《比例的意义和基本性质》教学设计(通用10篇)
作为一位不辞辛劳的人民教师,很有必要精心设计一份教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。怎样写教学设计才更能起到其作用呢?下面是小编收集整理的《比例的意义和基本性质》教学设计,仅供参考,大家一起来看看吧。
《比例的意义和基本性质》教学设计 1
教学内容:
比例的意义
教学目标:
使学生理解比例的意义,能应用比例的意判断两个比能否成比例。
教学重点:
比例的意义。
教学难点:
找出相等的比组成比例。
教学过程:
一、旧知铺垫
什么是比?
(1)一辆汽车5小时行驶300千米,写出路程与时间的比,并化简。
300:5=60:1
(2)小明身高1.2米,小张身高1.4米,写出小明与小张身高的比。
1.2:1.4=12:14=6:7
2.求下面各比的比值。
12:16:4.5:2.710:6
二、探索新知
1.教学例1。
(1)实物投影呈现课文情境图。(不出现国旗长、宽数据)
①说一说各幅图的情景。
②图中有什么相同之处?
(2)你知道这些国旗的长和宽是多少吗?
①出现各图中国旗的长、宽数据。
②测量教室里国旗的长、宽各是多少厘米。
(3)(指教室里的国旗)这面国旗的长和宽的比值是多少?
学生回答教师板书:
60:40=
(4)操场上的国旗的长和宽的比值是多少?与这面国旗有什么关系?
①学生回答长、宽比值。
2.4:1.6=
②两面国旗的长和宽的比值相等。
板书:2.4:1.6=60:40
也可以写成=
(5)什么是比例?
在这一基础上,教师可以明确告诉学生比例的意义,并板书:
表示两个比相等的式子叫做比例。
(6)找比例。
师:在这四面国旗的尺寸中,你还能找出哪些比可以组成比例?
过程要求:
①学生猜想另外两面国旗长、宽的比值。
②求出国旗长、宽的比值,并组成比例。
③汇报。
如:5:15:10=
5:15:105:2.4:1.6
2.做一做。
完成课文“做一做”。
第1题。
(1)什么样的比可以组成比例?
(2)把组成的.比例写出来。
(3)说一说你是怎么找的。
(4)同学之间互相交流,检验各自所写的比例。
第2题。
(1)学生独立写比例,看谁写得多。
(2)同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。
3.课堂小结。
(1)什么叫做比例?
(2)一个比例式可以改写成几个不同的比例式?
三、巩固练习
完成课文练习六第1~3题。
《比例的意义和基本性质》教学设计 2
教学内容:
比例的基本性质
教学目标:
1.使学生进一步理解比例的意义,懂得比例各部分名称。
2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。
3.能运用比例的基本性质判断两个比能否组成比例。
教学重点:
比例的基本质性。
教学难点:
发现并概括出比例的基本质性。
教学过程:
一、旧知铺垫
1.什么叫做比例?
2.应用比例的意义,判断下面的比能否组成比例。
0.5:0.25和0.2:0.4:和5:2:和:0.2:和1:4
3.用下面两个圆的有关数据可以组成多少个比例?
如(1)半径与直径的比:
(2)半径的比等于直径的比:
(3)半径的比等于周长的比:
(4)周长与直径的比:
二、探索新知
比例各部分名称。
(1)教师说明组成比例的四个数的`名称。
板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如:2.4:1.6=60:40
内项
外项
(2)学生认一认,说一说比例中的外项和内项。
如:
外内内外
项项项项
《比例的意义和基本性质》教学设计 3
教学目标:
1、知识与能力目标:在具体情境中,理解比例的意义和基本性质,会应用比例的基本性质正确判断两个比能否组成比例。
2、过程与方法目标:通过在探索比例的意义和基本性质的过程中,进一步发展自己的合情推理能力。
3、情感态度价值观:通过自主学习,经历探究的过程,体验成功的快乐。
教学重难点:
教学重点:
理解比例的意义和基本性质。
教学难点:
应用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。
教学过程:
师生问好!
师:课前我们先进行一组口算练习,下面请##同学上台主持。
一、求比值
3 : 8= 2 : 6= 4 : 4= 9 : 3= 8 : 24=
5 : 20= 8.8 : 1.1= 16 : 96=
二、化简比
4 : 5= 2 : 20=
32 : 4= 4 : 44=
15 : 25= 10 : 80=
师:看来同学们口算的都比较准确,昨天我们共同交流了学习目标,大家进行了自主学习,下面请同学们在小组内对学自主学习中的知识链接部分
(小组活动)
师:知识链接的内容是上学期我们学过的有关“比”的知识,今天我们要学的知识,也和“比”有密切的联系,看大屏幕,在山东半岛的东南端有一座啤酒飘香的城市青岛,而青岛啤酒更是闻名中外,这节课我们就一起探究啤酒生产中的数学,这是一辆货车,正在运输啤酒的主要生产原料——大麦芽,这是它2天的运输情况,根据这个表格,你能发现哪些数学信息?
(学生回答)
师:这位同学发现的数学信息真全面,那你能根据这些数学信息提出有关“比”的数学问题吗?
(学生回答)
师:同学们真了不起,提出了这么多问题!
学习数学,我们不仅要善于提问,还要善于观察,下面请同学们在小组内交流一下自主学习的内容,组长分好工,准备汇报展示。
(小组活动)
师:哪个小组的同学愿意来汇报自主学习的内容?
生汇报:我来汇报……其他小组有什么评价或补充吗?
师评价
师:看来同学们学的不错,表示两个比相等的.式子叫做比例,根据比例的定义我们知道比需要满足两个条件就可以组成比例:两个比这两个比的比值相等,例如16 :2 = 32 :4,师:2:1与谁能组成比例?
(生答)
师:我真为你们感到骄傲,想到了这么多不同的答案!
组成比例的四个数叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
说出老师指的这个数是比例的外项还是比例的内项?
(师指生齐说)
师:同学们反应特别快!比例还可以写成分数形式,那这个比我们可以写成
师:请你观察,在这个分数形式的比例里,比例的外、比例的内项是谁?
师:同学们表现特别棒,那老师来考考你!看能不能通过刚才所学的知识解决我会应用。
师:看来同学们学的真不错,其实,在比例的2个外项和2个内项之中隐藏着1个秘密,下面,请同学们以16 :2 = 32 :4为例,研究一下,试试能不能发现这个秘密,为了研究方便,老师给你提供3个温馨提示
(指1生读温馨提示)
(生合作探究)
师:哪个小组的同学愿意上台来把你们的发现跟同学们分享。
(生汇报展示)
师:同学们能通过举例,验证自己的发现,太厉害了!在比例里,两个外项的积等于两个內项的积,叫做比例的基本性质,观察这个分数形式的比例,可发现交叉相乘的积相等。
师:下面我们就用比例的基本性质解决拓展应用
生
师:同学们真了不起,想出了这么多不同的答案!通过本节课的学习,你有什么收获?
(生谈收获)
师:同学们的收获可真不少!这就是本节课我们要学习的《比例的意义和基本性质》
师:下面我们进行达标检测
(生完成后)
师:哪个小组的同学愿意来汇报自主学习的内容,其他同学拿出红笔,同桌互换。
(小组汇报)
师:全对的同学请举手,组员全对的奖励一颗小印章。
师:同学们这节课表现得真棒,继续努力,好,下课!
教后反思:
《比例的意义和基本性质》是青岛版六年级下册第35—36页的内容,本节的教学目标制定如下:
1、在具体情境中,理解比例的意义和基本性质,会应用比例的基本性质正确判断两个比能否组成比例(重点)。
2、通过在探索比例的意义和基本性质的过程中,进一步发展自己的合情推理能力(难点)。
3、通过自主学习,经历探究的过程,体验成功的快乐。本节概念性的东西较多,学生需要理解:比例的定义、项、内项、外项、内项的积、外项的积等等。因此对此类知识,我大胆放手,通过让学生自学课本,让学生讲的方式,使学生的学习能力得到了提升。 备课前我查阅了有关比例的意义和基本性质的很多资料,并观看了视频,在研读了课标及教学用书后设计了自己的教学思路。《比例的意义和基本性质》是属于概念的教学,在课的设计上我紧扣“概念教学”这一主题进行设计。下面我从以下几方面反思自己的教学:
一、找准知识衔接点,为新知做好铺垫
比例的意义和基本性质,是在学生学习了“比”后进行的,而“比’是上个学期学习的知识。根据我对学生的了解,大多数学生会把学过的不相关的知识忘到脑后,因此,通过课前口算练习和知识链接环节,不仅让他们复习了比的定义,还对化简比、求比值的概念在脑中闪动一下,为学习比例的意义打好铺垫。因此学生在根据比例的意义判断两个比能否组成比例时,学生掌握的很好。
二、相信学生利用导学案自学的能力,大胆放手。
课改鼓励学生预习,大多数学生能认真预习,但也会有个别学困生,只为了完成老师布置的任务,仅在书上画一画,留留痕迹而已。
三、从情境图入手,丰富资源
从境景图入手,主要是让学生能通过现实情景体会比例的应用,运输量和运输次数的比的比值是相等的,由此引入比例的意义的教学。
四、自主探索、合作交流、探究新知。
在教学这节课时,我能充分发挥学生的主体作用,让学生通过小组讨论、交流,自主得出在比例里,两个外项的积等于两个内项的积,然后举例验证,最后归纳出比例的基本性质。学生用实际行动证明了他们对这部分知识的掌握,积极性也很高。
五、练习由易到难
每个知识点都紧跟相应的习题,这样可以及时巩固新知,同时能发现学生掌握的情况。在学习了比例的基本性质后,把12 : ( ) = ( ) : 5这个比例补充完整,告知学生有无数个比例,这样能推动学生积极思考,培养学生的发散思维。
根据一个乘法等式,写出比例,鼓励学生逆向思维,意在考察学生能否灵活运用新知。学生的表现也挺让我惊喜的,学生的思维很灵动。
每一次的课,总会有一些优点,但也发现了自己的一些不足:
一、采用多种评价方式
二、研究教材、挖掘教材、如何准确地处理和把握教材的能力还有待提高。
只有在不断反思中,才能提高自己的教学素养,才能开辟出一片新的绿地。以上是自己对本节课的一些反思,希望领导和老师们批评指正。
《比例的意义和基本性质》教学设计 4
教学内容:
比例的意义(教材第40页的内容)
教学目标:
1、理解和掌握比例的意义。
2、了解比和比例的区别与联系。
2、能用比例的意义判断两个比能否组成比例。
教学重难点:
1、认识比例,理解比例的意义。
2、在已有知识的基础上,结合实例引出新的知识。
教具准备:
情景图、多媒体课件、习题卡。
教学过程:
一、导入
出示课题:比例
看到课题你想到了以前学过的什么知识?(生1,生2等回答)
我们已经了解了比的这些知识,请做下面练习。
求下面各比的比值。
18:453:52.7:4.5
求完比值你觉得哪些比有联系?
【设计意图:通过复习比单关的有关知识。唤起学生对已有知识的回忆,为新知的学习做好准备。】
“例”在汉语词典里的解释为符合某种条件。今天这两个比的比值一样,能不能用等号连接呢?
师:相机板书:3:5=2.7=4.5?
今天我们将深入学习比例的意义,看到课题你想了解什么知识呢?
板书完整课题:比例的意义
二、揭题示标。
预设:生:比例的意义是什么?
生:比例的意义有什么作用?
(师趁机板书在黑板右上角)
【设计意图:通过让学生读课题,提问题,明确本节课的学习目标,做到有的放矢。同时培养了学生的问题意识。】
本节课我们就来完成这两个目标:
三、自主探索
出示:中华人民共和国国旗国旗是我们中华民族的标志和象征,神圣不可侵犯,你在什么地方见过国旗?
【设计意图:对学生同时进行思想品德教育和爱国教育】
生各抒己见。
你知道下面这些国旗的长和宽是多少吗?它们有大有小,都符合要求吗?今天我们一起来探讨。
自学指导:
1、请每位同学任选两面国旗,分别计算出它们长与宽的比值和宽与长的比值。
2、发现了什么有趣的现象?
3、把你的发现尝试用算式写下来。
(5分钟后,期待你精彩的分享)
【设计意图:充分利用教材中的主题图设计教学情景,设置悬念,国旗为什么形状相似却大小不一,这其中的奥秘何在?不仅激发了学生的学习兴趣,更能让学生通过形象的感受大小不同的国旗的变化。从而直观地感受比例的本质内涵。】
(二)自学
学生认真看书自学,教师巡视,督促人人都在认真地思考。
(三)汇报分享
谁愿意把你的结果和大家分享?师相机板书
(1)15:2.4=10:1.6(2)60:15=40:10(3)…(4)…
原来在国旗中有这么多的相等关系。国旗的缩放是按比例进行的。
我们把比值相等的两个比用等号连起来。这样的式子就是比例。请同学读数学课本,40页,用笔勾画出重点词句,并读一读。
【设计意图:放手,让学生计算出每面国旗长和宽的比值。从中发现它们的比值相等,可以用等号连起来,自然而然地引出比例,然后让学生阅读课本,初步感受比例的意义】
师:你还能写出两个比组成的比例吗?先自己选,再在小组里说一说。
生:…
师:你能根据自己的理解说说什么叫做比例吗?先同桌互说,再小组内互相说一说,再指名汇报。
出示“比例的意义”概念
擦去开始板书中的“?”并把比例可用分数形式表示板书出来
【设计意图:这一环节的设计,让学生通过观察,交流,思考等活动,充分感知比例的意义,并用自己的语言说出自己对比例意义的理解】
师:你能说一说组成比例要具备哪些条件吗?
生:…
师:根据你的理解,请看主题图,你还能找出哪些比组成比例?学生先独立思考,再小组合作,交流探究。通过这节课的学习,你找到了设计国旗的奥秘了吗?
生:…
【设计意图:学生概括出比例的意义后,没有就此终止,而是让学生通过小组合作交流,给学生足够的时间空间,让学生进一步探讨。寻找解决问题的有效途径,让学生的数学思维得到提升。通过收集学生写出的比例,不难发现,任意两面国旗的长与宽之比,宽与长之比,长于长之比,宽与宽之比都可以组成比例,国旗的尺寸中就隐含着这个秘密】
四、当堂检测(牛刀小试)
下面各比能组成比例吗?你是怎样判断的?请写出计算过程。
(1)3:7和9:21
(2)15∶3和60∶12
五、当堂训练:
1、把下面的式子进行归类:
(5)72:8=3X3(6)3.6:6=0.6
比:()
比例:()
思考:你快速做出判断的原因是什么?明白了比和比例有什么区别?
2、判断:
(1)、有两个比组成的.式子叫做比例。()
(2)、如果两个比可以组成比例,那么这两个比
的比值一定相等。()
(3)、比值相等的两个比可以组成比例。()
(4)、0.1∶0.3与2∶6能组成比例。()
(5)、组成比例的两个比一定是最简的整数比.()
六、拓展提升(思绪飞扬)
1、写出比值是7的两个比,并组成比例。
2、12的因数有(),从12的因数中挑选4个数组成比例是()。
3、有两种蜂蜜水:第一种,用2杯蜂蜜和10杯水调配制而成;第二种,用3杯蜂蜜和15杯水调配制而成。那种更甜呢?你能用今天所学知识判断出来吗?
设计意图:通过设计不同层次的练习,让学生掌握组成比例的思路和方法,使不同层次的学生思维都得到发展,从而加深对比例的意义的理解和掌握
七、全课总结
今天这节课你有什么收获?
八、课堂作业
第43页第2、3题。
九、抽查清。(每组4号同学完成)
判断下面每组中的两个比能不能组成比例。
30:5和48:812:0.4和3:5
十、板书设计
比例的意义
表示两个比相等的式子叫做比例。
比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
十一、教学反思:
本节课属于概念教学,分五个环节设计教学,利用十五个问题贯穿整节课,以问导学,以问导疑,以问导思,以问导获,注重培养了学生的各种能力,全课体现了以下几个特点:
1.关注了学生已有的知识与经验。课的开始从引导学生复习比的知识入手,通过求比值相等的两个比,可以用“=”连起来,自然而然的引出比例,这样的设计符合学生的认知规律。
2.注重数学知识与生活的联系。数学来源于生活,更应用与生活,本节课从从学生熟悉的国旗引入比例,在求大小不同的国旗的长与宽的比值中学习比例的意义,通过观察、探讨大大小小的国旗的长与宽、宽与长、长与长、宽与宽的比值关系中,加深学生对比和比例的关系,比例意义的理解和掌握。最后通过照片,让学生感受到数学知识离不开生活,生活中处处有数学知识。
3.课堂采用以问导学的策略,用十五个问题贯穿了整节课,以问题引导学生思考,促进学生思考,用问题激发学生的兴趣,用问题控制学生的注意力,用问题拓展学生的思路,用提问强化学生的认知,用问题促进师生之间的交往互动。培养了学生的问题意识,培养学生的自学能力、思维能力、观察能力、表达能力等,从而提高学生解决问题的能力。
4.采用探究式的学习方式。对新课的教学,教师不是把现成的答案强加于学生,而是让学生通过观察、计算、思考、阅读等方式初步感知新知,再进一步提问“你能根据自己的理解说说什么叫做比例吗,”、“你能说一说组成比例要具备哪些条件吗,”、“你还能找出那些比组成比例,”等引导学生思考、探究,学生在合作交流中产生思维碰撞,这样,学生的体验和感受都很深刻。
5.设计了多种形式的练习,升华了学生的思维。练习是巩固新知、发展思维的有效手段。思维目标的实现需要通过一定的练习来完成,本节课设计了六种不同层次、不同功能的练习,有利于学生对比例意义的巩固,有利于提高学生思维的敏捷性,有利于培养学生解决生活中实际问题的能力和习惯。
《比例的意义和基本性质》教学设计 5
一、教学目标
知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。
过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。
态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。
二、教学重点难点
重点: 理解比例的意义和基本性质。
难点:判断两个比是否成比例。
三、教学过程设计
(一)创设情境,提出问题
1、复习导入:
(1)什么叫做比?
两个数相除又叫做两个数的比。
(2)什么叫做比值?
比的前项除以比的后项所得商,叫做比值。
(3)求下面各比的比值:
12:16= 4、5:2、7= 10:6=
谈话:今天我们要学的知识也和比有着密切的关系。
2、创设情境,提出问题。
谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学
出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。
这是它两天的运输情况:
一辆货车运输大麦芽情况
第一天 第二天
运输次数 2 4
运输量(吨) 16 32
根据这个表格,让学生提出有关比的数学问题。同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得最好,提出的问题最多。
谈话:谁来交流?跟大家说一下你的问题是什么?
学生可能出现以下的问题:
货车第一天的运输量与运输次数的比是多少? (16 : 2)
货车第二天的运输量与运输次数的比是多少?(32 :4)
货车第二天的运输量与第一天运输量的比是多少?(32 :16)
(师根据学生的回答,将答案一一贴或写于黑板)
2 :16; 4 :32; 16 :2; 32 :4;
16 :32; 2 :4; 32 :16; 4 :2。
1、认识比例及各部分名称。
谈话:学习数学,我们不仅要善于提问,还要善于观察。现在就请你观察这两个比(16 :2;32 :4)看能发现什么?(学生会发现比值相等)
思考:这个比值所表示的实际意义是什么?(每次的运输量)
既然它们的比值相等,那我们可以用什么符号将两个比连接起来?
学生用等号连接,并请学生把这个式子读一下。
试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习本上写写看。(学生独立完成)
介绍:像这样表示两个比相等的`式子,数学上就把它叫做比例。我们知道,比有前项、后项,比例的各部分也有自己的名字。组成比例的四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项,2、32位于中间的两项叫做比例的内项。比例,也可以写成分数形式。
学生先把2 :16=4 :32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。
自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。(学生独立完成)
2、比和比例有什么区别?
比
4︰6
比例
2︰3=4︰6
3.判断下面两个比能否组成比例?
6∶9 和 9∶12
总结方法:判断两个比能不能组成比例,要看它们的比值是否相等。
4.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。我不是这样想的,可能很快就判断好了,想知道其中的秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?
那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!
5、学生先独立思考,再小组交流,探究规律。
出示研究方案:
①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。
②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。
③通过以上研究,你发现了什么?
6、全班交流。
(1)哪个小组愿意将你们的发现与大家分享?
(2)还有其他发现吗?
(3)你们组所发现的是不是个偶然现象呢?我们最好是怎么办?
7、验证发现,共享成功。
师:对,举例验证,这可是一种非常好的数学方法。那现在,我们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的比例都是两个外项的积等于两个内项的积。(学生独立验证)
8、利用一个比例通过课件形象的展示两个外项的积等于两个内项的积。
9、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。也就是,在比例里,两个外项的积等于两个内项的积。数学上我们把这条规律,叫做比例的基本性质。这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。运用它,我们可以解决许多数学问题。
10、比例的基本性质的应用:
应用比例的基本性质,判断下面两个比能不能组成比例.
6∶3 和 8∶5
方法:a、先假设这两个比能组成比例
b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。
c、根据比例的基本性质判断组成的比例是否正确。
(二)自主练习,拓展提升
1、判断下面每组中两个比能否组成比例?
1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5
让学生根据比例的意义进行判断,教师结合回答板书:
1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5
2、连线:自主练习第3题。
3、填空:自主练习第6题。
4、自主练习第10题:
2:1=4:( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5
5、下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个)。
2、3、4 和 6
因为 2 × 6 = 3 × 4 所以这四个数可以组成比例
2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4
2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4
练习时,给学生充足的时间让学生独立完成,然后交流沟通。
(三)回顾总结
在这节课中你又有什么新的收获?
《比例的意义和基本性质》教学设计 6
教学目标
1.使学生理解并掌握比例的意义和基本性质。
2.认识比例的各部分的名称。
教学重点
比例的意义和基本性质。
教学难点
应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。
教学过程
一、复习准备。
(一)教师提问复习。
1.什么叫做比?
2.什么叫做比值?
(二)求下面各比的比值。
12∶16 4.5∶2.7 10∶6
教师提问:上面哪些比的比值相等?
(三)教师小结
4.5∶2.7和10∶6这两个比的比值相等,也就是说两个比是相等的,因此它们可以
用等号连接。
教师板书:4.5∶2.7=10∶6
二、新授教学。
(一)比例的意义(课件演示:比例的意义)
一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。
1.教师提问:从上表中可以看到,这辆汽车,第一次所行驶的路程和时间的比是几比几?
第二次所行驶的路程和时间的比是几比几?
这两个比的比值各是多少?它们有什么关系?(两个比的`比值都是40,相等)
2.教师明确:两个比的比值都是40,所以这两个比相等。因此可以写成这样的等式
80∶2=200∶5或 .
3.揭示意义:像4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例。(板书课题:比例的意义)
教师提问:什么叫做比例?组成比例的关键是什么?
板书:表示两个比相等的式子叫做比例。
关键:两个比相等
4.练习
下面哪组中的两个比可以组成比例?把组成的比例写出来。
(1)6∶10和9∶15 (2)20∶5和1∶4
(3) 和 (4)0.6∶0.2和
5.填空
(1)如果两个比的比值相等,那么这两个比就( )比例。
(2)一个比例,等号左边的比和等号右边的比一定是( )的。
(二)比例的基本性质(课件演示:比例的基本性质)
1.教师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。(板书)
2.练习:指出下面比例的外项和内项。
4.5∶2.7=10∶6 6∶10=9∶15
3.计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?
以80∶2=200∶5为例,指名来说明。
外项积是:80×5=400
内项积是:2×200=400
80×5=2×200
4.学生自己任选两三个比例,计算出它的外项积和内项积。
5.教师明确:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质
板书课题:加上“和基本性质”,使课题完整。
6.思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?
教师板书:
《比例的意义和基本性质》教学设计 7
【教学目标】
1、理解比例的意义,认识比例各部分的名称。
2、让学生经历探讨“两内项之积等于两外项之积”的过程,使之更好理解并掌握比例的基本性质。并能运用比例的意义和比例的基本性质判断两个比能否组成比例,会组比例。
3、培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。
【教学重点】
理解比例的意义和基本性质。
【教学难点】
应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。
【教学准备】
课件,扑克牌10张(2~10以及A),圆规一个。
【教学过程】
一、复习准备
(1)一辆汽车4时行160km,路程和时间的比是多少?这个比表示什么?
(2)求下面各比的比值,你发现了什么?
121634184、52、、7106
教师:同学们发现4、52、、7和106的结果是一样的,说明了什么?(这两个比相等。)这两个比你能用等号连接起来吗?(能。)请同学们用等号把这两个比用等号连接起来。
二、探究新知
1、提出问题
这节课我们在比的知识基础上,进一步学习新知识。
揭示课题——比例的意义和基本性质。板书:比例的意义和基本性质
2、探究比例的意义
课件出示例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。列表如下:
竹竿长(米)26……
影子长(米)39……
教师:观察上表,你能写出多少个有意义的比?并求出比值。把这些比都写出来。
学生讨论并写出比,教师选几个有代表性的比在黑板上板书。
教师:观察这些比,哪些能用等号连接?把能用等号连接的比用等号连接起来。
学生口答,教师板书:32=96,62=93……
教师:这些都是比例。你能用自己的语言说一说什么是比例吗?
引导学生用自己的语言归纳比例的意义。(板书:比例的意义)
教师:29和36能组成比例吗?你是怎么知道的?
指导学生说出“判断两个比能不能组成比例,要看他们的比值是否相等。”再判断
25和80200能否组成比例?并说明理由。
组织并指导学生完成书上第50页的课堂活动。
3、认识比例的各部分
教师:在一个比例里,有四个数,这四个数分别叫什么名字?同学们看看书就明白了。
指导学生看书后汇报。
教师:请同学们分别找出32=96和62=93的内项和外项。
学生找出后,随学生的汇报教师板书:
要求学生找出刚才自己说的几个比例的内项和外项,然后引导学生分析归纳出:在比例里,靠近等号的两个数是内项,剩下的两个数是外项;如果写成分数形式,那么可以用交叉的方法找出比例的内项和外项。
4、教学比例的基本性质
教师:前面我们已经探究发现了比例的一个秘密,就是组成比例的两个比的比值相等,比例还有一个秘密,你们愿意去寻找吗?(愿意)你们任意找一个比例,把它们的内项和外项分别乘起来,又可以发现什么?
学生初步发现两个内项的积等于两个外项的积后,教师提醒学生:是不是每个比例都有这个规律,多找几个比例试一试,如果把这个比例写成分数形式,它是不是也有这样的规律呢?
教师:同学们通过多个比例的探究,发现它们都有这个规律。你能用你自己的语言归纳这个规律吗?
指导学生归纳后,教师板书:在比例里,两个内项的积等于两个外项的积,并且告诉学生,这就是比例的基本性质。
5、运用比例的基本性质判断两个比是否能组成比例
教师:用比例的基本性质,也可以判断两个比能不能组成比例。请同学们用比例的基本性质判断一下,0、425能否和1、275组成比例?为什么?
学生讨论后回答:因为0、4×75=25×1、2,所以0、425和1、275能组成比例。
三、巩固提高
(1)说一说比和比例有什么区别。
讨论后指名说:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的`关系,有四项。
(2)在65=3025这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()×()=()×()。
(3)下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。
2,3,4和6
四、全课总结
先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。
五、课堂作业
(1)指导学生完成练习十一的第1题。
要求:第(1)小题用比的意义来判断,第(2)小题用比例的基本性质判断,第(3),(4)小题学生自由选择方法判断。
(2)学生独立完成练习十一的第2题,教师订正。
《比例的意义和基本性质》教学设计7
教学内容:
义务教育课程标准实验教科书人教版数学六年级下册。
教学目标:
1.理解和掌握比例的意义和基本性质。
2.能用不同的方法判断两个比能否组成比例,并能正确组成比例。
3.通过观察比较、自主探究,提高分析和概括能力,获得积极探索的情感体验。
教学过程:
一、认识比例的意义
1.出示小红、小明在超市购买练习本的一组信息。
(1)根据表中信息,你能选出其中两个量写出有意义的比吗?
(学生思考片刻,说出了1.2∶3、2∶5、1.2∶2、3∶5等多个比,并说出每个比表示的意义。教师适时板书。)
(2)算算这些比的比值,说说你有什么发现。
(学生说出自己的发现,教师用“=”连接比值相等的两个比。)
(3)说说什么叫比例。
(学生各抒己见,师生共同归纳后板书:比例的意义)
评析:比的意义、求比值是这节课所学新知的“生长点”。对此,教师将教材例题后(相当于练习)的一组信息“前置”,这样设计与处理,一是使题材鲜活,导入更为自然;二是把“一组信息”作为学生思考的对象,给学生提供了一定的思维空间,学生学习的热情和积极性明显提高。“激活旧知”后,教师引导学生主动进行比较、发现、归纳,最终实现了对新知的主动建构。
2.即时训练。
A.判断下面每个式子是不是比例,依据是什么?
(1)10∶11(2)15∶3=10∶2
a.学生独立思考,小组讨论交流,说说是怎样判断的,进而说明判断两个比能否组成比例的关键是什么。
b.剩下的(1)(2)(4)三个比中有没有能组成比例的?
c.上面几个比有没有能和5∶4组成比例的,你能不能帮它找一个“朋友”并组成比例?它的朋友有多少个?这些朋友有什么相同点?
评析:认知心理学告诉我们,学生对数学概念、规律的认识和掌握不是一次完成的,对知识的理解总是要经历一个不断深化的过程。因此,上例中教师设计了“即时训练”这一环节。即时训练既有运用新知的直接判断,又有变式和一题多用,较好地体现了层次性、针对性和实效性,它对促进学生牢固掌握新知,灵活运用新知起到了很好的作用。
3.教学比例各部分的名称。
(1)引导学生读教材(相关内容),认识比例各部分名称。
(2)集体交流。(教师板书:内项、外项)
(3)把比例写成分数形式,指出它的内、外项。
(4)任意写一个比例,同桌相互说一说比例各部分的名称。
二、探究比例的基本性质
1.填数。
(1)出示比例8∶()=()∶3。想一想,这两个空可能是哪两个数。
〔刚开始时,学生可能从比例的意义的角度去思考,所以填数相对费时,慢慢地,学生似乎发现了“规律”,填数速度加快。教师将学生的发现(如1和24、2和12、0.5和48……)板书在括号下面,与学生一起判断能否组成比例。〕
(2)观察思考:在填这些数的过程中,你有什么发现?
(这一问题满足了学生的心理需求,学生发现每次所填的两个内项之积相等,进而发现“两个内项之积等于两个外项之积”。)
(3)再次设问:在这些比例中,“两个内项之积等于两个外项之积”,这是一种巧合还是在所有的比例中都有这样的规律呢?(学生意见不一,自发产生验证的需求。)
A.先验证黑板上的比例式,再验证自己写的比例式。
B.概括比例的基本性质。同桌相互说一说比例的基本性质。
(4)学了比例的基本性质有什么作用呢?(学生作答。产生用比例的基本性质去验证能否组成比例的需要。)
评析:“每个人的心灵深处都有一种根深蒂固的需要,那就是希望自己是个发现者、研究者、探索者。”这一教学环节正是基于满足学生的“心理需求”而设计的。先由开放性问题引入,给予不同认知基础的学生以各自探究的时间和空间,在自主探索、合作交流中学生的认识经历了由“难”到“易”、由“繁”到“简”的过程。通过“你有什么发现”,“这是一种巧合,还是在所有的比例中都有这样的规律”两个问题指明了学生思考的方向,提升了学生思维的层次,使学生人人体验到“发现者”的快乐。在学生主动获取知识的同时,教师还引领学生经历了科学探究的过程,这些“关于方法的知识”对学生终身学习无疑是有益的。
2.即时训练。
应用比例的基本性质,判断下面的两个比能否组成比例。
3.6∶1.8和4∶24∶9和5∶10
小结:根据比例的基本性质来判断两个比能否组成比例,其实我们是先假设这两个比能组成比例,如果比例的两个外项的积等于两个内项的积,假设成立,两个比能组成比例;如果不相等,就不能组成比例。
三、巩固新知,解决问题
1.猜数游戏。
在下面每个比例中,有一个或两个数被遮掉了,你能根据所学知识把它猜出来吗?
3∶5=6∶()()∶5=6∶()3∶5=()∶()
2.你能用3、5、6、10这四个数组成不同的比例吗?把它们都写出来。(学生探索后交流。)
利用这四个数最多能写出几组比例?怎样写既不重复也不遗漏?(根据时间来安排讨论,也可留作课后进一步探讨。)
评析:练习设计能紧紧围绕教学目标精选练习内容,注意练习的梯度、层次和思维含量。特别是最后的挑战性问题把学生带入了“欲罢不能”的境界,学生思维活跃,讨论热烈。
总评:“比例的意义和基本性质”是一堂“老课”,但执教者却能“老课新教”。新授课的巧妙导入,数学化过程的有效展开,训练的精当、扎实、灵活,以及在突出学生是学习的主人,教师是组织者、引导者的课堂师生关系的定位等方面都颇有新意,因而,这是一堂以新课程理念做指导,又保持着数学课“本色”的朴实无华、扎实高效的数学课。
《比例的意义和基本性质》教学设计 8
教学内容:
教材第32~34页
教学目标:
1、理解比例的意义,认识比例的基本性质,会判断两个比能否组成比例。
2、培养学生自主参与的意识和主动探索精神;培养学生观察、分析、推理和概括的能力。
重点难点:
重点:理解比例的意义,探索比例的基本性质。
难点:探索比例的基本性质和应用意义,判断两个比能否组成比例。
教学过程:
一、复习旧知,做好铺垫
1、什么是比?比各部分的名称是什么?
2、求出下面每个比的比值。﹕16 3/4﹕1/8/
二、教学比例的意义
1、创设情境,激发兴趣。
1)看课文情境图
2)你知道这些国旗的`长与宽各是多少吗?
3)测量教室国旗长与宽各是多少吗?
4)教室这面国旗长与宽的比值是多少?
5)操场上国旗长与宽的比值是多少?与这面国旗有什么关系?
2、动手计算、探究比例的意义。通过计算引出什么是比例?
3、组织看书,认识名称。
4、利用新知,学以致用。还能找出哪些比来组成比例?归纳总结:
三、教学比例的基本性质
探究新知,充分验证,确定性质。
你能发现比例的内项与外项之间有什么关系吗?小组交流汇报
师总结归纳比例的基本性质。
四、反馈巩固
1)课本做一做
2)练习6的1.4题
五、总结归纳
1)今天我们学习了什么?
2)你能比较“比”和“比例”有什么联系和区别吗?
六、布置作业
教材36页练习6的2.3题。
《比例的意义和基本性质》教学设计 9
教学内容:
教科书第32~34页。
教学目标:
理解比例的意义,认识比例的基本性质,会判断两个比能否组成比例。
教学过程:
一、复习
1.什么叫做比?
2.求出下面每个比的比值。
12∶16 ∶ (板书)
二、教学比例的意义
出示教材第32页的四幅图,请同学说说图的内容。找一找四幅图中有什么共同的东西。
把图变换成四面国旗的画面,每面国旗标注了长和宽的尺寸。
选择其中两面国旗(例如操场和教室的国旗),请同学们分别写出它们长与宽的比,并求出比值。
提问:根据求出的比值,你发现了什么?(两个比的比值相等)
教师边总结边板书:因为这两个比的比值相等,所以我们可以写成一个等式:
2.4∶1.6 = 60∶40 或= ←(板书)
像这样由两个相等的比组成的式子我们把它叫做比例。我们已经知道组成一个比的两个数分别叫做这个比的前项与后项,组成比例的四个数也叫做比例的.项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
师:在图上这四面国旗的尺寸中,还能找出哪些比来组成比例?
四人小组讨论,教师巡视,给予指导。
请小组汇报讨论结果,教师根据学生的汇报,将组成的比例分类板书在黑板上。
教师结合板书归纳:根据同学们找的结果,我们看到,这四面国旗的长与宽的比值都相等,所以每两面国旗的长与宽的比都可以组成比例。同样,这四面国旗的宽与长的比值也都相等,所以每两面国旗的宽与长的比也都可以组成比例。另外我们还发现每两面国旗的长与长的比值与宽与宽的比值也相等,所以每两面国旗的长与长的比,与宽与宽的比也可以组成比例。根据两个相等的比可以组成比例,从四面国旗的尺寸中,我们可以组成许多个比例。
三、教学比例的基本性质
师:观察黑板上的比例式,你能发现比例的内项与外项之间有什么关系吗? 教师在学生讨论的基础上总结并在比例式下板书如下,并说明:通过计算,我们发现两个外项的乘积等于两个内项的乘积。
《比例的意义和基本性质》教学设计 10
教学目标:
1、知识与技能:认识比例,知道比例的的内项和外项,理解和掌握比例的基本性质,会判断两个比能否组成比例。
2、过程与方法:通过自主探究、合作交流、观察、比较,培养学生分析、比较、抽象和概括的能力,经历认识比例和比例的基本性质的过程。
3、情感态度与价值观:体会国旗中隐含的数学规律,丰富关于国旗的知识,培养学生爱国旗、爱祖国的情感。
教学重点:
理解比例的意义,探究比例的基本性质。
教学难点:
探究比例的基本性质和应用意义,会判断两个比能否组成比例。
教学过程:
一、创设情境,引入新课
同学们,五星红旗是中华人民共和国的象征。每当周一升国旗时,我们心中充满了对祖国的热爱和作为一个中国人的自豪。热爱国旗就是热爱祖国,国旗对我们这么重要,你们想不想更多地了解一些国旗的知识呢?
1、出示三幅场景图(见教材第40页主题图)
2、提问,你们知道每一幅图中国旗的长和宽是多少吗?(出示课件)
3谈话:在制作国旗的尺寸的过程中也存在有趣的比。同学们可以算一算这三幅国旗的长和宽之比,并求出比值。
4、汇报,教师依次出示
二、引导探究,明确意义
(一)比例的意义
(1)观察这三组数据,你有什么发现?
(2)看三组数据,能否从中选出两个比组成等式呢?
(3)学生汇报,教师任选其中的板书
(4)师:肯定学生的回答后指出,像这样的等式我们还可以继续写下去。这样两个比相等,我们就可以说这两个比可以组成比例。(出示)这就是比例的意义也是我们今天所要学习的一个重要内容。
(5)引导学生再次理解意义并强调,两个比相等,并让学生说说什么是比例?
(6)试写比例的分数形式。
2、根据意义,判断比例
下面哪组中的两个比可以组成比例?把组成的比例写出来。
(1)学生独立完成。
(2)指名汇报。
(3)师:20:5和1:4为什么不能组成比例?那么你能想办法给20:5找个朋友组成比例吗?想一想,这样的朋友能找几个?你认为找到朋友的共同特点是什么?也就是说要符合什么条件?
小结后强调指出,判断两个比能否组成比例,关键是看它们的.比值是否相等。
(二)比例的基本性质
师:我们知道比中两个数分别叫做比的前项和后项。今天我们学习的比例中的四个数也有自己的名字,你们知道它们分别叫什么吗?(和学生介绍内项和外项)。
(1)写出一组比例,让学生指出各部分的名称。
(2)如果把比例写成分数的形式,你能找出它的内项和外项吗?
生独立指出比例的内项和外项。
1、活动探究总结性质
谈话:比例表示两个比相等的式子,就像除法有商不变的性质一样,比例也有它特有的性质,会是什么呢?我们可以怎样研究?
(1)请你试着写出一些比例:
(2)问题:观察比例式,两个外项与两个内项之间有什么关系?想想、写写、算算,看你有什么发现?(可以提示学生分别算出两个外项和两个内项的和,差,积,商,看看有没有一定的规律)
(3)学生探究,教师巡视,收集资源。
(4)探究:你发现了什么?怎么发现的?
(5)验证:有了这样的发现之后,你有什么问题呢?
(6)可以得出什么?(比例的性质)
(7)提问:如果把比例写成分数的形式,比例的基本性质会出现什么形式呢?
2、运用性质
(1)提问:判断比例是否成立,你是根据什么判断的?有几个方法?
(2)出示一些练习,判断哪一组中的两个比可以组成比例?
三、归纳总结,交流收获
本节课学习了什么?
【《比例的意义和基本性质》教学设计】相关文章:
比例的意义和基本性质教学设计12-18
比例的意义和基本性质教学设计09-28
比例的意义和基本性质的教学设计07-18
《比例的意义和基本性质》教学设计10-17
《比例的意义和基本性质》教学设计02-21
《比例的意义和基本性质》教学设计04-04
比例的意义和基本性质教学设计10-30
比例的意义和基本性质教学设计反思11-19
《比例的意义和基本性质》教学设计【精】04-04
教案《比例的意义和基本性质》教学设计06-06