《小数的产生和意义》教学设计

时间:2024-11-15 10:05:34 晓丽 意义 我要投稿

《小数的产生和意义》教学设计(精选18篇)

  作为一名为他人授业解惑的教育工作者,有必要进行细致的教学设计准备工作,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。那么你有了解过教学设计吗?下面是小编整理的《小数的产生和意义》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

《小数的产生和意义》教学设计(精选18篇)

  《小数的产生和意义》教学设计 1

  教学目标:

  1、了解小数的产生,理解和掌握小数的意义。

  2、初步理解整数、小数与分数之间的内在联系,掌握相邻两个计数单位间的进率。

  3、在合作与交流中的过程中,体验探究发现和迁移推理的学习方法,感受数学学习的乐趣。

  教学重点:

  理解和掌握小数的意义。

  教学难点:

  理解小数的意义。

  教学过程:

  一、小数的产生

  1、测量讲台的长度

  我们学校的多功能教室更换了新的讲台和桌椅,你们能帮老师量一量新讲台的长度吗?

  学生用米尺测量讲台的长度。

  测量得不到整米的结果。

  2、揭示课题

  在进行测量和计算时,往往不能正好得到整数的结果,这时常常用小数来表示。今天这节课我们继续来认识小数。

  二、小数的意义

  1、一位小数。

  (1)为了帮助大家理解小数,我们可以借助米尺。

  (出示米尺图)

  (2)把一米长的尺子平均分成了多少份,每一份有多长?(1分米)

  (3)1分米是一米的几分之几?如果用米做单位,写成分数是多少米?写成小数是多少米?

  (4)口答:3分米用分数表示是多少米?用小数表示是多少米?为什么?

  (5)7分米是多少米?

  (6)1/10可以写成0.1,3/10可以写成0.3,7/10可以写成0.7,像十分之几这样的分数我们都可以用零点几这样的小数来表示。

  2、两位小数。

  (1)如果把1米中的每一分米再平均分成10份,那么1米就平均分成了多少份?

  (2)我们来看它的放大图。每一份是多少?(1厘米)

  1厘米是一米的几分之几?用分数和小数表示分别是多少米?

  (3)3厘米呢?6厘米呢?

  (4)13厘米是多少米?为什么?

  (6)像1/100,3/100……,这些表示百分之几的分数我们可以用零点几几这样的`小数来表示。

  3、认识三位小数。

  (1)如果我把1米中的每一厘米再平均分成10份,这一次又把一米平均分成了多少份呢?

  (2)我们来看它的放大图。这样的一份是多长?(1毫米)

  (3)1毫米是一米的千分之一。所以1毫米是1/1000米,也就是0.001米。

  (4)想一想:6毫米和13毫米分别是多少米?为什么?

  (5)35毫米呢?135毫米又该如何表示呢?

  (6)表示千分之几这样的分数我们可以用零点几几几这样的小数来表示。

  4、更多位小数

  (1)如果把一米平均分成10000份,这样的一份用小数表示是多少米?

  (2)如果把1米平均分成100000份,这样的一份用小数表示是多少米?

  5、抽象概括小数的意义

  (1)回顾前面的学习过程,什么样的分数可以用小数来表示呢?

  生分组讨论,汇报讨论结果。

  (2)分母是10、100、1000……的分数可以用小数表示。这就是小数的意义。

  (3)0.1、0.3、0.7的小数点右面只有一个数字,像这样的小数就是一位小数。一位小数表示十分之几。

  依次介绍两位小数、三位小数。

  6、小数的计数单位

  (1)0.3里面有几个1/10?0.03里面有几个1/100?

  (2)归纳:小数的计数单位是十分之一、百分之一、千分之一……,分别写作0.1、0.01、0.001……

  (3)每相邻两个计数单位间的进率是10。

  三、巩固练习

  1、完成51页做一做

  2、完成55页第1、2题

  四、全课小结

  在今天的学习活动中你有什么收获?

  课堂简介:

  一、谈话导入,揭示小数的产生

  1、师:认识小数吗,你能说一个小数吗?

  2、你还知道小数的哪些知识?

  3、你知道小数是怎样产生的吗?

  二、教学小数的意义

  1、认识一位小数

  2、认识两位小数

  3、认识三位小数

  4、概括小数的意义

  师:分数与小数之间有什么联系呢?(分母是10、100、1000……的分数可以用小数表示。)

  5、认识小数的计数单位。

  6、认识进率

  三、巩固练习(略)

  四、课堂小结(略)

  听课反思:

  听了xxx的《小数的产生和意义》一课,我不禁感叹:这节课真的不好讲!同时,本节课也有我比较困惑和值得思考的地方。

  1、课堂引入要有针对性。

  我们都说:好的开端是成功的一半。而对于一节课来说,尤为重要。可是,要真正做到这一点,真的是件很不容易的事。虽然是讲小数的产生和意义,但要怎么引,确实值得琢磨:这么引对教学是否有帮助,是否和新内容有一定的关联。小数对于四年级的学生来说已经不是第一次接触,xxx在课上开门见山的引入小数,唤起了学生的学习经验。简洁精炼,有针对性的导入,这是我的收获之一。

  2、在教学时如何体现小数的意义。

  《小数的产生和意义》一课的重点是建立分数与小数的联系,利用分数接触小数。回顾自己以往的教学和xxx的这节课,xxx利用板书和多媒体辅助教学,采用了三层次教学,促使学生脑、眼、手协同作用,获得丰富表象,引发学生理解一位小数、两位小数、三位小数……的意义。并通过多形式、多层次的练习,强化学生对小数意义的理解和小数计算单位的掌握。如果在教学中能够多侧重说一下表示的意义就好一些,如:01米表示什么?03米又表示什么?……然后我认为计数单位的教学可以揉到小数的意义的揭示过程中。还有生活中处处有数学,数学是生活中不可缺少的有利工具,所以我觉得最后的练习环节应该联系实际设计一些生活中的练习题。

  3、注重方法渗透,引导学生自主探究

  达尔文曾说:最有价值的知识是关于方法的知识。数学思想方法是高一级的知识,是对知识的一种本质揭示,是数学知识结构的灵魂。在教学中,既要注重学生知识的获取和能力的培养,更应注重数学思想方法的渗透。本节课中,在教学1分米=1/10米=01米时,渗透等量替换思想,并以此为基点展开,先让学生初步感悟十进制分数与一位小数之间的联系,进而鼓励学生由此及彼、迁移类推得到许多一位小数,再让学生比较这些小数的共同点,归纳出一位小数的意义。在此基础上,让学生迁移、类比认识二、三位小数。归纳小数意义时,渗透抽象化方法,在学生多层面、多角度丰富感知的基础上,再加以抽象去掉数量、单位名称,最后抽象出十分之几、百分之几、……可以写成一位小数、二位小数……使学生顺利地从直观思维过渡到抽象思维。

  《小数的产生和意义》教学设计 2

  【教学内容】

  教科书第50~51页。

  【教学目标】

  1、通过对生活中常见小数的探讨,体会小数产生的必要性,感悟小数表示的意义,同时理解、掌握小数的计数单位和进率。

  2、通过学习,培养学生应用数学知识解释新知的`能力,培养合作交流与探索的能力,提高自主探究学习的能力。

  【教学过程】

  一、情境引入。

  1、出示信息:

  (1)一盒饼干12.8元。

  (2)张叔叔身高1.73米。

  (3)一个苹果质量0.4千克。

  (4)百米世界记录9.58秒。

  2、学生说一说这些小数的含义。(学生可能对0.4千克、9.58秒理解的不够清楚)

  3、引入:我们有必要对小数进行更深入的研究。

  二、新知探索。

  1、教师引导学生结合线段图研究“ 0.1米”、“0.3米”等一位小数的具体含义。

  2、师生结合线段图研究“0.01米”、“0.08米”等两位小数的具体含义。

  3、学生自主结合线段图研究“0.001米”、“0.012米”等三位小数的具体含义。

  4、教师引导学生总结:一位小数、两位小数、三位小数、……分别表示十分之几、百分之几、千分之几、……;它们的计数单位分别为十分之一、百分之一、千分之一、……。

  三、课堂练习。

  1、看图写分数和小数、把对应的分数和小数连一连、说一说每个小数所包含的计数单位的个数。

  2、学生说一说“0.4千克”、“9.58秒”的含义。

  3、学生说一说下面信息中小数的含义。(学生体会有了小数就可以表现出物体细微的特点)

  (5)一颗灰尘的质量大约0.0000007克。

  (6)一种细菌的长度大约0.00003米。

  四、课堂总结。

  《小数的产生和意义》教学设计 3

  【学习内容】

  小数的意义和产生,课本50—51页内容。

  【学习目标】

  1、我能通过观察知道小数的产生。

  2、我能通过分析明白小数的意义。

  3、我知道小数的计算单位及单位间的进率。

  【学习重难点】

  小数的意义和计算单位及进率

  【学习流程】

  一、知识链接

  谈话引入:我们已经初步认识了小数,小数是怎样产生的?小数的意义是什么呢?这节课我们就来学习小数的.产生和意义。

  二、探究新知。

  1、探究活动:

  认真阅读教材第50、51页内容,结合“导学案”中的学习提示,先自主探究,再在小组内相互交流,初步理解小数的产生和意义。

  温馨提示:

  (1)能你测量课桌的长度和宽度吗?测量时发现了什么?

  (2)、你知道米尺是把1米平均分成了多少份吗?它的每一份用分数怎样表示?

  (3)、你能用小数表示分母是10的分数吗?

  (4)、你能用小数表示分母是100的分数吗?

  (5)、你能用小数表示分母是1000的分数吗?

  (6)、什么是小数,小数的计数单位是什么。

  (7)、每相邻两个计数单位之间的进率是多少。

  (8)、小数的计算单位和分数的计数单位有什么不同之处。

  2、我会总结:

  (1)分母是10、100、1000……的分数可以写成小数,像这样用来表示十分之几、百分之几、千分之几……的数叫做小数。

  (2)、每相邻两个计数单位之间的进率是()。

  3、解决问题:

  (1)0.457,每个数位上的数各表示几个几分之一?

  (2)一个小数由5个1、3个0.1、6个0.01组成,这个小数是()

  三、课堂巩固:

  1、判断:

  (1)0.40里面有4个0.01()(2)35克=0.35千克()

  2、把小数改写成分数

  0.90.090.0359

  3、括号里能填几?你是怎么知道的?

  (1)、0.3里面有()个,0.09里面有()个;0.08里面有()个。

  (3)、找朋友:(用线把上下两组数连起来)

  0.0450.130.00010.9

  四、课堂总结:

  这节课我们学习了什么?你知道了什么?你还有什么问题?

  《小数的产生和意义》教学设计 4

  教学目标:

  1、知识目标:使学生在经历实际测量的活动中,了解小数的产生。学生能理解小数的意义,认识小数的计数单位和相邻两个计数单位之间的进率。

  2、能力目标:培养学生动手操作,观察,分析,推理能力和抽象概括能力。

  3、情感目标:通过学习小数的产生和发展过程,提高学生学习数学的兴趣;增强对数学的理解和应用数学的信心。

  学情分析:

  小数的意义是一节概念教学课,是在学生学习了“分数的初步认识”和“元角分与小数”的知识下,以已有的经验为背景,让学生经历认、读、写小数的学习过程并理解小数的意义,体会小数与生活的密切联系,从而实现认识的提升。

  教学重点:认识小数的产生和意义。认识小数的计数单位和相邻两个计数单位之间的进率。

  教学难点:理解小数的意义。

  教学过程:

  一、创设情境,了解小数的'产生。

  1、回忆一下:我们学过什么长度单位?

  2、请同学们看一下这条绳子,谁来估一估绳子的长度呢?请同学们都来量一量,验证一下结果。再来看看这根绳子,谁来估计一下它的长度,也请同学们上来量一量。刚才同学量的绳子的长度是30厘米,就是3分米,如果老师让大家用米来作单位。怎么表示呢?

  3、刚才我们在测量这条绳子的时候,如果用米作单位,就得不到整数的结果。其实像这样得不到整数结果的例子在生活中还有很多很多,于是聪明的人们除了发明用分数来表示之外,还发明了用小数来表示,于是小数就产生了。

  4、揭题。(板书:小数的意义)

  二、自主探讨,理解小数的意义。

  (一)研究一位小数

  1、出示米尺:这是什么?这是一把一米长的尺子,请同学们仔细看看,老师把这把米尺平均分成了多少份呢?每一份是多长?如果用米作单位,写成分数是多少?写成小数又是多少?

  这样的3份是多长?写成分数是多少?写成小数是多少?这样的7份呢?

  2、请同学们看,这几个小数的小数部分都只有一位,这样的小数我们把它叫做一位小数。

  3、小结:我们把1米的尺子平均分成10份,这样的一份或几份可以用一位小数来表示。

  4、说说你发现了什么?(分母是10的分数可以用一位小数来表示。)

  (二)研究两位小数(自助探究)

  1、如果我把1米的尺子平均分成了100份,1份是多长?用米作单位,写成分数是多少?写成小数是多少?4份呢?这样的8份呢?

  2、像这样的小数,小数点后面有几位数,这样的小数我们叫做几位小数。

  3、小结:我们把1米的尺子平均分成100份,可以用两位小数来表示。

  4、说发现。

  (三)研究三位小数。(自主探究)

  1、如果我把这每一段再平均分成10份,那么整条米尺我把它分成了几份?1份是多长?用米作单位,写成分数是多少?写成小数是多少?6份呢?13份呢?请同学们再说2个用毫米作单位的长度。刚才这两位同学说出了5毫米,23毫米,请同学们拿出草稿本,把这两个长度用分数表示,再用小数表示。

  2、像这样的小数,小数点后面有几位数?这样的小数我们叫做三位小数。

  3、小结:我们把1米的尺子平均分成1000份,可以用三位小数来表示。

  4、说发现。

  (四)推导

  1、如果我把1米的尺子平均分成了10000份,写成分数应该是几位小数呢?看来同学们的学习能力很强是,能够通过前面的知识,推出后面所学的知识。

  2、讨论:分数和小数有怎样的联系呢?请同学们小组讨论,概括出分数和小数的联系。

  刚才同学们通过讨论得出,分母是十的分数可以用一位小数来表示。分母是一百的分数可以用两位小数来表示。分母是一千的分数可以用三位小数来表示。这个就是小数的意义。

  三、合作交流,探讨小数的计数单位。

  1、填一填。

  (1)0.3里有()个1/10,0.7里有()个1/10。0.04里有()个1/100,0.08里有()个1/100。

  填一填,说说你是怎么想的。

  像这样,0.3、0.7这样的一位小数,我们都可以看成是由若干个0.1来组成的,那么我们就说十分之一是一位小数的计数单位。读作十分之一,写作0.1。(板书:一位小数的计数单位时十分之一,写作:0.1)

  同样的道理,像这样,0.04、0.08这样的两位小数,我们都可以看成是由若干个0.01来组成的,那么我们就说百分之一是两位小数的计数单位。读作百分之一,写作0.01。(板书:两位小数的计数单位时百分之一,写作:0.01)

  请同学们猜一猜,三位小数的计数单位是什么?写作什么?(板书:三位小数的计数单位是千分之一,写作:0.001)

  2、0.1里有()个0.01,0.01里有()0.001。小组讨论,汇报。

  0.1里有10个0.01,我们就说0.1与0.01的进率是10,同样道理,0.01里有10个0.001,说明他们的进率也是多少?

  四、巩固练习。

  课件出示练习。

  五、总结。

  这节课你有什么收获?

  《小数的产生和意义》教学设计 5

  教学目标

  1. 使学生经历认识小数的过程,初步了解小数的含义,会读、写一位小数,知道小数各部分的名称,知道自然数和整数。

  2. 使学生在解决实际问题的过程中,培养初步的自主探究、合作交流的意识,感受数学和生活的密切联系,增强学好数学的信心。

  教学过程

  一、 复习导入,唤起经验

  出示:1/2 58 5/12 0.5 1.2 5.8

  提问:同学们,知道这些数分别是什么数吗?

  谈话:后面的三个数,你平时在什么地方见到过?

  学生可能会想到:铅笔芯的规格、眼睛的视力、商品的价格等。

  揭题:是的,在日常生活中经常接触到这样的数。它们都是小数,今天我们一起来认识小数。(板书课题:认识小数)

  二、 联系实际,探究发现

  1. 提出问题。

  提问:你想了解小数的哪些知识?

  学生可能提出:小数是怎么来的.?学了小数有什么用处?小数应该怎样读,怎样写?……

  2. 教学第一个例题。

  谈话:同学们想知道小数是怎样产生的吗?其实小数就来自我们的生活。先让我们来做这样一个活动:小组合作测量课桌面的长和宽,并用不同的数、不同的单位把测量结果表示出来。比一比,哪个小组想到的表示方法最多。

  学生在小组内测量课桌面的长和宽,交流不同的表示方式。教师巡视,并作适当指导。

  反馈:你们小组的测量结果是多少?想到几种不同的表示方法?

  学生量出课桌面的长是60厘米,宽是40厘米,并用600毫米、60厘米、6/10米等表示课桌面的长,用400毫米、40厘米、4/10米等表示课桌面的宽。(根据学生回答,板书:6分米=6/10米,4分米=4/10米)

  提问:除了上面几种表示形式外,你还能用其他方法来表示吗?

  如果学生主动想到分别用0.6米、0.4米表示课桌面的长和宽,则让学生说一说是怎样想到的,0.6米和0.4米分别表示什么意思。

  如果学生不能主动地用小数来表示,则讲述:其实,6/10米还可以用小数0.6米来表示,0.6读作零点六。(板书:= 0.6米 0.6读作零点六)也就是说把1米平均分成10份,其中的6份可以用0.6米表示。

  提问:你能说一说0.6米表示的意思吗?

  学生回答后,让同桌间互相说一说。

  引导:那么4/10米还可以怎样用小数来表示呢?(板书:0.4米 0.4读作零点四)

  提问:0.4米表示什么意思?

  再问:那么你知道1分米是几分之几米吗?用小数怎么来表示呢?2分米、5分米、8分米呢?

  学生交流时,分别让学生在米尺上指出0.1米、0.5米、0.8米的实际长度。

  小结:十分之几米可以写成零点几米。

  3. 做“想想做做”第1题。

  先让学生弄懂题意,然后把答案填在书上。完成后,电脑出示答案,集体校对。

  4. 教学第二个例题。

  谈话:昨天三(5)班的李萍同学在育才商店里买了这样一些文具用品。我们一起来看看吧。

  出示文具的图片及标价:

  铅笔 圆珠笔 笔记本

  3角 1元2角 3元5角

  提问:一枝铅笔是3角钱,如果用元作单位,是多少元呢?(分别用3/10元和0.3元表示,并读一读、写一写。)

  讨论:一枝圆珠笔的价钱是1元2角,怎样用元作单位,用小数来表示圆珠笔的价钱呢?请先在小组里讨论讨论,再说一说你是怎样想的。

  反馈时,着重引导学生体会:1元2角是1元多2角,2角可以用0.2元来表示,1元和0.2元合起来就写成1.2元,1元2角可以写成1.2元。(板书:1元2角= 1.2元 1.2读作一点二)

  提问:一本笔记本的价钱是3元5角,用元作单位的小数又怎么来表示呢?你是怎么想的?(板书:3元5角=3.5元 3.5读作三点五)

  小结:几元几角写成小数就是几点几元。

  5. 做“想想做做”第2题。

  让学生在书上完成填空,并说一说是怎样想的。

  6. 介绍自然数和整数。

  让学生自由阅读书本第100页的最后一段,提出不懂的问题。

  7. 游戏。

  男同学代表整数,女同学代表小数,看到你所表示的数请你站起来。

  8 0.2 3.8 0 59 95.4 1 1/4 1.6

  三、 竞赛激趣,拓展延伸

  谈话:我们已经认识了小数。现在我们以小组为单位,一起来进行比赛好吗?

  1. 听录音,把听到的小数记录下来。

  一只青蛙跳过0.4米的田埂,来到宽16.8米的河面上,踏上了0.2平方米的荷叶,狂叫三声,扑通一声掉进了深3.9米的河里。

  2. 做“想想做做”第3题。

  出示题目,让学生抢答,并说一说每道题中分数、小数的意义。

  3. 回答下面的问题。

  一包上好佳,价钱在1元到2元之间,请你猜猜它的价钱是多少?

  小组合作讨论后把价钱写在纸上,交流时引导学生用“几元几角”和“几点几元”两种方式表达,并在数轴上分别找出每种可能价钱所在的点。

  四、 全课总结

  提问:今天你学得开心吗?你有什么收获?

  五、 拓展

  课件介绍十进分数的发展史和古代数学家刘徽的杰出成就。

  《小数的产生和意义》教学设计 6

  教学内容:

  义务教育课程标准实验教科书(西南师大版)四年级(下)练习十六第3~11题。

  教学目标:

  1、进一步掌握小数点位置的移动引起小数大小的变化。

  2、能根据要求正确移动小数点的`位置。

  3、感受数学知识的严谨,养成认真、仔细的习惯。

  教学重点:

  进一步掌握小数点位置的移动引起小数大小的变化。

  教学难点:

  根据要求正确移动小数点的.位置。

  教学过程:

  一、基本练习

  1、小数点位置移动引起小数大小变化的规律是什么?

  2、练习十六第3题。

  学生独立看懂表格,注意找准整数的小数点位置,并指名让学生说说他们的方法。

  二、指导练习

  1、第8题

  老师针对不同的学生进行指导。

  2、第9题请同学们先汇报收集的资料,再算一算。

  3、第10题

  注意两种情况:一是宽边相接,按长边计算;二是长边相接,按宽边计算。

  三、独立练习

  1、练习十六第4,5题教师强调:写得数时注意位数不够用"0"补足。

  2、学生独立完成第6,7题

  四、拓展练习

  练习第11题。

  引导学生思考:两个因数同时缩小10倍、100倍、1000倍,由此引起的积的变化。

  五、小结

  哪些同学愿意谈谈今天的收获?

  《小数的产生和意义》教学设计 7

  小数的意义

  第一课时

  教学内容:

  义务教育课程标准实验教科书(西南师大版)四年级(下)第69~72页例1、例2和课堂活动第1,3,4题。

  教学目标:

  1让学生结合现实情境,进一步认识小数及小数的计数单位,理解相邻两个计数单位的十进关系。

  2通过直观、操作、推理等活动,让学生清楚、明确地归纳小数的意义。

  4感受数学与生活的紧密联系,体会小数在日常生活中的作用。

  教学重点:

  结合现实情境,认识小数及小数的计数单位。

  教学难点:

  理解小数的意义及十进关系。

  教学准备:

  米尺、直尺等。

  教学过程:

  一、引入新知

  1量一量黑板的长,课桌长、高

  这些数是不是都是整米数?

  教师:在测量和计算中,有时得不到整数的结果,通常可以用小数表示。

  2回忆、练习

  1角=()10元=()元5角=()10元=()元1dm=()10m=()m3dm=()10m=()m

  教师:关于小数,同学们还想知道什么?

  板书课题:小数的意义

  二、探索新知

  1教学例1

  (1)填一填,说一说。

  (出示例1第1个图)

  ①此图用分数、小数该怎样表示?你是怎样想的?

  说一说:07表示把一个正方形平均分成()份,取其中()份。

  07里面有()个0.1。

  ②像0.1,0.3,0.5,0.7这些一位小数,都表示把一个整体平均分成10份,分别取其中的1份、3份、5份、7份,也就是:一位小数表示十分之几。

  (2)同理说一说。(后面两幅图)

  ①第1个涂一个小格,第2个涂45个小格,用分数、小数来表示并说说是怎样想的?

  ②讨论并归纳:百分之几写成几位小数?两位小数表示几分之几?

  2教学例2

  (认识三位小数)

  (1)看一看,填一填。

  ①把1m平均分成10份,其中1份是1dm;平均分成100份,其中1份是1cm;平均分成1000份,其中1份是1mm。

  (出示图)学生填分数和用小数表示。

  1mm=()1000m=()m;146mm=()1000m=()m②把一个正方体平均分成1000份。

  (第70页例2图)其中1份、25份,107份用分数和小数怎样表示?

  (2)说一说0.025,0.107分别表示什么以及它们的组成。

  (3)归纳:表示千分之几写成几位小数?三位小数表示几分之几?

  3讨论、归纳小数的意义

  学生讨论:什么是小数?小数的计数单位有哪些?

  归纳:像0.7,0.45,0.025,0.25,0.107……这样表示十分之几、百分之几、千分之几……的数叫小数。0.1,0.01,0.001……就是小数的.计数单位。每相邻两个计数单位间的进率是“10”。

  学生自学数位顺序表。

  三、课堂活动

  完成课堂活动第1,3,4题。

  先学生独立完成,集体评议,让学生说说是怎样想的?

  四、课堂小结

  本节课学会了什么?还有什么困难?

  板书设计:

  小数的意义

  一位小数表示十分之几。

  两位小数表示百分之几。

  三位小数表示千分之几。

  每相邻两个计数单位间的进率是“10”。

  0.1,0.01,0.001……就是小数的计数单位。

  《小数的产生和意义》教学设计 8

  (一)教学目标:

  1.知识技能目标:通过本节课的学习,让学生理解小数的产生及其意义,掌握小数的读法与写法。使学生在现实的情境中,初步理解小数的含义,学会读、写小数,体会小数与分数的联系。

  2.过程与方法:培养学生观察、分析、交流、合作的意识,帮助学生建立起自我评价与反思的意识。

  3.情感态度价值观:使学生在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的信心,激发学生学习数学的兴趣。

  (二)教学重点、难点:

  1.帮助学生通过自主探索和合作交流,理解小数的意义。这是本课的教学重点灺是本课的教学难点。

  (三)教学时间:

  1课时。

  (四)教学准备:

  1.多媒体。

  2.课业本。

  (五)教学过程:

  一、创设情境,激发兴趣,揭示课题。

  1.引入:开学前他们去超市买东西,为开学做准备。(cai出示:书包89元,橡皮0.3元,新华字典48元,信封0.05元,水彩笔32元,本子0.46元,文具盒10.9元)

  2.走进超市,东西可真多啊!你知道有哪些商品,它们的价格是多少吗?

  学生介绍。

  可能说出:0.3元3角

  0.05元5分

  0.46元4角6分

  10.9元10元9角

  3.你能把这些商品价格分分类吗?并说说你是怎样想的?

  学生可能这样分:89元、48元、32元分为一类,因为这些都是整数;0.3元、0.05元、0.46元、10.9元分为一类,这些都是小数。

  4.生活中,你在哪里见到过小数?

  学生可能回答:超市里商品的价格,文具店里文具的价格,书店里书店价格。教师可以提示些不同的,如:学生的身高:1.3米,视力表1.5,瓶子上1.5升……,同时配合板书。

  5.教师小结:原来生活中这么多的小数,今天这节课我们就一起进一步研究小数。

  (板书课题:认识小数)

  二、引导学生感知小数的含义。

  1.小数的读法。

  (1)(cai只剩下小数的价格)请生读一读这些小数。

  (2)师:这些小数你们都会读了,我写一个你们会读吗?

  师写:48.48,请生读。师:

  这两个“48”的读法为什么不一样?想一想,小数的读法与整数读法有什么不同?

  (3)小结小数的读法:整数部分按读整数的方法读,小数部分从左往右顺次读。

  (4)读一读:100.04。

  2.认识两位小数表示百分之几。

  (1)一位小数与十分之几。

  ①师:1角是1元的几分之一?是几分之一元?你是怎么想的.?

  生:1元=10角,0.1元是1角,0.1元=元。

  师配合板书:1元=10角0.1元(1角)=元

  ②师:那么0.3元是几分之几元呢?

  生可能回答:0.1元是元,0.3元是元。

  师配合板书:0.3元(3角)=元

  ③师:你说一个一位小数的价格,并请同学说说它是几分之几元?

  汇报:男女生对出题,互相做答。

  (2)两位小数与百分之几。

  ①师:0.05元是几分之几元?

  生独立思考后汇报,老师配合完成板书:

  1元=100分0.01元(1分)=元

  0.05元(5分)=元

  ②师:0.06元是几分之几元?

  同桌互说后请一生汇报。

  ③师:(将0.06改为0.46)0.46元是几分之几元?你会说吗?

  师配合回答完成板书:46分=元=0.46元

  ④师:你出一个两位小数的价格,请同桌说出它是几分之几?

  同桌互说后,请一组汇报,并板书记录。

  (3)练一练第1题的第(1)小题。

  ①出题后生独立思考。

  ②请生汇报。

  3.试一试。

  (1)(cai出示尺子,并指着1厘米处)

  ①这是多长?

  学生可能回答:1厘米。

  ②师:如果用“米”作单位,你能说出它的长度吗?

  学生汇报,师配合板书:

  1米=100厘米1厘米=米=0.01米

  (2)师在图中指2个整厘米的长度,请生用“米”作单位说一说?

  (3)在书上完成试一试的题目。生汇报,进行核对。

  (4)师:对着尺子你能用“米”作单位说出这些整厘米的长度,你能说出一个这尺子没有的整厘米数,并请同桌用“米”作单位说一说吗?

  4.读一读黑板上的分数与小数。

  三、帮助学生抽象出小数的意义。

  1.例2。

  (1)(cai出示第1幅图)师:这是一个正方形,我们用整数“1”表示。

  (cai出示第2幅图)师:看一看,涂色部分占整体的几分之几?学生回答:涂色部分占整体的。

  (cai出示第3幅图)涂色部分占整体的几分之几?学生回答:涂色部分占整体的。

  (2)写成小数是(),写成小数是()。

  (3)能分别说出空白部分用分数和小数怎样表示吗?

  学生汇报。

  2.试一试。

  (1)(cai出示试一试)生独立审题后完成,同时“比较每组的分数和小数,有什么发现?”

  (2)比较上面每组的分数和小数,你能发现什么?

  学生可能回答:十分之几的分数可以用一位小数表示,百分这几的分数用两位小数表示。

  (4)师:是不是这样呢?看看用这个方法能不能完成看p30练一练第2题。

  再请学生说说改写的方法。

  (5)出示:写成小数是多少?呢?你能写一写,读一读吗?

  为什么在小数点后添“0”?

  (6)请学生汇报改写的方法。

  (7)板书:分数小数

  十分之几一位

  百分之几两位

  千分之几三位

  四、巩固练习。

  1.p32练习五1

  2.p32练习五2

  (1)出示后请生读一读这些小数,后独立完成是课业本上。

  (2)说一说,分母各是多少?

  3.p32练习五3

  (1)完成在课业本上。

  (2)说出各是几位小数。

  4.p32练习五4

  (1)想一想,用几位小数表示。

  (2)口答第2行的结果,第1行写在课业本上。

  为什么在小数点与“2”点添“0”?

  5.p32练习五5

  (1)一生读题。

  (2)同桌互相说一说。

  (3)请一生汇报。

  五、总结。

  1.今天的课上你学会了什么?

  2.在学习中得到哪些经验?

  《小数的产生和意义》教学设计 9

  教学内容:

  国标苏教版第28~30页例1、例2及相应的“试一试”、“练一练”,练习五第1~5题。

  教学目标:

  1、在现实情境中,能初步理解小数的意义,学会读写小数,体会小数与分数的联系。

  2、在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的兴趣。

  3、初步养成善于观察、善于比较、善于交流等良好的学习习惯。

  教学重点:

  理解小数的意义。

  教学过程:

  一、交流信息,引入课题

  1、在三年级时,我们认识了一些小数,你能说出几个吗?

  2、课前大家已经收集了很多关于小数的资料,老师选择了一些比较有价值的,你可以轻轻地把这些资料读一读,然后挑选你最感兴趣的一条,谈谈你了解到了什么?又想到些什么?

  (1)一块橡皮0.6元,一本练习本0.75元。

  (2)一张信封0.05元。

  (3)王琳的身高1.42米,体重32.5千克。

  (4)刘翔在国际田径超级大奖赛中,以12.88秒的成绩刷新世界记录。

  (5)一枚1分硬币的厚度大约是0.001米。

  (6)人体的正常体温是36.5°C-37.5°C。

  (7)“神舟六号”在太空飞行时距地球表面最远的高度大约是344.725千米。

  3、引入课题

  这些信息中的数都是小数,用小数可以描述一些事情,反映一些现象。看来,同学们对小数已经有了一些认识,想不想作进一步的的研究?你还想知道小数的哪些知识?

  根据学生提出的问题揭示课题。

  二、探究新知

  1、学习小数的读法

  小数怎么读?谁能把信息中的几个小数再读一读?

  能发现小数是怎么读的吗?

  让学生发现:小数点前面的数和我们学过的整数一样读,小数点后面的数只要依次一个一个地读。

  出示几个小数,让学生读一读:0.390.1080.0060.80

  2、探究小数的意义和写法

  (1)如信息中的0.6、0.75、0.05元这些小数是怎么来的?

  小组内回忆6角写成0.6元的过程。

  那5分为什么可以写成0.05元?同桌商量商量。

  引导学生:元与分之间的进率是多少?1分是1元的1/100,是1/100元,可以写成0.01元,那5分是1元的几分之几?是几分之几元?写成小数是多少元?

  学生尝试说说7角5分转化为0.75元的过程。

  那6角8分可以写成几元?

  (2)0.01米是怎么产生的?谁能大胆地猜测一下?(教师出示米尺图)

  引导学生说出:1厘米是1米的1/100,是1/100米,写成小数是0.01米。

  以小组为单位,在直尺上另外找出两个刻度,想一想,写成分数和小数各是多少?把它们写下来。

  组织交流。

  (3)猜一猜,把1米平均分成1000份,还会得到什么样的分数?如何写成小数?

  把自己的猜想和小组里的同学交流交流,并试着把这些分数、小数写下来。

  组织全班交流。

  3、抽象概括:仔细观察上面每组的分数和小数,你能发现什么?把你的发现在小组里和同学交流。

  引导学生概括:通过刚才的学习,我们知道分母是10、100、1000……的分数,可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

  以前我们学习了一位小数,今天又认识了两位小数和三位小数,还会有位数更多的小数吗?

  4、教学“试一试”

  先让学生独立完成,再组织交流,说说怎么想的。结合图来理解每个小数把整数“1”平均分成了几份,表示这样的几份。

  三、练习拓展

  1、把听到的`小数记录下来。

  早晨6点30分,小明从1.2米宽的小床上起来,挤了0.008米长的一段牙膏,用了0.05小时刷牙洗脸,喝了一杯0.243升的牛奶,吃了一只面包,背起2.5千克的书包,飞快地向离家1.46千米的学校跑去。

  指名板演。读一读这几个小数,选择整数部分是零的小数说说它们表示几分之几。

  2、最近学校附近开了一家文具店,但店里商品的标价不太规范,请你们帮个忙,把这些标价改成用“元”作单位的小数。(图略)

  铅笔3角小刀8分直尺5角9分练习本76/100元

  3、把你认为长度相同的找出来

  4毫米0.004米4/1000米0.04米4厘米4分米4/10米

  4、估价:一筒薯片的价格在5元~6元之间。

  5、把课前收集的小数信息,挑一

  个用今天学到的知识介绍给同桌听。

  四、课堂小结

  今天,我们进一步认识了小数,你有哪些收获?

  在我们的生活、生产中经常用到小数,课后围绕“生活中的小数”写一篇数学日记。

  反思:

  我总认为“小数的意义和读写”这一内容用传统的讲授法比较恰当,因为这些概念是约定束成的,而动手实践、自主探究等只能是一种形式上的追求。如何使传统教学与新理念融合在一起,达到比较完美的教学效果,本课进行了一点尝试。

  1、以小数在生活中的实际意义为切入点,从学生的生活经验和知识背景出发,引导学生进行积极的体验。课始,展示学生课前收集的小数信息,把小数的意义设置在一种生活化、需求化、个性化的大背景中,让学生用个性化的理解方式来表达对小数的理解。由于小数在生活中的普遍存在,学生已有一定的经验,因此,在教学小数的读法时,充分利用个别学生会读这一资源,让这部分学生大胆释放自己的学习能力和已有经验,通过他们的引读,让其他学生发现小数的读法。

  2、以学生的自主学习为活动前提,营造自我探索、自我发现的学习环境。小数的意义是本课的教学重点,在抽象这个概念的过程中,通过旧知的迁移,尝试让学生自主探究、合作交流,把他们引入研究性学习的氛围,主动建构知识。如回忆了6角为什么能写成0.6元后,让学生在小组里商量商量5分为什么可以写成0.05元?在米尺上找两个整厘米数的刻度,把它们写成分数和小数;猜一猜,如果把1米平均分成1000份,会产生什么样的分数,又如何写成小数?在学生经历了这么多的探究、体验后,引导学生观察每组中的分数和小数,从而发现抽象出分数的意义。

  3、在解决实际问题中巩固知识,让学生感受数学的魅力。本课的练习安排,彻底改变了教材上的读读、写写、做做的模式,而是通过把听到的情境中的小数记录下来、改写商品标价、找相同的长度、估价、介绍收集的小数信息等形式,使知识得到巩固和拓展,让学生感受到数学的有趣、真实。

  《小数的产生和意义》教学设计 10

  教学内容:

  人教版四年级下册第32页和第33页

  教学目标:

  1.理解小数的意义,认识小数的计数单位,知道相邻两个计数单位之间的进率。

  2.借助学生熟悉的米尺和格子图等实物,让学生多角度理解小数与分数的关系,经历探索小数意义的过程,在探索交流中体会数学学习的乐趣。

  3.培养学生迁移、类推的能力及良好的数学学习品质。

  教学重点:

  理解小数的意义,知道小数的计数单位及其进率。

  教学难点:

  理解小数的意义

  教学准备:

  课件、米尺

  教学过程:

  一、复习导入

  (一)交流资料

  师:昨天老师让同学们收集一些生活中的小数,收集了吗?谁愿意和大家分享一下?

  生汇报交流。

  如:一袋方便面的价钱是1.2元;一个笔记本的价钱是2.6元……

  (二)师出示图片

  师:王老师也找了一些图片,看大屏幕。

  请你认真读一读,并说一说每张图表示什么含义。

  生读小数并结合图说小数表示的含义。

  (三)小结

  看来小数在我们的生活中应用非常广泛,三年级时我们已经对它有所了解,今天我们进一步研究小数(板书:小数的意义)。

  二、探究新知

  (一)观察猜测,实践体验

  师:今天老师给同学们带来一个大家伙,(师举起给学生们看)什么呀?(生:米尺)它有多长?(1米)可以干什么用?(测量物体的长度)今天这节课上它的功劳是最大的,借助它我们会掌握很多新知识。

  请两位同学合作测量一下课桌的高度及它表面的长度,谁愿意?

  两位学生测量,其他学生观察,教师板书记录:桌子长60厘米多,高80厘米。

  师:如果用米作单位,不够1米怎么办?

  生:可以用小数。

  小结:在我们测量和计算时,往往得不到整数的结果,这时常用小数来表示。

  (设计意图:教师选择学生熟悉的情境,让学生通过动手实际测量活动,进一步理解和感受小数产生的必要性。)

  (二)直观感知

  1.借助课件,引导理解一位小数的意义。

  师:请同学们观察,把1米平均分成10份,每份是几分米?(生:1分米)写成分数是几分之几米?(生:十分之一米)像这样的分数也可以用小数0.1米表示

  师:那3分米、7分米如果用米作单位,用分数和小数怎么来表示?

  学生独立思考后同桌交流,汇报。

  生:3分米是表示把1米平均分成10份,表示其中的3份,用分数表示是十分之三米,也可以用0.3米表示;7分米则是……(生汇报的同时课件出示。)

  师:0.3米里有几个0.1米呢?0.7米里又有几个0.1米呢?1米里面有几个0.1米呢?

  生独立思考后汇报。

  师出示米尺教具:谁能在我的米尺上指出0.1米、0.3米、0.7米及0.9米……

  生台前汇报结果,并说说是怎么想的

  师:你们太棒了!通过观察以上分数和小数,发现了什么?

  小组讨论交流汇报。

  生:像这样十分之几的分数可以用一位小数表示。

  (设计意图:多角度、多形式地强化认识,理解一位小数是十进分数的另一种表现形式,并渗透小数的计数单位和进率。)

  2.借助直观迁移,理解两位小数的意义。

  课件出示32页图片

  师:把1米平均分成100份,每份是多少?(生:1厘米)1厘米用米作单位,用分数怎么表示?(一百分之一米)也可以用0.01米表示。那么4厘米、8厘米用分数怎么表示?用小数呢?生独立思考后组内交流。

  汇报整理(课件演示)

  师追问:那么12厘米、38厘米用米作单位用分数怎么表示?小数呢?谁来老师手里的米尺上指一指呢?

  生找,指,并说为什么,那么1米里又有多少个0.01米呢?(100个)

  师:你们又有什么发现呢?

  生:分母是100的分数可以用两位小数来表示(师板书)。

  3.直观迁移,独立探究,理解三位小数的意义。

  师出示课件,33页的图。

  生独立思考后完成书中练习,然后小组交流。

  师追问:你能从这幅图中找到其他小数吗?(如:0.006,0.015……)

  你又有什么发现呢?

  汇报:分母是1000的分数也可以用三位小数表示。

  (设计意图:在初步理解一位小数的意义的基础上,通过独立探究、小组交流等方法理解两位小数、三位小数的具体意义,突破了难点,使学生进一步体会和理解了小数的意义,又一次渗透了计数单位和相邻两个计数单位间的进率。)

  4.迁移推理。

  师:试想一下,什么样的分数可以用四位小数来表示?五位小数呢?

  生:分母是10000的分数可以用四位小数表示,分母是100000的分数可以用五位小数表示……

  小结:分母是10、100、1000……这样的分数可以用小数来表示(板书)。

  (设计意图:学生通过迁移应用,已经对小数的意义有一定的理解,在此基础上继续推理下去,有助于学生清晰而深入地理解,从而感知十进分数与小数的关系,归纳出小数的意义。)

  (三)认识计数单位

  师:整数有计数单位,小数也有计数单位,你知道小数的计数单位吗?尝试说一说。

  生根据自己的理解说。

  师课件出示,并要求学生齐读(板书上显示)

  追问:通过观察发现,相邻两个计数单位之间的`进率是多少?(生:10)

  板书:相邻两个计数单位之间的进率是10。

  (设计意图:通过前面的学习,学生对小数的意义有了更深入的理解,所以这部分知识我采用让学生试着说一说然后直接出示,提高了学生探究的自主性。)

  三、巩固练习

  1.完成书33页“做一做”,独立完成,全班订正。

  2.完成书36页1、2、3题,要求:认真读题,独立思考。

  (设计意图:通过这几道基础练习题,让学生进一步理解小数的意义,并掌握小数的计数单位,为后续的学习奠定基础。)

  四、总结

  1.师:回顾一下本节课的内容,谈一谈自己的收获。生畅所欲言。

  2.齐读书33页“你知道吗?”内容,了解小数的产生。

  (设计意图:通过学生对本节课知识的梳理,加深对本课内容的认识、理解。通过阅读,让学生了解小数产生的历史,对学生进行了数学文化的渗透。)

  五、板书设计

  小数的意义

  相邻两个计数单位的进率是10

  六、布置作业:

  完成书37页7、8题

  七、教学反思

  在本节课教学中我重视让学生亲自经历测量活动,结果不能用整数表示时,加强了对小数产生的必要性认识。

  在教学小数意义这部分时,我充分利用教学课件和实物教具相结合,直观引出十分之几、百分之几、千分之几的数都可以用小数表示,然后抽象概括出小数的意义,在此过程中我充分借助迁移类推,合理安排引导和放手的时机,给学生创造了大量的自主探索的机会,从而提高了学生自主学习的能力。

  《小数的产生和意义》教学设计 11

  【学习内容】

  小数的意义和产生,课本50—51页内容。

  【学习目标】

  1、我能通过观察知道小数的产生。

  2、我能通过分析明白小数的意义。

  3、我知道小数的计算单位及单位间的进率。

  【学习重难点】

  小数的意义和计算单位及进率

  【学习流程】

  一、知识链接

  1/、谈话引入:

  我们已经初步认识了小数,小数是怎样产生的?小数的意义是什么呢?这节课我们就来学习小数的产生和意义。

  二、探究新知。

  1、探究活动:

  认真阅读教材第50、51页内容,结合“导学案”中的学习提示,先自主探究,再在小组内相互交流,初步理解小数的产生和意义。

  温馨提示:

  (1)能你测量课桌的长度和宽度吗?测量时发现了什么?

  (2)、你知道米尺是把1米平均分成了多少份吗?它的每一份用分数怎样表示?

  (3)、你能用小数表示分母是10的`分数吗?

  (4)、你能用小数表示分母是100的分数吗?

  (5)、你能用小数表示分母是1000的分数吗?

  (6)、什么是小数,小数的计数单位是什么。

  (7)、每相邻两个计数单位之间的进率是多少。

  (8)、小数的计算单位和分数的计数单位有什么不同之处。

  2、我会总结:

  (1)分母是10、100、1000……的分数可以写成小数,像这样用来表示十分之几、百分之几、千分之几……的数叫做小数。

  (2)、每相邻两个计数单位之间的进率是()。

  3、解决问题:

  (1)0.457,每个数位上的数各表示几个几分之一?

  (2)一个小数由5个1、3个0.1、6个0.01组成,这个小数是()

  三、课堂巩固:

  1、判断:

  (1)0.40里面有4个0.01()(2)35克=0.35千克()

  2、把小数改写成分数

  0.90.090.0359

  3、括号里能填几?你是怎么知道的?

  (1)、0.3里面有()个,0.09里面有()个;0.08里面有()个。

  (3)、找朋友:(用线把上下两组数连起来)

  0.0450.130.00010.9

  四、课堂总结:

  这节课我们学习了什么?你知道了什么?你还有什么问题?

  《小数的产生和意义》教学设计 12

  一、设疑激趣

  师:今天我们学习的内容跟哪种数有关?你从哪里发现的信息?

  生:小数,从大屏幕上。

  师:小数的意义就是小数表示什么?那你知道吗?

  生:不知道。

  师:那我们先来回顾一下我们的“小数”朋友,你在生活中遇见过小数吗?

  生:遇见过。

  师:在哪遇见过?

  生1:在计算器上计算有余数的除法时出现了小数。

  生2:去超市买东西时会遇见小数。(师跟进说标价是小数)

  生3:卖菜时遇见小数,(一生补充说是称量重量时出现小数)

  【设计意图:让学生回顾和小数的“相遇”引出小数的生活意义,把数学和生活联系,让学生体会生活与数学的联系,以及数学的生活性,以此来激发学生的探究欲望。】

  二、探究新知

  1、小数的产生

  师:可见小数在生活中是很有用的,那今天我们就先来研究一下它是怎样产生的。刚才同学们说在标价、计量、测量时会用到小数,还有计算时会出现小数,看是这样的吗?(大屏幕出示,测量课桌的长的图片)测量结果课桌长是多少呢?

  生:(异口同声地回答)60厘米。

  师:怎样用米来作单位呢?(有几人举手)它有1米吗?(没有)那不到1米可以用什么数来表示?(生小数)用哪个小数来表示呢?

  生:一百分之六十。

  师:一百分之六十是小数吗?(不是)那是什么数?(分数)那你说可以用分数来表示,那还可以用谁来表示呢?

  生:0.60。

  师:(师提示要带上单位)0.60米。这样我们就得到了一个小数0.60。体育赛事里也有小数,(出示世界飞人的100米短跑的成绩)博尔特以多少的成绩夺冠?

  生:9.58秒。

  师:出示一次数学检测的成绩98.5分,也是检测,再来一组口算。

  出示口算:

  10÷10= 1÷10=

  100÷10= 1÷100=

  1000÷10= 1÷1000=

  【设计意图:兴趣是最活跃的心理成分,是一种带趋向性的心理特征。苏霍姆林斯基也说过:如果教师不设法使学生产生情绪高昂和智力振奋的状态就急于传授知识,不动情感的脑力劳动只会带来疲倦,没有欢欣鼓舞的心情,没有学习的兴趣,学习就会成为学生的负担。因此,在教学中,我创设了超市物品的价格、跑步成绩、身高、体重、体温等情境,让学生感到亲切,引起情感共鸣,体验身边处处有小数。同时,让学生体验测量课桌的长,使学生体会到在实际测量中有时会得不到整数值,必须用新的数来表示。进而又让学生进行口算,让学生动手操作、口算,亲身体验 小数是怎样产生的,激发学生的积极性和主动性。】

  生: 0,赶紧改成1。

  师:非常欣赏他知错就改的精神,但我更希望你能把问题完整的回答下来,语言叙述要准确,(再次完整的回答)。

  师:1÷10=?(没人举手)那先来想想这道算式表示的意义是什么?

  生:1里面有多少个十。

  师:还可以用那句话来说?

  生:把1平均分成10份,每份是几?都说是十分之一。

  师:计算结果出现不是整数时,我们可以用以前分数表示,还可以用小数来表示。谁知道十分之一等于多少呢?(学生都愣了)十分之一是多少呢?用小数多少呢?(一生说是0.1)对吗?先留着,不知道,画一个问号。下边1÷100=?(0.01)用分数怎样表示呢?(一百分之一)那1÷1000=? 就是把1平均分成1000分每份是多少?(一千分之一)那好我们一起来看一下(出示好几张图片)

  师:刚才在进行计算和测量时,往往得不到整数的结果。这时就可以用小数来表示,这就是小数的产生,存在的生活意义。

  【反思:教师太过着急了,没有耐心等待孩子的思维发展,没能和上学生的心弦。原本是等孩子们经历完三道计算后再引出小数的,但是一次就出来了。所以小数的产生没能顺理成章的出现。】

  2、教学小数的意义

  师:能不能把刚才得到的小数读出来呢?从左往右,要学生一起读。你能不能把这几个小数分成两类呢?

  0.85 9.58 38.2 0.6 39.4 98.5

  生:0.85 9.58是一类,其余是一类。

  师:能不能说说你的分类理由?

  生:后面是两位、一位。

  师:她说是后面,(一生即使补充是小数点后面)说得真好,来欣赏一下,(追问,指着0.85 9.58问)小数点后面是几位呀?(两位)那我们就把它称作两位小数,(指着38.2 0.6 39.4 98.5)小数点后面有几位?(一位)那就叫(学生根据直觉说)一位小数。那小数肯定还会有?

  生:三位小数,四位小数,五位小数……

  师:小数的位数是无尽的,研究小数也要从简单入手,咱们就先从研究一位小数入手。我们借助常用的一个长度单位来研究,(出示米尺图)请读出一句话。

  【设计意图:让学生通过观察思考及演示,层层设问,利用旧知逐步将学生引向新知。学生对小数的位数有一定的理解,渗透化难为易的数学研究思想。】

  【反思:本环节的分类有两种,一种是按小数的位数分类,另一种是按照整数部分是否0(是否纯小数)来分,一种是为本节的小数意义作铺垫,一种是为小数的后续研究做伏笔,但自己却把第一种分法板示后,把后者遗忘了。】

  教师出示:把 1米平均分成10份。

  师:把1米平均分成10份,每一份是多长?

  生:10厘米。

  1分米。

  师:1分米和10厘米相等吗?(相等)都可以,那你能不能用一个分数来表示呢?

  生:一百分之一。

  生:十分之一。

  师:把一米平均分成了十分,那分母就应该是几?(10)十分之一米可以用哪个小数来表示?(0.1米)观察1分米,1/10米,0.1米它们都是指把一米平均分成10份,其中的一份的长度,那你说这三个数是否相等?(等于,完成板书1分米=1/10米=0.1米,擦掉问号)1分米是其中的几份呢?

  师:这个数如何表示呢?(4/10米,0.4米)这两个长度一样吗?(一样)那就可以用等号连接。谁能说一下4/10米里面有多少个1/10米?(4个)

  师:你能表示这个数吗?(7分米,7/10米,0.7米)那你能说说0.7里面有多少个0.1吗?(异口同声,7个)

  擦掉单位发现:1/10 =0.1,那你以后看到0.1就要想到1/10,0.1就是谁了?(1/10)0.4里面有( )个1/10,0.4就是分数( )。0.7里面有( )个1/10,0.7就是分数( )。

  师:你发现分数与小数的联系了吗?

  分母是10的分数,可以写成一位小数。一位小数表示十分之几,它是的计数单位是十分之一,也就是0.1。

  师:0.2米表示什么?0.8米呢?你再说两个一位小数,并说出他们的意义。

  【设计意图:在后面的`教学中实现知识的正向迁移,理解分数与小数之间的联系。进而理解小数的意义。】

  (2)认识两位小数

  师(引导学生观察米尺):把1米平均分成100份,每份是多少呢?

  生:是一百分之一米。

  师:还可以怎样表示呢?

  生:0.01米,1厘米。(补充板书)

  师:一百分之一米,它的分母是多少?(100)分母是100的分数写成了几位小数?(两位小数)你还能把几厘米表示成这样的数吗?你想表示几厘米就表示几厘米?(老师是涂色吗?)不是,是自己写一个几厘米把它用小数,分数表示。

  【反思:问题提出的较为模糊,所以自己不断地去补充、重复问题。就这还有孩子不知我说啥,还是自己的问题指向目标不明确造成的。】

  交流自己写的:

  师:你写的是多少?

  生1: 7厘米,是7/100米,0.07米。

  师:你能猜一猜两位小数与什么样的分数有关系吗?

  (指名回答并板书:1厘米=1/100米=0.01米;7厘米=7/100米=0.07米。)

  生(口答):0.01里面有( )个1/100,0.20里面有( )个1/100, 0.32里面有( )个1/100,并说出用哪个分数来表示。

  引导发现:两位小数表示百分之几,它的计数单位是百分之一,也就是0.01。

  师:0.32里面有多少个百分之一呢?(32个)这就是小数0.32表示的意义。

  (3)认识三位小数

  出示:一位小数表示十分之几,它的计数单位是十分之一,可以写作 0.1。

  两位小数表示百分之几,它的计数单位是百分之一,可以写作0.01。

  师:刚才我们认识了一位小数、两位小数的意义和计数单位,那以此类推,你知道

  三位小数表示什么?(千分之几)它的计数单位是(千分之一),可以写作(0.001)。

  四位小数表示什么呢?计数单位呢?可以写作?五位小数呢?小数的位数能说完吗?……(不能)是无穷的。

  师(借助米尺,使学生明确):把1米平均分成一千份,每份是多少?(1毫米)

  1毫米是千分之一米,还可以写成0.001米来表示。(板书:1毫米, 米,0.001米 )

  【设计意图:数学思想方法是高一级的知识,是对知识的一种本质揭示,是数学知识结构的灵魂。在教学中,既要注重学生知识的获取和能力的培养,更应注重数学思想方法的渗透。本节课中,在教学1分米=1/10米=0、1米时,先让学生初步感悟十进制分数与一位小数之间的联系,进而由此迁移类推得到许多一位小数,让学生比较这些小数的共同点,归纳出一位小数的意义。在此基础上又让学生迁移,类比认识二位小数、三位小数,从而归纳出小数的意义。后又通过观察、思考、类推出三位、四位小数的计数单位。】

  (4)抽象、概括小数的意义

  师:小数是什么?

  补充并概括:小数其实就是分母是10、100、1000……的分数的另一种书写形式。分母是10、100、1000、……的分数可以仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫做小数。

  师:0.85是几位小数?它就是哪个分数呢?它的意义是什么呢?0.85表示什么?

  生:85个0.01,还可以表示把一个整体平均分成100份,有这样的85份。

  师:这就是0.85这个小数表示的意义。0.1、0.01、0.001……这些是小数的计数单位,那整数的计数单位有哪些?

  生:个、十、百、千、万……

  师:每相邻两个计数单位之间的进率是多少?(10)接下来我们来研究小数的计数单位。

  3、小数单位间的进率

  师:这是一个正方形,可以用“1”来表示,(演示把它平均分成十份,其中一份涂红色问),这是怎样分的?(十分之一、平均分)怎样分?平均分成10份,涂色部分是其中的几份?(1份)可以用哪个数来表示?(十分之一)还可应用谁来表示?(0.1)1里面有多少个0.1呢?(10个)

  师:(把图继续分成100份)发生了怎样的变化?平均分成了多少分份?(100份)其中的一份用哪个数来表示?(0.01、一百分之一)那0.1里有几个0.01呢?(10个)那小数计数单位之间的进率也是10。把这个正方形平均分成1000份呢?每份是多少?0.01里面有多少个0.001?那我们就接着把小数的计数单位写在整数的计数单位后面,并用小数点隔开,这样就把整数和小数整合了。

  【反思:这个问题的抛出有点突然,显得计数单位更加抽象了,不如换成先让学生猜测它们之间的进率,在通过正方形平均分的动手操作、验证。借助正方形的十分之一、百分之一、千分之一来揭示小数的计数单位间的进率。】

  三、巩固练习

  师:9. 58的9在哪一位上?(个位)表示什么?(9个一)这个5表示什么?(5个0.1)8呢?(8个0.01)

  1、下面括号里能填几。

  0.1米里有( )个0.01米,0.01米里面有( )个0.001米。

  得出:相邻两个计数单位之间的进率是10。

  师:现在你知道为什么要借助长度来研究小数的意义吗?(知道)因为毫米、厘米、分米、米每相邻的单位之间的进率也是10。

  【设计意图:借助长度单位理解,再次得出每相邻两个计数单位之间的进率是10。重点理解“相邻”二字的含义,突破难点,巩固分数与小数之间的关系,加深对小数意义、小数计数单位及单位间进率的理解,并达到学以致用。】

  2、(1)用合适的数表示图中的涂色部分。

  (2)用合适的数表示图中的空白部分。

  3、先写出一个两位小数,再用阴影表示这个小数。(交流自己写的小数及其意义)

  4、找朋友。

  四、课堂总结

  师:以前学过整数、分数,今天又学习了小数,通过今天的联系我们知道它们之间有一定的联系?

  生:每相邻的计数单位之间的进率都是十。

  生:小数就是分数。

  生:小数的计数单位是0.1、0.01、0.001……也可以用分数十分之一、百分之一、千分之一……来表示。

  五、你知道吗

  了解小数的起源、发展史。

  《小数的产生和意义》教学设计 13

  【教学内容】

  教科书第50~51页。

  【教学目标】

  1.通过对生活中常见小数的探讨,体会小数产生的必要性,感悟小数表示的意义,同时理解、掌握小数的计数单位和进率。

  2.通过学习,培养学生应用数学知识解释新知的能力,培养合作交流与探索的能力,提高自主探究学习的能力。

  【教学过程】

  一、情境引入。

  1.出示信息:

  (1)一盒饼干12.8元。 (2)张叔叔身高1.73米。

  (3)一个苹果质量0.4千克。 (4)百米世界记录9.58秒。

  2.学生说一说这些小数的.含义。(学生可能对0.4千克、9.58秒理解的不够清楚)

  3.引入:我们有必要对小数进行更深入的研究。

  二、新知探索。

  1.教师引导学生结合线段图研究“ 0.1米”、“0.3米”等一位小数的具体含义。

  2.师生结合线段图研究“0.01米”、“0.08米”等两位小数的具体含义。

  3.学生自主结合线段图研究“0.001米”、“0.012米”等三位小数的具体含义。

  4.教师引导学生总结:一位小数、两位小数、三位小数、……分别表示十分之几、百分之几、千分之几、……;它们的计数单位分别为十分之一、百分之一、千分之一、……。

  三、课堂练习。

  1.看图写分数和小数、把对应的分数和小数连一连、说一说每个小数所包含的计数单位的个数。

  2.学生说一说“0.4千克”、“9.58秒”的含义。

  3.学生说一说下面信息中小数的含义。(学生体会有了小数就可以表现出物体细微的特点)

  (5)一颗灰尘的质量大约0.0000007克。 (6)一种细菌的长度大约0.00003米。

  四、课堂总结。

  《小数的产生和意义》教学设计 14

  教学目标:

  1、使学生经历实际测量等活动,了解小数的产生过程。

  2、使学生理解小数的意义,认识小数的计数单位和相邻两个计数单位之间的进率。

  3、培养学生学习数学的兴趣和自主探究的能力。

  教学重点:

  理解和抽象小数的意义。

  1、编排特点和教学建议:

  学生在三年级以经学习了”分数的初步认识“和”小数的初步认识“,本节是学生系统学习小数的第一课时。

  主题图简要地呈现了”小数产生“的过程:通过实际测量活动,使学生体会到在进行测量和计算时,往往得不到整数的结果,还需要把一个单位平均分成10份、100份、1000份......等较小的单位来量,从而产生了小数。教学时,可以让学生在课前分组进行测量,也可以让学生在课上测量,测量后让学生分组报告测量结果。在小组汇报后,教师可引导学生重点观察不能得到整数结果的情况,比如拿米尺量讲桌的长:量1次,即量出1米后,余下的部分不够1米。说明测量时不是每次都能得到整数的结果。不够1米的部分如果仍用高级单位米作单位记录,就要用小数表示,体验用小数表示测量结果的必要性。在这里,除了可以量黑板的宽和讲桌的长外,也可以选择整米长的.物体来量,通过对不同结果的比较,加深对小数产生的必要性的认识。

  例1教材分三个层次编排:先通过分米数改写成米数,说明十分之几的数用一位小数来表示;再通过厘米数改写成米数,说明百分之几的数用两位小数来表示;然后通过毫米数改写成米数,说明千分之几的数用三位小数来表示。三个层次的内容共同说明,把低级单位的数改写成高级单位的数可以用分母是10、100、1000......的分数表示,再进一步用小数表示。在具体教学时也可以分两步进行:

  2、认识一位小数。

  师:我们在进行测量时,不够1米,需要把1米平均分成10份、100份、1000份,用较小的单位来测量。(出示米尺)请同学们看,从0刻度线到10刻度线,这是几分米?

  用米作单位,用分数怎么表示呢?(1/10米)

  师:1/10米也可以写成0.1米。

  师:请同学们看米尺,从0到30,从0到70,应该是几分米,十分之几米?用小数怎样表示呢?可先和同桌商量商量。

  学生同桌讨论后反馈

  师根据反馈结果提问:请同学观察一下1/10米和0.1米,3/10米和0.3米,7/10米和0.7米之间有什么关系?随学生的回答出示1/10米=0.1米3/10米=0.3米7/10米=0.7米。再让学生观察上面的等式,四人小组讨论你发现了什么?

  使学生通过讨论明确:分母是10的分数可以写成一位小数,一位小数表示十分之几。

  2、认识两位小数、三位小数

  师:我们已经知道了一位小数表示十分之几,那么请同学猜一猜两位小数与什么样的分数有关?三位小数与什么样的分数有关?(具体的步骤和前面相似)

  让学生根据一位小数表示十分之几,猜想出两位小数和什么样的分数有关?有意识地促进”迁移“,使学生在学会的同时学习能力也得到提高。

  关于计数单位的教学我个人认为还是放到52页小数数位顺序表这里教学比较妥当。

  《小数的产生和意义》教学设计 15

  教学过程:

  一、 情景导入,引出课题。

  出示玩具,让学生猜价格,猜对的给予奖励。

  2.5 3.5 1.5 0.5

  让学生观察这些数与前面所学的数有什么不同?

  学生回答,出示课题。

  二、 探究新知。

  1、 猜教师身高,如果用米做单位怎样表示,由此引出小数的产生。

  2、 认识小数

  (1) 一位小数

  把一张纸平均分成10份,让学生用一个数来表示其中的一份或几份。

  学生自由回答,这时有的学生已经能用小数来表示。

  学生观察思考,这组数字有什么规律?

  学生回答,教师借机进行引导,让学生明白小数和分数之间的联系,并得出小数的计数单位。

  同桌互相举出一位小数的例子,并说说各表示几分之几。

  课件出示:考考你

  判断下面的小数哪些是一位小数?

  0.02 12.6 1.0 0.3

  (2)认识两位小数

  把一张纸平均分成100份,让学生用一个数来表示其中的一份或几份。

  学生自由回答,教师根据学生的回答板书,引导学生观察并小结:什么是两位小数,它的计数单位是什么?

  学生举出两位小数的例子,并说出表示几分之几。

  (3)认识三位小数

  师:如果把一张纸平均分成1000份,这样的一份或几份怎样表示?这些小数都是几位小数,计数单位是什么?

  放手让学生独立思考,学生在认识并知道了一位、两位小数的含义后,能自己进行简单总结。

  教师在学生总结的基础上进行归纳。

  师:如果继续分成10000份,100000份……你能表示出其中的一份或几份吗?

  生自由回答。

  3、 概括小数的意义

  让学生自己进行概括。

  课件出示小数的意义:

  用来表示十分之几、百分之几、千分之几……的数,叫做小数。

  三、学生练习

  (1) 1角用小数表示是( )元。

  2分用小数表示是( )元。

  学生在有了前面知识的铺垫,直接让学生独立完成例题。

  (2)请你帮忙

  小明到商店去买学习用品,他带了6角5分钱,到底应该选哪一种呢?

  练习本 钢笔 铅笔

  0.85元 6.5元 0.65

  四、课堂小结

  通过这节课的学习,你学到了小数的哪些知识?你还想知道哪些关于小数的知识?

  教后反思:

  在课的一开始让学生猜物品价格,致使学生的积极性很高,整节课学生的'发言很积极,课堂气氛较活跃。本节课中主要是教师引导学生去理解小数的产生和意义,提出问题引导学生思考,让学生步步深入,最后概括出小数的意义。

  1、 从整个课堂来看,学生在前面学习的过程中掌握的还可以,但是遇到实际应用的问题,学生容易出错,如果让学生在实际操作中理解小数的产生,是不是效果会更好一些。

  2、 努力提高自己调控课堂的能力,对于学生课堂中生成的资源,应及时捕捉,有效的进行利用。

  《小数的产生和意义》教学设计 16

  教学内容:教科书第50—51页的内容

  学习目标:

  1、知识目标:使学生了解小数的产生,理解小数的意义,掌握小数的计数单位及单位间的进率。

  2、能力目标:使学生学会用小数正确表示图中阴影部分。

  3、思想教育目标:培养学生的观察能力、抽象概括能力、动手操作能力。

  学情分析:通过测量,当学生不能用整数表示的时候,需要一个新的知识即“小数”来表示,引出小数,然后根据米尺直观图引出十分之几、百分之几、千分之几的数都可用小数表示,从而概括出小数的意义。

  教学重点:小数的意义。

  教学难点:理解和概括小数的意义。

  教学准备:米尺多媒体

  教学过程:

  一、操作引入

  教师指着手中的米尺问:米尺有什么作用?当学生回答后。老师说现在咱们就用它来测量黑板的长有几米。

  当老师测量三次后,指着剩下的部分问:剩下的部分还够不够1米?如果用米作单位还能用整米数来表示吗?

  学生回答:不能。

  师问:那用什么数来表示?

  生答:可用小数来表示。

  师说:对,可用小数表示,这种情况在日常生活中经长遇到。例如:在测量人的身高、物体的长度时经常遇到得不到整米数,这时咱们就用小数来表示。什么数是小数呢?这节课咱们就来学习这一内容。(板书课题:小数的意义)

  二、教学小数的意义。

  1、认识一、两位小数

  出示例1主题图让生观察(1)师问:从图上看把1米平均分成几份?(生答:分成了10份),每份长多少分米?(生答:每份长1分米),1分米是1米的几分之几?(生答:是1米的十分之一),是几分之几米?(生答:是十分之一米),写成小数是多少米?(生答:0.1米)

  用同样的方法引导学生把3分米写成0.3米。

  教师结合学生的口答板书如下:

  1分米→1/10米→0.1米。

  3分米→3/10米→0.3米。

  师问:分母是10的分数可以写成几位小数?一位小数可表示成几分之几的数?0.1表示几分之几?0.3表示几分之几?

  (2)师问:把1米平均分成100份,每份长是多少厘米?1厘米是几分之几米?写成小数是多少米?

  用同样的方法引导学生把7厘米、13厘米分别写成0.7米、0.13米

  教师结合学生的回答板书如下:

  1厘米→1/100米 →0.01米。

  7厘米→7/100米→0.07米。

  13厘米→13/100米→0.13米。

  师问:从上面看分母是100的'分数可以写成几位小数?两位小数表示几分之几的数?0.07表示几分之几?0.53表示几分之几?

  2、认识三位小数

  师问:若把1厘米平均分成10份,照这样分,可以把1米平均分成多少份?每1份是多少?1毫米是几分之几米?写成小数是多少米?8毫米是几分之几米?写成小数是多少米?13毫米是几分之几米?写成小数是多少米?

  师问:从上面看分母是1000的分数可以写成几位小数?三位小数表示几分之几的数?0.013表示几分之几?

  师结合学生的回答板书如下

  1毫米→1/1000米→0.001米。

  8毫米→8/1000米→0.008米。

  13毫米→13/1000米→0.013米。

  师说:若把1毫米平均分成10份,其中的一份或几份可用分母是10000的分数来表示,写成小数就是四位小数。同样我们也可以得到五位小数等。

  3、抽象、概括小数的意义。

  教师指着上面板书讲解:从上面可以看出,把1米平均分成10份,其中的1份或几份就可以用分母是10的分数来表示。它的单位是十分之一。再把1分米平均分成10份,也就是把1米分成了100份,其中的一份或几份就可以用分母是100的分数来表示。它的单位是百分之一。再把1厘米平均分成10份,也就是把1米分成了1000份,其中的1份或几份就可用分母是1000的分数来表示。它的单位是千分之一。等等

  师问:1/10里面有几个1/100?1/100里面有几个1/1000?在这些分数中相邻两个单位间的进率是多少?”(10)“整数相邻两个单位间的进率是多少?”(10)

  师述:因为整数和分数相邻两个单位间的进率都是10,因此这些分数可以仿照整数的写法,写在整数个位的右面,用一个圆点隔开,用来表示十分之几、百分之几、千分之几……的数,这样的数就叫小数。

  一位小数表示十分之几,它的单位就是1/10,写作0.1;两位小数表示百分之几,它的单位就是1/100,写作0.01;三位小数表示千分之几,它的单位就是1/1000,写作0.001;

  (三)课堂练习

  1、做教科书第51页的例1及“做一做”的题。

  让学生直接填在书上后订正。老师可强调做题时要看一看小数的单位和要求的单位是否与一致。

  2、做教科书55页练习九的第1题

  师让生直接做在书上,订正时让生说一说各是怎样想的。

  3、做教科书55页练习九的第2题

  师让生直接做在书上后订正。

  4、练习九的第3题,通过填空的形式,加深学生对小数计数单位的认识。

  5、练习九的第4题,通过手势比划用小数表示的长度,加深学生对小数十几意义的理解,同时进一步巩固长度单位的表象。

  6、练习九的第5题,让学生写出各数中不同数位上的2表示的意思,让学生熟练掌握小数的各个数位及其技术单位,体会位值的含义。

  (四)课堂小结

  这节课你学习了那些内容?什么是小数?小数的计数单位有哪些?

  三、板书设计:

  小数的产生和意义

  1分米→1/10米→0.1米。

  3分米→3/10米→0.3米。

  1厘米→1/100米 →0.01米。

  7厘米→7/100米→0.07米。

  13厘米→13/100米→0.13米。

  1毫米→1/1000米→0.001米。

  8毫米→8/1000米→0.008米。

  13毫米→13/1000米→0.013米。

  《小数的产生和意义》教学设计 17

  教学内容:小数的产生和意义(人教版四下数学P50--P51)

  教学目标:

  1、使学生了解小数的产生过程,理解小数的意义,知道分数与小数的联系

  2、知道1/10,1/100,1/1000......可以用小数0.1,0.01,0.001......表示

  3、掌握小数的计数单位及单位间的进率。培养学生的观察能力和抽象概括能力。

  教学重点:使学生通过分数与小数的联系从而理解小数的意义

  教学难点:使学生真正理解小数的意义

  教具准备:多媒体课件

  教学过程:

  一、复习导入:

  1.猜一猜老师的身高吗?(1.80米)......学生猜一猜。

  (1)1.80是什么数?具体表示多少高?

  (2)某某同学的身高是多少呢?

  (1米多,2米到了吗?用米作单位剩下不够1米怎么表示?)

  (3)除了身高可以用小数表示,你知道生活中还有其它的小数吗?学生举例。

  (4)老师也带来了一些小数。比如:黑板宽1.2米,羚羊奔跑的速度是1.48千米/分钟,四(2)班第一单元平均分91.35分)。

  (通过猜老师的身高,读生活中的小数,唤醒学生大脑中对小数的记忆,激发起学生对小数意义探究的兴趣。)

  2、我们已经认识了这许许多多的小数,那你们知道这些小数是怎么产生的'?小数的意义又是什么呢?这节课老师就和大家一起去研究。揭题并板书(小数的产生和意义)

  二、组织探究:

  1.感悟小数的产生:

  (1)刚才有同学说了你的身高,我们现场来量量看。

  师拿米尺测量演示,不是正好1米,多出来的又不到1米怎么办?这时候就要用到小数来表示了。

  (在实际的测量中,结果不能用整数来表示的时候,就需要用小数的表示。)

  (2)那你们知道平时单元测验老师报给你们的平均分是怎么来的吗?学生说一说。

  (在计算时,也往往不能用整数表示结果,也需要用小数表示)现在你知道小数是怎么产生的吗?你能告诉别人吗?

  2、学习一位小数:

  我们知道了小数是如何产生的产生,接下来我们仍然借助米尺去学习小数?

  (1)大屏幕出示米尺,把1米平均分成10份,其中的一份是多少?用分数怎么表示?也可以用小数表示。

  板书:(1分米、10/1米、0.1米),谁能说说0.1米表示什么意思?

  (2)那如果3分米呢分别用分数小数表示是多少?

  (3)像这样的你能找一个让同学说说吗?(学习说老师补充板书)

  你观察这一些小数,你发现它们有一个什么共同的特点吗?(一位小数)

  将分数与小数联系起来看,又发现什么共同的特点呢?(分母是10是的分数可以用一位小数来表示)

  (4)0.3米也就是10/3米它有几个10/1?

  0.7米也就是10/7米它有几个10/1

  那1位小数的计数单位是什么?写作小数是?

  3、学习两位小数。

  刚才是把1米平均分成10份,那如果老师把1米平均分成100份(老师将尺放大)根据我们刚才的学习,你能找到小数的这些知识吗?

  取1份是几分之几米?用小数怎么表示?

  取10份呢?

  取11份呢?

  仔细观察这组分数和小数的特点,看看你能得到什么结论。(分母是100的分数可以用两位小数表示,两位小数的计数单位)

  (通过学习迁移,引导学生自主学习二位小数。)

  4、学习三位小数

  同学们想一想,如果将尺平均分成1000份。你又能得到什么结论?

  1份、1000/1米、0.001米

  10份1000/10米0.010米

  111份、1000/1111米0.111米

  分母是1000的分数可以用三位小数表示,计数单位单位是千分之一,写作0.01是不是只有这三种小数呢?......

  5、类比推断

  那如果平均分成10000份,用几位小数表示?100000份呢?

  6、学习进率:观察各个计数单位,想想:相邻两个计数单位的进率是多少?

  得出每相邻两个计数单位的进率是10(说给同桌听)

  三、巩固新知

  1、做一做

  2、P55(1-4)

  四、课堂小结

  板书设计:

  小数的产生和意义

  计数单位十分之一0.1百分之一0.01千分之一0.001......

  1分米=1/10米=0.1米1厘米=1/100米=0.01米1/1000米=0.001

  3分米=3/10米=0.3米13厘米=13/100米=0.13米10/1000米=0.010米

  7分米=7/10米=0.7米35厘米=35/100米=0.35米362/1000米=0.362米

  分母是10的分数一位小数分母100的分数......分母1000的分数......

  《小数的产生和意义》教学设计 18

  [教材分析]

  这节课是学生在三年级学习了“小数的初步认识”的基础上的继续学习和深入理解。学生在日常生活中感受到小数的大量应用,同时在三年级的学习中,对于小数的读法,小数在价格上表达的具体含义都已有所了解。因此,通过本节课的学习,要使学生对于小数产生的实际价值有所认识,抓住数与数之间的紧密联系,了解小数的来源,掌握小数的意义,能正确地把分母是10、100、1000……的分数改写成小数的形式。同时,通过与整数、分数知识的紧密结合,使学生体会到小数的计数单位和进率,从而对于数有一个比较全面的认识,为后续学习做好准备。

  [教学内容]

  义务教育课程标准实验教科书《数学》人教版四年级下册50页、51页例1。

  [教学目标]

  1.使学生经历实际测量等活动,了解小数的产生过程。

  2.通过实际情境感悟分数可以用小数来表示,理解小数的.意义,认识小数的计数单位和进率。

  3.在探讨中培养学生学习数学的兴趣和分析能力、表达能力及逻辑推理能力,并结合小数产生的历史,进行爱国注意教育。

  [教学重点、难点]

  理解小数的意义

  [课前准备]

  课件,课前调查的数据资料

  [教学过程]

  (一)创设情境

  1.感受生活中整数和分数的运用。

  (1)课件出示。

  一张桌子、六把椅子、一个圆形花坛、白色占整个圆形的八分之一

  (2)师:看来在我们的生活中,整数的应用是非常普遍和广泛的。当我们

  得不到正好的整数结果时,可以用分数来表示。

  2.感受生活中小数的运用,质疑反思,体会小数的产生。

  (1)学生介绍课前搜集到的数据信息

  (2)师:小数在生活中的应用也非常广泛,看到这些,你们有什么疑问吗?

  (3)抓住现实信息引发思考

  提问:生活中,我们在哪些时候会常常用到小数?

  让学生自己动手测量桌子的长度或数学书封面的长和宽

  3.揭示课题:

  看来小数的存在也有它一定的价值,这节课我们就来研究小数的产生及意义。

  (设计意图:在生活中,整数的应用非常广泛,但我们在测量时,往往又得不到整数的结果,可以应用分数来解决。生活中小数的广泛存在又给学生造成认知上的冲突,从而引发学生的疑问,引起探讨。)

  (二)研究改写方法,探究小数的意义

  1.1米

  初步探究一位小数的改写。

  (1)出示线段图。

  (2)提问:看到上面的图,谁能用分数或小数表示出其中的一份?

  ①(学生预设:把1米平均分成10份,每份是米。)

  ②也可以用小数来表示,每一份是0.1米。

  ③其中的两份用小数可以怎样表示,你怎么想?

  (学生预设:把1米平均分成10份,每两份是米,小数是0.2米)

  ④图中还有哪部分表示0.1?(请学生指图)

  (3)理解0.2并感知0.1与0.2有什么关系

  ①哪部分表示0.2?想一想对0.2你还能说些什么?

  ②0.2与0.1有什么关系?

  (0.1+0.1=0.2,0.2是两个0.1…)

  ③对于其中的三份、四份、五份…你有什么想法?选择其中的一个和同学说一说。

  ④对比:米与0.1米,米与0.2米…有怎样的关系?

  ⑤观察米=0.1米,米=0.2米,…你发现了什么?

  ⑥提问:一位小数表示什么?

  2.在迁移辨析中理解两位小数的改写。

  (1)出示教材中的图:如果把1米平均分成100份,其中的1份用分数怎样表示?用小数怎样表示?

  (2)提出要求:100份中的1份大家会改写成小数形式了,那么把其中的几份改写成小数的形式呢?小组合作,涂上阴影,说出分数和小数,并说说小数表示的意义。

  (根据学生的回答板书例如:米=0.01米,米=0.03米,米=0.12米)

  师:同学们你们观察上面这些算式,你们有什么发现?

  (学情预设:分母是100的分数可以写成两位小数。也可以说两位小数表示百分之几)

  (3)练习:说出小数的意义

  课件呈现:0.6、0.09、0.12、0.86、0.1

  (设计意图:让学生根据一位小数表示十分之几,猜想出两位小数和什么样的分数有关?有意识地促进“迁移”,让学生体验成功,培养学生的学习兴趣和信心。)

  3.深入、灵活理解三位小数的改写

  (1)师:如果把1米平均分成1000份,你会把其中的一份或几份改写成小数吗?

  (2)根据前面小数的意义,分母是1000的分数可以改写成几位小数?

  (3)课件出示三组数据。

  第一组:1/100023/100026/1000

  第二组:3/100043/100089/1000

  第三组:9/100065/10008/1000

  (4)提出要求:请小组合作自选一组分数,一边改写一边讨论。

  4.:我们知道了一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。把分数改写成小数的形式,使人们应用起来更加方便、简单。

  5.拓展:请同学们想一想四位小数表示多少?五位小数呢?

  (设计意图:由借助直观认识一位小数表示十分之几,两位小数表示百分之几,三位小数表示…到通过联想认识四位小数,五位小数表示的意义,再到抽象概括小数的意义,学生经历了知识的形成过程,让学生在获取数学知识的同时,获得学习的方法,发展提高能力。)

  (四)认识小数的计数单位和进率。

  1.回顾整数的计数单位

  师:回忆一下,我们都已经学习了哪些计数单位?

  (个、十、百、千、万、十万、百万、千万、亿)

  2.说说它们之间有什么关系?

  3.1个一是10个(),是100个(),是1000个(),是10000个()…

  4.提问:所以小数的计数单位应该是什么?

  5.教师:这十分之一,百分之一,千分之一,万分之一…就是我们今天研究的分母是10的分数写成小数,小数部分是多少表示的就是多少个十分之一,分母是100的分数写成小数,小数部分是多少表示的就是多少个百分之一…,所以,十分之一、百分之一、千分之一…就是小数的计数单位,它与整数计数单位一起形成了数学的一个完整的知识体系。

  6.依照这一体系,你能说说小数的计数单位间的进率吗?

  (五)巩固练习

  1.填数(数学书第51页“做一做”)

  2.比一比(数学书第55页练习九第1题)

  3.对口令游戏:一方说分母是10、100、1000…的分数,另一方说出对应的小数;一方说小数,另一方说出对应的分数。

  (六)畅谈收获

  通过这节课的学习,你有哪些收获?还想了解什么?

  (设计意图:学生自己所学内容,培养了学生的概括能力和语言表达能力。)

  [板书设计]

  小数的产生和意义

  1分米=1/10米=0.1米1厘米=1/100米=0.01米1毫米=1/1000米=0.001米

  2分米=2/10米=0.2米3厘米=3/100米=0.03米127毫米=127/1000米=0.127米

  3分米=3/10米=0.3米12厘米=12/100米0.12米74毫米=74/1000米=0.074米

  一位小数表示十分之几二位小数表示百分之几三位小数表示千分之几

  小数的计数单位:十分之几,百分之几,千分之几…,分别0.1、0.01、0.001……

  每相邻两个计数单位之间的进率为10。

【《小数的产生和意义》教学设计】相关文章:

《小数的产生和意义》教学设计06-21

小数产生和意义教学设计03-17

《小数的产生和意义》教学设计10-22

小数的产生和意义教学设计03-13

小数的产生和意义教学设计3篇03-13

小数产生和意义教学设计4篇04-01

小数产生和意义教学设计3篇03-17

《小数的产生和意义》教学设计3篇10-25

小数的产生和意义教学反思04-03