说一说你是怎样找出0.3米的?0.3米是几分之几米?0.3米里面有几个0.1米。或在米尺上找出7个0.1米,想一想用小数表示是多少米?用分数表示又是多少米???让学生在“找”“说”的活动中,把0.1米的实际表象深深印在脑海里,同时也感悟到一位小数都是由几个0.1组成的`,1米里面有10个0.1米。0.1是一位小数的计数单位。第二、为了防止放大图给学生的误导,在出示课件后安排了让学生在直尺上找1厘米、1毫米的活动。让他们在头脑中建立1厘米、1毫米正确的表象。
按照上述两个教学环节的设计,我进行了第二次试教。教学中我发现:“学生在直尺上找0.1米”时思维非常活跃,主要体现在以下几个方面:一是:在直尺上找0.1米时,学生欣喜地发现:把1米平均分成10份,0.1米不仅仅是指0—1之间的长度,8—9之间的长度是1米的110也是0.1米。“不同的位置为什么表示的长度都是0.1米?”学生面带疑惑。经过观察、比较、讨论学生明白了:原来它们都是指十份当中的任何一份。他们还发现:1米里面竟然有10个0.1米??学生在“找0.1米”的过程中,“0.1米”的实际大小已经深深地印入了脑海。同时学生对“0.1”是一位小数的计数单位也有了一定的体验和理解。这个过程正是他们自我吸收、内化新知过程,它较好地体现了数形结合的思想,培养了学生思维的深刻性。二是:提问“暗示”培养对应思维、可逆思维。小数实质上是十进制分数的另一种表示形式。教学中我采用提问来“暗示”来突破这一难点,提问时围绕“0.1米”这个基本的计数单位来设计问题:如在米尺上找出0.3米,说一说0.3米是几分之几米?0.3米里面有几个0.1米。这个问题意在以0.1米为基本的计数单位,在直尺上找到0。3米,然后根据小数0.3米找到相应的分数。又如在米尺上找出7个0.1米,想一想用小数表示是多少米?用分数表示又是多少米?此问意在让学生以0.1米为基本的计数单位找出0.7米后,找到与之对应的分数。并同时渗透0.7米里面有7个0.1米。这样一正一反的提问,让学生能意识到小数实质上是十进制的分数。有效培养他们的对应思维、可逆思维。教学实践证明:在教学中运用数形结合,能激发学生学习数学的兴趣,增强学生的求新、求异意识。符合儿童的认知规律,是提升学生思维的必由之路。
比的意义的反思14
分数的意义对于学生来说是一个比较抽象的概念。一步一步地从具体的实例中逐步归纳出分数的意义是本节课所要解决的重点问题。把许多物体组成的一个整体看做单位“ 1 ”是本节课所要解决的.难点问题。课堂上,我注重数学与生活的联系,以提升学生的数学思维为核心,引导学生在动手实践、自主探究与合作交流中体会。
数学源于生活,回归生活。在本节课中,我注重教材的开放性和思考性,让学生有自主选择的权利和广阔的思维空间,魏书生有这样一句话:教师不替学生说学生自己能说的话,不替学生做学生自己能做的事,学生能讲明白的知识尽可能让学生讲。因此我负责给学生提供长方形纸片、苹果、糖等,让学生自己通过“选一选,折一折,分一分”等一系列的操作,自己得到分数,并说明每个分数是怎样得到的这样一个开放的教学环节。在通过比较一个物体,一个图形,一个计量单位,一个整体,认识和理解单位“1” 。最后对大量具体的分数充分感知的基础上,引导学生及时进行概括,得出分数概念。这个环节实际上就是学生对分数意义的感知过程。
心理学表明:良好的、愉悦的环境能激发人积极向上。课堂上师生关系民主平等,同学之间团结协作、合作交流、互相启发,信息多向交流,有小组交流、全班汇报。教师不仅是组织者和引导者,而且是学生年长的伙伴和真诚的朋友,让学生感受心理安全、心理自由,使他们兴趣盎然,自信与意志、态度与习惯等方面得到充分培养和发展。
通过这节课,使我认识到每一个数学知识都是在学生亲身经历了知识产生过程、体验了愉快的学习过程之后才能在学生的脑海中生根发芽。也只有这样引导学生有效学习,才能有利于学生学习更有价值的数学,从而使他们获得发展。在今后的教学上做到“三活”即让学生“学生活中的数学” 、 “在活动中学数学二” 、 “灵活地学数学” 。
比的意义的反思15
本课的教学目标是结合具体情境,体会小数的意义与特征,并结合具体的购物环境能认、读、写简单的小数。
通过本课的教学我发现大部分学生都能达到本课的教学目标。由于本课是学生第一次学习小数,因此在教学过程中我认为首先让学生读懂商品标价牌是购物必需的知识技能。又由于新年刚刚结束,学生都有一些压岁钱,购物是三年级学生最熟悉的情境。因此一上课我就创设了购物的情境,并出示商品的价格:笔记本3.50元,让学生说说这本笔记本是几元几角,这是理解小数的意义。在认、读、写小数的学习过程中,都是以学生已有的.“元、角、分”的经验为背景进行教学的,学生学起来比较轻松,易于接受。会用元、角、分说明用小数表示的商品价格,是理解小数意义的一个标志。认、读、写小数的学习过程,都是以学生已有的“元、角、分”的经验为背景,并在具体情境中进行。从课堂上看,大部分学生掌握的比较好,因为他们在实际生活中已具备一定的生活经验,老师在教学中再加以指导,学习起来就比较轻松容易,而且整个课堂气氛也非常的热烈,但也有个别学生存在一些问题。比如:16.85读作十六点八十五,一张一角和一个五分写成1.5元。
【比的意义的反思】相关文章:
比的意义的反思01-22
比的意义反思09-27
(通用)比的意义反思09-15
比例的意义的反思经典09-26
《比的意义》教学反思06-02
比的意义教学反思06-03
比的意义课后反思10-10
比的意义的教学反思12-20
[精品]比的意义的反思07-28