学期计划

高一上学期数学教学计划

时间:2023-02-14 11:39:46 学期计划 我要投稿

高一上学期数学教学计划合集10篇

  时间过得太快,让人猝不及防,我们的工作同时也在不断更新迭代中,现在就让我们制定一份计划,好好地规划一下吧。计划怎么写才不会流于形式呢?以下是小编收集整理的高一上学期数学教学计划,欢迎阅读,希望大家能够喜欢。

高一上学期数学教学计划合集10篇

高一上学期数学教学计划1

  (一)教学目标

  1.知识与技能

  (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.

  (2)能使用Venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用。

  (3)掌握的关的术语和符号,并会用它们正确进行集合的并集与交集运算。

  2.过程与方法

  通过对实例的分析、思考,获得并集与交集运算的法则,感知并集和交集运算的实质与内涵,增强学生发现问题,研究问题的创新意识和能力.

  3.情感、态度与价值观

  通过集合的并集与交集运算法则的发现、完善,增强学生运用数学知识和数学思想认识客观事物,发现客观规律的兴趣与能力,从而体会数学的应用价值.

  (二)教学重点与难点

  重点:交集、并集运算的含义,识记与运用.

  难点:弄清交集、并集的含义,认识符号之间的区别与联系

  (三)教学方法

  在思考中感知知识,在合作交流中形成知识,在独立钻研和探究中提升思维能力,尝试实践与交流相结合.

  (四)教学过程

  教学环节 教学内容 师生互动 设计意图

  提出问题引入新知 思考:观察下列各组集合,联想实数加法运算,探究集合能否进行类似“加法”运算.

  (1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}

  (2)A = {x | x是有理数},

  B = {x | x是无理数},

  C = {x | x是实数}.

  师:两数存在大小关系,两集合存在包含、相等关系;实数能进行加减运算,探究集合是否有相应运算.

  生:集合A与B的元素合并构成C.

  师:由集合A、B元素组合为C,这种形式的组合就是为集合的并集运算. 生疑析疑,

  导入新知

  形成

  概念

  思考:并集运算.

  集合C是由所有属于集合A或属于集合B的元素组成的,称C为A和B的并集.

  定义:由所有属于集合A或集合B的元素组成的集合. 称为集合A与B的并集;记作:A∪B;读作A并B,即A∪B = {x | x∈A,或x∈B},Venn图表示为:

  师:请同学们将上述两组实例的共同规律用数学语言表达出来.

  学生合作交流:归纳→回答→补充或修正→完善→得出并集的定义. 在老师指导下,学生通过合作交流,探究问题共性,感知并集概念,从而初步理解并集的含义.

  应用举例 例1 设A = {4,5,6,8},B = {3,5,7,8},求A∪B.

  例2 设集合A = {x | –1

  例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.

  例2解:A∪B = {x |–1

  师:求并集时,两集合的相同元素如何在并集中表示.

  生:遵循集合元素的互异性.

  师:涉及不等式型集合问题.

  注意利用数轴,运用数形结合思想求解.

  生:在数轴上画出两集合,然后合并所有区间. 同时注意集合元素的互异性. 学生尝试求解,老师适时适当指导,评析.

  固化概念

  提升能力

  探究性质 ①A∪A = A, ②A∪ = A,

  ③A∪B = B∪A,

  ④ ∪B, ∪B.

  老师要求学生对性质进行合理解释. 培养学生数学思维能力.

  形成概念 自学提要:

  ①由两集合的所有元素合并可得两集合的并集,而由两集合的公共元素组成的`集合又会是两集合的一种怎样的运算?

  ②交集运算具有的运算性质呢?

  交集的定义.

  由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集;记作A∩B,读作A交B.

  即A∩B = {x | x∈A且x∈B}

  Venn图表示

  老师给出自学提要,学生在老师的引导下自我学习交集知识,自我体会交集运算的含义. 并总结交集的性质.

  生:①A∩A = A;

  ②A∩ = ;

  ③A∩B = B∩A;

  ④A∩ ,A∩ .

  师:适当阐述上述性质.

  自学辅导,合作交流,探究交集运算. 培养学生的自学能力,为终身发展培养基本素质.

  应用举例 例1 (1)A = {2,4,6,8,10},

  B = {3,5,8,12},C = {8}.

  (2)新华中学开运动会,设

  A = {x | x是新华中学高一年级参加百米赛跑的同学},

  B = {x | x是新华中学高一年级参加跳高比赛的同学},求A∩B.

  例2 设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系. 学生上台板演,老师点评、总结.

  例1 解:(1)∵A∩B = {8},

  ∴A∩B = C.

  (2)A∩B就是新华中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合. 所以,A∩B = {x | x是新华中学高一年级既参加百米赛跑又参加跳高比赛的同学}.

  例2 解:平面内直线l1,l2可能有三种位置关系,即相交于一点,平行或重合.

  (1)直线l1,l2相交于一点P可表示为 L1∩L2 = {点P};

  (2)直线l1,l2平行可表示为

  L1∩L2 = ;

  (3)直线l1,l2重合可表示为

  L1∩L2 = L1 = L2. 提升学生的动手实践能力.

  归纳总结 并集:A∪B = {x | x∈A或x∈B}

  交集:A∩B = {x | x∈A且x∈B}

  性质:①A∩A = A,A∪A = A,

  ②A∩ = ,A∪ = A,

  ③A∩B = B∩A,A∪B = B∪A. 学生合作交流:回顾→反思→总理→小结

  老师点评、阐述 归纳知识、构建知识网络

  课后作业 1.1第三课时 习案 学生独立完成 巩固知识,提升能力,反思升华

  备选例题

  例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.

  【解析】法一:∵A∩B = {–2},∴–2∈B,

  ∴a – 1 = –2或a + 1 = –2,

  解得a = –1或a = –3,

  当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.

  当a = –3时,A = {–1,10,6},A不合要求,a = –3舍去

  ∴a = –1.

  法二:∵A∩B = {–2},∴–2∈A,

  又∵a2 + 1≥1,∴a2 – 3 = –2,

  解得a =±1,

  当a = 1时,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.

  当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.

  例2 集合A = {x | –1

  (1)若A∩B = ,求a的取值范围;

  (2)若A∪B = {x | x<1},求a的取值范围.

  【解析】(1)如下图所示:A = {x | –1

  ∴数轴上点x = a在x = – 1左侧.

  ∴a≤–1.

  (2)如右图所示:A = {x | –1

  ∴数轴上点x = a在x = –1和x = 1之间.

  ∴–1

  例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何实数时,A∩B 与A∩C = 同时成立?

  【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.

  由A∩B 和A∩C = 同时成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 将3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.

  当a = 5时,A = {x | x2 – 5x + 6 = 0} = {2,3},此时A∩C = {2},与题设A∩C = 相矛盾,故不适合.

  当a = –2时,A = {x | x2 + 2x – 15 = 0} = {3,5},此时A∩B 与A∩C = ,同时成立,∴满足条件的实数a = –2.

  例4 设集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.

  【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.

  当x = 3时,A = {9,5,– 4},B = {–2,–2,9},B中元素违背了互异性,舍去.

  当x = –3时,A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}满足题意,故A∪B = {–7,– 4,–8,4,9}.

  当x = 5时,A = {25,9,– 4},B = {0,– 4,9},此时A∩B = {– 4,9}与A∩B = {9}矛盾,故舍去.

  综上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.

高一上学期数学教学计划2

  一 设计思想:

  函数与方程是中学数学的重要内容,是衔接初等数学与高等数学的纽带,再加上函数与方程还是中学数学四大数学思想之一,是具体事例与抽象思想相结合的体现,在教学过程中,我采用了自主探究教学法。通过教学情境的设置,让学生由特殊到一般,有熟悉到陌生,让学生从现象中发现本质,以此激发学生的成就感,激发学生的学习兴趣和学习热情。在现实生活中函数与方程都有着十分重要的应用,因此函数与方程在整个高中数学教学中占有非常重要的地位。

  二 教学内容分析:

  本节课是《普通高中课程标准》的新增内容之一,选自《普通高中课程标准实验教课书数学I必修本(A版)》第94—95页的第三章第一课时3。1。1方程的根与函数的的零点。

  本节通过对二次函数的图象的研究判断一元二次方程根的`存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形。它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3。1。2)加以应用,通过建立函数模型以及模型的求解(3。2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系。渗透“方程与函数”思想。

  总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。

  三 教学目标分析:

  知识与技能:

  1。结合方程根的几何意义,理解函数零点的定义;

  2。结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;

  3。结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间 的方法

  情感、态度与价值观:

  1。让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;

  2。培养学生锲而不舍的探索精神和严密思考的良好学习习惯;

  3。使学生感受学习、探索发现的乐趣与成功感

  教学重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。

  教学难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。

  四 教学准备

  导学案,自主探究,合作学习,电子交互白板。

  五 教学过程设计:

  六、探索研究(可根据时间和学生对知识的接受程度适当调整)

  讨论:请大家给方程的一个解的大约范围,看谁找得范围更小?

  [师生互动]

  师:把学生分成小组共同探究,给学生足够的自主学习时间,让学生充分研究,发挥其主观能动性。也可以让各组把这几个题做为小课题来研究,激发学生学习潜能和热情。老师用多媒体演示,直观地演示根的存在性及根存在的区间大小情况。

  生:分组讨论,各抒己见。在探究学习中得到数学能力的提高

  第五阶段设计意图:

  一是为用二分法求方程的近似解做准备

  二是小组探究合作学习培养学生的创新能力和探究意识,本组探究题目就是为了培养学生的探究能力,此组题目具有较强的开放性,探究性,基本上可以达到上述目的。

  七、课堂小结:

  零点概念

  零点存在性的判断

  零点存在性定理的应用注意点:零点个数判断以及方程根所在区间

  八、巩固练习(略)

  小编为大家提供的高一上学期数学教学计划格式,大家仔细阅读了吗?最后祝同学们学习进步。

高一上学期数学教学计划3

  一、具体目标:

  1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3.提高数学地提出、分析和解决问题(包括简单的实际问题的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学

  二、本学期要达到的教学目标

  1.双基要求:

  在基础知识方面让学生掌握高一有关的概念、性质、法则、公式、定理以及由其内容反映出来的数学思想和方法。在基本技能方面能按照一定的'程序与步骤进行运算、处理数据、能使用计数器及简单的推理、画图。

  2.能力培养:

  能运用数学概念、思想方法,辨明数学关系,形成良好的思维品质;会根据法则、公式正确的进行运算、处理数据,并能根据问题的情景设计运算途径;会提出、分析和解决简单的带有实际意义的或在相关学科、生产和生活的数学问题,并进行交流,形成数学的意思;从而通过独立思考,会从数学的角度发现和提出问题,进行探索和研究。

  3. 思想教育:

  三、进度授课计划及进度表(略)

  高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高中一年级上学期数学教学计划,希望大家喜欢。

高一上学期数学教学计划4

  数学是一切科学的基础,可以说人类的每一次重大进步背后都是数学在后面强有力的支撑。以下是小编为大家整理的高一上学期数学教学计划,希望可以解决您所遇到的相关问题。

  一、指导思想:

  使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

  1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2.提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的'一些数学模式进行思考和做出判断。

  5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  二、教材特点:

  我们所使用的教材是人教版《普通高中课程标准实验教科书〃数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

  1.亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

  2.问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

  3.科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

  4.时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

  三、教法分析:

  1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。

  2.通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

  3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

  四、学情分析:

  高一学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

  五、教学措施:

  1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

  2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

  3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辩证唯物主义教育。

  4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

  5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

  6、重视数学应用意识及应用能力的培养。

  最后,希望小编整理的高一上学期数学教学计划对您有所帮助,祝同学们学习进步。

高一上学期数学教学计划5

  教学目标 :

  (1)理解子集、真子集、补集、两个集合相等概念;

  (2)了解全集、空集的意义,

  (3)掌握有关的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;

  (4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;

  (5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;

  (6)培养学生用集合的观点分析问题、解决问题的能力.

  教学重点:子集、补集的概念

  教学难点 :弄清元素与子集、属于与包含之间的区别

  教学用具:幻灯机

  教学过程 设计

  (一)导入 新课

  上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.

  【提出问题】(投影打出)

  已知 , , ,问:

  1.哪些集合表示方法是列举法.

  2.哪些集合表示方法是描述法.

  3.将集M、集从集P用图示法表示.

  4.分别说出各集合中的元素.

  5.将每个集合中的元素与该集合的关系用符号表示出来.将集N中元素3与集M的关系用符号表示出来.

  6.集M中元素与集N有何关系.集M中元素与集P有何关系.

  【找学生回答】

  1.集合M和集合N;(口答)

  2.集合P;(口答)

  3.(笔练结合板演)

  4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)

  5. , , , , , , , (笔练结合板演)

  6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)

  【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.

  (二)新授知识

  1.子集

  (1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。

  记作: 读作:A包含于B或B包含A

  当集合A不包含于集合B,或集合B不包含集合A时,则记作:A B或B A.

  性质:① (任何一个集合是它本身的子集)

  ② (空集是任何集合的子集)

  【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?

  【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合.

  因为B的子集也包括它本身,而这个子集是由B的全体元素组成的.空集也是B的子集,而这个集合中并不含有B中的元素.由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的.

  (2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的.元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。

  例: ,可见,集合 ,是指A、B的所有元素完全相同.

  (3)真子集:对于两个集合A与B,如果 ,并且 ,我们就说集合A是集合B的真子集,记作: (或 ),读作A真包含于B或B真包含A。

  【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集.”

  集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B.

  【提问】

  (1) 写出数集N,Z,Q,R的包含关系,并用文氏图表示。

  (2) 判断下列写法是否正确

  ① A ② A ③ ④A A

  性质:

  (1)空集是任何非空集合的真子集。若 A ,且A≠ ,则 A;

  (2)如果 , ,则 .

  例1 写出集合 的所有子集,并指出其中哪些是它的真子集.

  解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集.

  【注意】(1)子集与真子集符号的方向。

  (2)易混符号

  ①“ ”与“ ”:元素与集合之间是属于关系;集合与集合之间是包含关系。如 R,{1} {1,2,3}

  ②{0}与 :{0}是含有一个元素0的集合, 是不含任何元素的集合。

  如: {0}。不能写成 ={0}, ∈{0}

  例2 见教材P8(解略)

  例3 判断下列说法是否正确,如果不正确,请加以改正.

  (1) 表示空集;

  (2)空集是任何集合的真子集;

  (3) 不是 ;

  (4) 的所有子集是 ;

  (5)如果 且 ,那么B必是A的真子集;

  (6) 与 不能同时成立.

  解:(1) 不表示空集,它表示以空集为元素的集合,所以(1)不正确;

  (2)不正确.空集是任何非空集合的真子集;

  (3)不正确. 与 表示同一集合;

  (4)不正确. 的所有子集是 ;

  (5)正确

  (6)不正确.当 时, 与 能同时成立.

  例4 用适当的符号( , )填空:

  (1) ; ; ;

  (2) ; ;

  (3) ;

  (4)设 , , ,则A B C.

  解:(1)0 0 ;

  (2) = , ;

  (3) , ∴ ;

  (4)A,B,C均表示所有奇数组成的集合,∴A=B=C.

  【练习】教材P9

  用适当的符号( , )填空:

  (1) ; (5) ;

  (2) ; (6) ;

  (3) ; (7) ;

  (4) ; (8) .

  解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .

  提问:见教材P9例子

  (二) 全集与补集

  1.补集:一般地,设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作 ,即

  .

  A在S中的补集 可用右图中阴影部分表示.

  性质: S( SA)=A

  如:(1)若S={1,2,3,4,5,6},A={1,3,5},则 SA={2,4,6};

  (2)若A={0},则 NA=N*;

  (3) RQ是无理数集。

  2.全集:

  如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用表示.

  注: 是对于给定的全集 而言的,当全集不同时,补集也会不同.

  例如:若 ,当 时, ;当 时,则 .

  例5 设全集 , , ,判断 与 之间的关系.

高一上学期数学教学计划6

  一.指导思想:

  (1)随着素质教育的深入展开,《新课程标准》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。

  (2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。

  (3) 根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

  (4) 使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  (5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。

  (6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。

  二.学情分析:

  我校高一学生在数学学习上存在不少问题,这些问题主要表现在以下方面: 1、进一步学习条件不具备.高中数学与初中数学相比,知识的深度、

  广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高.如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等.客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。

  2、被动学习.许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。不知道或不明确学习数学应具有哪些学习方法和学习策略;老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背.也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

  3、对自己学习数学的好差(或成败)不了解,更不会去进行反思总结,甚至根本不关心自己的成败。

  4、不能计划学习行动,不会安排学习生活,更不能调节控制学习行为,不能随时监控每一步骤,对学习结果不会正确地自我评价。

  5、不重视基础.一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海.到正规作业或考试中不是演算出错就是中途“卡壳”。 此外,还有许多学生数学学习兴趣不浓厚,不具备应用数学的意识和能力,对数学思想方法重视不够或掌握情况不好,缺乏将实际问题转化为数学问题的能力,缺乏准确运用数学语言来分析问题和表达思想的能力,思维缺乏灵活性、批判性和发散性等。所有这些都严重制约着学生数学成绩的提高

  三、教学目标与要求

  必修1,主要涉及两章内容:

  第一章:集合

  通过本章学习,使学生感受到用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言表示数学对象,为以后的学习奠定基础。

  1.了解集合的含义,体会元素与集合的属于关系,并初步掌握集合的表示方法;

  2.理解集合间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义;

  3.理解补集的含义,会求在给定集合中某个集合的补集;

  4.理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集;

  5.渗透数形结合、分类讨论等数学思想方法;

  6.在引导学生观察、分析、抽象、类比得到集合与集合间的关系等数学知识的过程中,培养学生的思维能力。

  第二章:函数的概念与基本初等函数Ⅰ

  教学本章时应立足于现实生活从具体问题入手,以问题为背景,按照“问题情境—数学活动—意义建构—数学理论—数学应用—回顾反思”的顺序结构,引导学生通过实验、观察、归纳、抽象、概括,数学地提出、分析和解决问题。通过本章学习,使学生进一步感受函数是探索自然现象、社会现象基本规律的工具和语言,学会用函数的思想、变化的观点分析和解决问题,达到培养学生的创新思维的目的。

  1.了解函数概念产生的背景,学习和掌握函数的概念和性质,能借助函数的知识表述、刻画事物的变化规律;

  2.理解有理指数幂的意义,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质;理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质;了解幂函数的概念和性质,知道指数函数、对数函数、幂函数时描述客观世界变化规律的`重要数学模型;

  第三章:函数的应用

  函数的应用是学习函数的一个重要方面,学生学习函数的应用,目的就

  是利用已有的函数知识分析问题和解决问题.通过函数的应用,对完善函数思想,激发学生应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助。

  1.了解函数与方程之间的关系;会用二分法求简单方程的近似解;了解函数模型及其意义;

  2.培养学生的理性思维能力、辩证思维能力、分析问题和解决问题的能力、创新意识与探究能力、数学建模能力以及数学交流的能力。

  必修4:主要涉及三章内容:

  第一章:三角函数

  通过本章学习,有助于学生认识三角函数与实际生活的紧密联系,以及三角函数在解决实际问题中的广泛应用,从中感受数学的价值,学会用数学的思维方式观察、分析现实世界、解决日常生活和其他学科学习中的问题,发展数学应用意识。

  1.了解任意角的概念和弧度制;

  2.掌握任意角三角函数的定义,理解同角三角函数的基本关系及诱导公式;

  3.了解三角函数的周期性;

  4.掌握三角函数的图像与性质。

  第二章:平面向量

  在本章中让学生了解平面向量丰富的实际背景,理解平面向量及其运算的意义,能用向量的语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。

  1.理解平面向量的概念及其表示;

  2.掌握平面向量的加法、减法和向量数乘的运算;

  3.理解平面向量的正交分解及其坐标表示,掌握平面向量的坐标运算;

  4.理解平面向量数量积的含义,会用平面向量的数量积解决有关角度和垂直的问题。

  第三章:三角恒等变换

  通过推导两角和与差的余弦、正弦、正切公式,二倍角的正弦、余弦

高一上学期数学教学计划7

  进一步深化教育教学改革,树立全新的语文教育观,构建全新而科学的教学目标体系、数学网特制定高一上学期数学函数的基本性质教学计划模板。

  教材分析

  函数性质是函数的固有属性,是认识函数的重要手段,而函数性质可以由函数图象直观的反应出来,因此,函数各个性质的学习要从特殊的、已知的图象入手,抽象出此类函数的共同特征,并用数学语言来定义叙述。基于此,本节的概念课教学要注重引导,注重知识的形成过程,习题课教学以具体技巧、方法作为辅助练习。

  学情分析

  学生对函数概念重新认识之后,可以结合初中学过的简单函数的图象对函数性质进行抽象定义。另外,为了方便学生做题及熟悉函数性质,还需要补充一些函数图象的知识,例如平移、二次函数图象、含绝对值函数的.图象、反比例函数及其变形的函数图象。总之,本节课的教学要从学生认知实际出发,坚持从图象中来到图象中去的原则。

  教学建议

  以图象作为切入点进行概念课教学,引导学生对概念的形成有一个清晰的认识,尤其是概念中的部分关键词要做深入讲解,用函数图象指导学生做题。

 教学目标

  知识与技能

  (1)能理解函数单调性、最值、奇偶性的图形特征

  (2)会用单调性定义证明具体函数的单调性;会求函数的最值;会用奇偶性定义判断函数奇偶性

  (3)单调性与奇偶性的综合题

  (4)培养学生观察、归纳、推理的抽象思维能力

  过程与方法

  (1)从观察具体函数的图像特征入手,结合相应问题引导学生一步步转化到用数学语言形式化的建立相关概念

  (2)渗透数形结合的数学思想进行习题课教学

  情感、态度与价值观

  (1)使学生学会认识事物的一般规律:从特殊到一般,抽象归纳

  (2)培养学生严密的逻辑思维能力,进一步规范学生用数学语言、数学符号进行表达

  课时安排

  (1)概念课:单调性2课时,最值1课时,奇偶性1课时

  (2)习题课:5课时

高一上学期数学教学计划8

  本学期我担任高一(5)、(16)班的数学教学工作,本学期的教学工作计划如下。

  一、指导思想:

  (1)随着素质教育的深入展开,《课程方案》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。

  (2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。

  (3)根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

  (4)使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  (5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的`思维方法和操作方法。

  (6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。

  二、学情分析及相关措施:

  高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:

  (1)注意研究学生,做好初、高中学习方法的衔接工作。

  (2)集中精力打好基础,分项突破难点。所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。

  (3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。

  (4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备

  (5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。

  (6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

高一上学期数学教学计划9

  一、教材分析(结构系统、单元内容、重难点)

  必修5第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;

  第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;

  第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与简单的线性规划问题、基本不等式;难点是二元一次不等式(组)与简单的线性规划问题及应用;

  必修2第一章:空间几何体;重点是空间几何体的三视图和直观图及表面积与体积;难点是空间几何体的三视图;

  第二章:点、直线、平面之间的位置关系;重点与难点都是直线与平面平行及垂直的判定及其性质;

  第三章:直线与方程;重点是直线的倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;

  第四章:圆与方程;重点是圆的方程及直线与圆的位置关系;难点是直线与圆的位置关系;

  二、学生分析(双基智能水平、学习态度、方法、纪律)

  较去年而言,今年的学生的素质有了比较大的提高,学生的`基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。

  三、教学目的要求

  1、通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。

  2、通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。

  3、理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。

  4、几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。

  四、完成教学任务和提高教学质量的具体措施

  积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。

高一上学期数学教学计划10

  新学期已开始,为使新学期的工作有条不紊的进行,使教学工作更加科学合理,使学生对知识的接收更加得心应手,特订新学期个人教学计划如下

  一,指导思想

  加强现代教育理论的学习,提高自身的素质,转变教育观念,以教育科研为先导,以培养学生的创新精神和实践能力为重点,深化课堂教学改革,大力推进素质教育。

  二,教材分析

  本册教材具有以下几个明显的特点:

  1。为学生的数学学习构筑起点

  教科书提供了大量数学活动的线索,作为所有学生从事数学学习的出发点。目的是使学生能够在所提供的学习情景中,通过探索与交流等活动,获得必要的发展。

  2,向学生提供现实,有趣,富有挑战性的学习素材

  教科书从学生实际出发,用他们熟悉或感兴趣的问题情景引入学习主题,并提供了众多有趣而富有数学含义的问题,以展开数学探究。

  3,为学生提供探索,交流的时间与空间

  教科书依据学生已有的'知识背景和活动经验,提供了大量的操作,思考与交流的机会,帮助学生通过思考与交流,梳理所学的知识,建立符合个体认知特点的知识结构。

  4,展现数学知识的形成与应用过程

  教科书采用"问题情境—建立模型—解释,应用与拓展"的模式展开,有利于学生更好地理解数学,应用数学,增强学好数学的信心。

  5,满足不同学生的发展需求

  教科书中"读一读"给学生以更多了解数学,研究数学的机会。教科书中的习题分为两类:一类面向全体学生;另一类面向有更多数学需求的学生。

  三,教材的重点和难点

  本册教材从内容上看,教学重点是三角形和四边形的性质定理

  和判定定理的应用以及一元二次方程的应用。教学难点是对反

  比例函数的理解及应用;用试验或模拟试验的方法估计一些复

  杂的随机时间发生的概率。

  四,教学措施:

  1、根据学生实际,创造性地使用教材,积极开发和利用各种教学资源,为学生提供丰富多彩的学习素材。

  2、加强直观教学,充分利用教具,学具等多媒体教学,以丰富学生感知认识对象的途径,促使他们更加乐意接近数学,更好地理解数学。

  3、关注学生的个体差异,有效的实施有差异的教学,使每个学生都能得到充分的发展。

  4、加强学生学习习惯的培养,主要培养学生的书写,认真分析问题的习惯。同时注意学习态度的培养。

  五,时间安排

  4月1日——4月20日一元二次方程

  5月16日——5月31日反比例函数

  6月1日——6月10日频率与概率

  6月11日——7月11日复习考试

【高一上学期数学教学计划】相关文章:

高一上学期数学教学计划11-14

关于高一上学期数学的教学计划10-19

高一上学期数学教学计划范文01-22

高一上学期数学教学计划范例09-26

高一上学期数学教学计划模板11-18

最新高一上学期数学教学计划12-30

高一上学期数学教学计划11篇02-01

高一上学期数学教学计划(11篇)02-01

高一上学期数学教学计划10篇11-14

高一上学期数学教学计划(10篇)11-14