比的意义教学设计

时间:2023-02-08 19:31:34 毅霖 意义 我要投稿

比的意义教学设计(精选20篇)

  作为一名老师,常常需要准备教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。如何把教学设计做到重点突出呢?下面是小编整理的比的意义教学设计,欢迎大家分享。

比的意义教学设计(精选20篇)

  比的意义教学设计 篇1

  教学目标:

  1、经历从生活情境到方程模型的建构过程。

  2、理解方程概念,感受方程思想。

  3、通过观察、描述、分类、抽象、概括、应用的学习活动过程达到学习水平的提高。

  教学过程:

  一、情境创设,初建相等关系模型。

  1、师出示天平图,

  认识吗?

  师:天平可以称出物体的质量是多少。

  2、(媒体出示三幅图)下面的三幅图中,哪一幅能称出两只苹果的质量?

  (左右倾斜各一幅,平衡的一幅。图略)

  学生会选择图3,老师顺着学生的思路出示图3天平平衡图

  图3为什么能称出两只苹果的质量?

  你能用一个式子表示出天平两边物体的质量关系么?

  100+100=200

  图1和图2为什么不能称出两只苹果的质量呢?

  你也能用一个式子表示出天平两边物体的质量关系吗?

  100+100>100、100+100<500

  3、三个式子都是表示物体之间质量的关系,数学上把这样表示两边相等的关系的式子叫做等式。

  你的小脑袋里有等式吗?说一个试试。

  除了用加法表示的还有不一样的吗?(师板书学生说的其它的一些式子)

  师:没想到,同学们对等式是这么的熟悉。

  二、借助基础,拓展等式外延。

  1、下面的几幅图中,天平两边物体的质量关系,哪些可以用等式表示?能表示的试着把它写下来,不能的思考可以用一个什么样的式子表示呢?

  (书上四幅图略)

  选一个等式说一说它表示什么意思?

  天平两边物体的质量关系,一种是用语言表达,一种是用数学式子表示,你愿意选择哪一种?说说你的理由。(突出简洁、清楚)

  2、师:的确,这样的一些数学式子能清楚、简洁地表示出天平左、右两边物体质量之间的关系。

  3、比较:现在写的这些等式与刚才我们说的那些等式有什么不同吗?

  突出含有未知数的等式

  这些含有未知数的等式你见过吗?

  生:没见过;也可能见过,如:用字母表示数中、求未知数x等。

  三、进一步拓宽对等式的理解。

  1、顺着学生的思路组织教学:李老师就为同学们准备了一些生活中同学们常见的一些现象,仔细看一看,这些生活中的`现象之间的关系是不是也能用含有未知数的等式来表示呢?

  (师出示四幅生活情境图)

  (1)铅笔盒与笔记本共20元。

  (2)借出的书与剩下的书共150本。

  (3)3瓶相同的色拉油,每瓶x元,共8元。

  三、明确特征,归纳概念。

  其实呀,数学上给这样一些含有未知数的等式起了个很特别的名字叫方程,这就是我们今天要研究的方程的意义。(板书)

  揭示数学上我们把含有未知数的等式叫做方程。

  四、深刻领悟,挖掘内涵。

  1、黑板上的其它式子为什么不是方程?

  2、师:现在同学们知道什么是方程了吗?下面哪些是等式,哪些是方程?(是等式的男生举手,是方程的女生举手)

  36-7=29、60+x>70、8+x

  6+x=14、7+15=22、5y=40

  活动结束了,但思考却刚刚开始,就等式和方程的关系你现在有什么话想说的吗?

  (在活动中理解等式与方程的关系)

  五、实践应用,拓展外延。

  1、你能看图列出方程吗?

  图1:天平(2x=500)

  图2:四个物体16.8元

  图3:两杯水共有450毫升

  2、从文字表述中找出方程

  (1)小明从家到学校有500米,他每分钟走50米,走了x分钟。

  (2)张师傅每天做x个零件,用了6天做了780个零件。

  (3)王涛放学回家后,去商店买了3本精装笔记本,每本y元。他付给售货员阿姨20元,找回2元。

  3、李老师头脑中有一幅图,我把它用方程表示了出来,猜一猜,老师头脑中可能会是一幅什么样的图?

  出示:5x=200(可提示:如天平图等)

  个别交流的基础上同桌互说。

  六、全课总结:学习到现在你有哪些收获?

  从不能用方程表示到能用方程表示图中的数量关系的一种演变。

  图1:买4个小熊猫玩具,每个x元,120元不够

  图2:买3个,每个x元,120元还不够

  图3:买2个,每个x元,120元正好

  延伸:使两只水杯一样多你能有哪些办法?用方程表示,你能吗?

  比的意义教学设计 篇2

  教学内容:

  九年义务教育六年制小学数学第十二册P62——63

  教学目

  1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

  3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

  教学重点:

  认识正比例的意义

  教学难点

  掌握成正比例量的变化规律及其特征

  设计理念

  课堂教学中从学生的已有的生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。课堂教学中给学生提供探究的平台,凡是能让学生自己发现的,就让学生亲自去探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的能力。

  一、复习铺垫激情促思

  1、说出下列每组数量之间的关系。

  (1)速度时间路程

  (2)单价数量总价

  (3)工作效率工作时间工作总量

  2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。

  学生口答,相互补充

  二、初步感知探究规律

  1、出示例1的表格(略)

  说说表中列出了哪两种量。

  (1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。

  初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)

  (2)引导学生观察表中数据,寻找两种量的变化规律。

  根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。

  根据发现的规律启发学生思考:这个比值表示什么?上面的规律能否用一个式子表示?

  根据学生的回答,板书关系式:路程/时间=速度(一定)

  (3)揭示概括成正比例的量:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量,

  (板书:路程和时间成正比例)

  2、教学“试一试”

  学生填表后观察表中数据,依次讨论表下的4个问题。

  根据学生的讨论发言,作适当的板书

  3、抽象表达正比例的意义

  引导学生观察上面的.两个例子,说说它们的共同点。启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?

  根据学生的回答,板书:=k(一定)

  揭示板书课题。

  先观察思考,再同桌说说

  大组讨论、交流

  学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的几倍。也可能发现两种量中相对应的两个数的比值不变。

  学生根据板书完整地说一说表中路程和时间成什么关系

  学生独立填表

  完整说说铅笔的总价和数量成什么关系

  学生概括

  三、巩固应用深化规律

  1、练一练

  生产零件的数量和时间成正比例吗?为什么?

  2、练习十三第1题

  先算一算、想一想,再组织讨论和交流。

  要求学生完整地说出判断的思考过程。

  3、练习十三第2题

  先独立判断,再有条理地说明判断的理由。

  4、练习十三第3题

  先说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再画一画。

  分别求出每个图形的周长和面积,并填写表格。

  讨论、明确:只有当两种相关联的量的比值一定时,它们才成正比例。

  5、思考:明明三岁时体重12千克,十一岁时体重44千克。于是小张就说:“明明的体重和身高成正比例。”你认为小张的说法对吗?为什么?

  讨论、交流

  独立完成,集体评讲

  说明判断的理由

  说一说,画一画

  填一填,议一议

  讨论

  四、总结回顾评价反思

  这节课你学会了什么?你有哪些收获?还有哪些疑问?

  比的意义教学设计 篇3

  1、教学内容

  义务版第八册67~68页《除法的意义》

  2、教材简析

  除法是与乘法相反的运算。在前三年半学生经过大量的整数除法计算和应用题的练习,对除法的意义已有了一定的感性认识,这里在已学的基础上对除法的意义加以概括,使学生有更明确的认识。

  和讲减法的意义一样,教材也是通过三道应用题为载体,从除法和乘法的联系概括出除法的意义。教材对1、0在除法算式的特性做了比较系统的总结。其中0为什么不能作除数这部分知识是教学难点,以后在学习分数、约分、比等知识时经常要用到。

  3、学情简析

  所授教的是四年级学生,他们通过几年的学习,已经有了一定的观察、推理、验证、归纳等能力。另外学生已经掌握了简单的笔算和口算除法,并会进行简单的验算。所以,我根据他们的年龄特点和知识结构,在教学中我创设了大量的探索性平台,让他们在探索中发现问题,学习知识。

  4、教学目标

  知识目标:

  (1)掌握除法与乘法的联系,理解除法的意义。

  (2)理解掌握除法的意义

  能力目标:培养发现问题、提出问题、解决问题的能力,提高观察,分析、比较、判断、抽象、概括等能力。

  情感目标:感受生活与数学的联系,激发学生探索的欲望。增强学好数学的信心,初步渗透转化思想。

  5、教学重点、难点

  重点:理解除法的意义。

  难点:理解“0”为什么不能做除数。

  6、教学程序

  (一)在生活的信息中,感受乘、除法之间的联系

  1、采用聊天的形式引入(师生相互猜测年龄,得出两条信息;教师今年30岁,学生今年10岁)

  2、通过以上两条信息你想到什么数学问题?(老师的年龄是学生的3倍)

  3、让学生从这三条信息当中任选两条,并提出一个问题。

  (1)学生今年10岁,老师年龄是学生的3倍,老师今年多大?

  (2)老师今年30岁,学生今年10岁,老师是学生年龄的几倍?

  (3)老师今年30岁,是学生年龄的3倍,学生今年多大?

  4、指明学生列式并计算。

  【虽然这部分内容不是本节课的重点,但这样的教学激发了学生浓厚的学习兴趣。使学生在与教师交流中,感到特别亲切,拉近了师生间的距离,将生活与数学融合在一起。并在出示应用题时改变了以住的.呈现的方式,使应用题的出示更能体现出计算来源于实际,并将计算与应用题巧妙整合在一起。同时为后面学习新知作好铺垫。】

  (二)在观察比较中概括除法的意义

  (1)观察这三道算式,感受乘、除法之间的联系

  ①先说出乘法算式中各数的名称。(因数、因数、积)

  ②再观察二、三两道题说出除法算式中的各数在第一道题中是什么数(积、因数、因数)

  ③小结二、三两道题相同点即已知什么求什么(与第一题相反二、三两道题是已知两个因数的积(30)与其中一个因数(10或3),求另一个因数)

  ④归纳除法是什么样的运算。(除法的意义)

  ⑤师生共同总结除法的意义后,再说明除法算式中各部分的名称(被除数、除数、商)

  【学习这部分内容时,教师通过创设问题,提供学生学习的空间,让他们在观察、比较、讨论、反思中去参与新知的发生、发展和形成过程。并在总结除法意义时,是让学生根据减法的意义去进行理解,也是让学生的知识结构达到转化。】

  (三)在探索中理解难点

  【1和0在除法中的特性是本节课的难点,所以我在学生学习理解时,运用猜测结果——推理验证——归纳特征——举一反三的这样教学方式组织教学。】

  出示答题卡:

  一个数除以1

  结果

  用除法意义验证

  我发现了:

  再举例说明

  7÷1

  5÷1

  6÷1

  9÷1

  10÷1

  0除以一个非0的数

  结果

  用除法意义验证

  我发现了:

  再举例说明

  0÷20

  0÷10

  0÷15

  0÷17

  0÷5

  一个除以0

  猜测结果

  用除法意义验证

  我发现了

  5÷0

  7÷0

  16÷0

  9÷0

  10÷0

  【学生在解答这两张答题卡时,比较顺利。因为这些知识都是学生以前学过的内容,只不过加以归纳和整理。其实我在这里设计这张答题卡的真正用意,不仅仅是为了归纳1以及“0除以一个非0的数”在除法中的特性,其真正的目的是为了突破0为什么不能做除数这一难点。因为学生掌握了这样的分析推理的过程,特别是如何利用除法的意义进行验算这一方法后,对这一难点理解,就迎刃而解。如10除以0,因为找不到一个数同0相乘的积等于10,再如0除以0÷0不可能得到一个确定的商,因为0和任数相乘都等于0,所以0不能作除数。并且通过答题卡的出示,培养学生科学的学习方式,以便于梳理知识,感受除法意义的价值,同时为第二课时的学习(除法各部分之间的关系及验算)奠定基础】。

  (四)从练习实践巩固知识

  基本练习:

  (1)根据36×14=504,直接写出下面两道题的得数。

  504÷14=504÷36=

  (2)一本书有95页,每页按624个字计算,这本书一共有多少个字?(3)把上题改编成两道除法应用题。

  拓展练习:

  判断正误,并说出理由:

  (1)任何除以1都得到原数。()

  (2)0除以任何数都得0。()

  【按照根据新课标的理念,根据由浅入深的原则,力求做到人人学有必须的数学,我设计了两个不同层次的练习,使不同层面的学生都学有所获。】

  (六)从质疑问难中,畅谈收获

  通过这节课的学习,你有什么收获?或什么疑问?

  【让学生在重温学习的过程中获得积极的情感体验,使知识的脉络更清晰,更有条理。】

  比的意义教学设计 篇4

  教学内容

  六年级数学下册第70~71页。

  教学目标

  知识技能

  1、结合生活中的具体情境,体会四则运算的意义;

  2、在具体运算和解决简单实际问题的过程中,体会加与减、乘与除的互逆关系。

  过程与方法

  自己先复习,小组交流,全班交流

  情感态度价值观

  3、培养学生良好的学习习惯和独立思考的好习惯。

  教学重、难点

  1、体会四则运算的意义。

  2、感受加与减、乘与除的互逆关系。

  教法学法

  自主学习法、合作学习法、讨论法、练习法、讲授法

  教学准备

  复习本、课件

  教学过程

  一、创设情景,导入复习。

  1、同桌交流情境“庆祝六一”的预习情况:你能提出哪些数学问题?

  2、全班交流(师根据学生汇报情况相机板书)。

  学生可能提出的问题:

  两位同学一共折了多少只纸鹤?

  装饰教室还需要折多少只纸鹤?

  一共需要多少钱?

  扎礼品盒、蝴蝶结分别需要用多少米彩带?

  每个小组有多少人?……

  二、回顾整理、构建网络。

  1、在解决问题的过程中,你使用了哪些运算?

  2、这些知识在我们脑中比较零散,不便于记忆和运用,请大家用自己喜欢的方式对这些知识加以整理。

  3、全班交流,展示。每个同学整理完后,先在小组讨论、交流,再选出代表在全班交流。

  四则运算、关系、意义、各部分之间关系

  加法:加、减法互为逆运算把两个数合并成一个数的运算。

  加数+加数=和

  一个加数=和-另一个加数

  减法:已知两个加数的和与其中的一个加数,求另一个加数的运算。被减数-减数=差

  被减数-差=减数

  被减数=减数+差

  乘法:乘、除法互为逆运算求几个相同加数的和的简便运算。一个因数×另一个因数=积

  一个因数=积÷另一个因数

  除法:已知两个因数的积与其中一个因数,求另一个因数的运算。被除数÷除数=商

  除数=被除数÷商

  被除数=商×除数

  【设计意图】这样的设计让学生对所学的所有的运算有个完整的认识,同时搞清楚各种运算的意义。

  4、师生总结。

  三、重点复习、强化提高

  1、课本第71页第1题。

  让学生在提出问题,在解决问题的过程中巩固四则运算的意义。

  2、课本第71页第2题。

  先让学生弄清题目中的数量关系,独立解答后再说说解答过程。

  3、课本第71页第3题。

  独立解答后再说说解答过程。

  4、课本第71页第4题。

  让学生自己给算式找出生活中的具体情境。

  四、自主检评,完善提高

  (一)自主检评。

  1、想一想,填一填。

  (1)58+58+58+58=()×()

  (2)根据2516÷68=37,直接写出下列各题得数:

  2516÷37=()68×37=()25、16÷0、37=()

  (3)在()内填入适当的运算符号或数据:

  0、43()1000=4302、46×()=24、6

  12、5()100=0、1250、03×()=30

  ()×0、3×8、54=064×125=()×8×125

  2、2008年5月12日,四川汶川发生了特大地震。为支援地震灾区,实验小学开展了献爱心活动。

  (1)五、六年级学生各捐款多少元?

  (2)五年级学生捐款数是四年级的几倍?

  (3)六年级学生捐款数正好是三年级的8倍,三年级学生捐款多少元?

  (4)全校教师捐款比六年级的3倍多80元,全校教师共捐款多少元?

  (5)如果全校共有2000人比六年级的6倍少200个人,六年级有多少人?

  要加强这方面的练习,不要让学生养成简单模仿的习惯,要让学生在对比练习中养成独立思考,善于思考的良好学习品质。

  (二)交流、评价。

  五、归纳小结、课外延伸。

  1、通过本节课的复习,你有什么新的收获或感受?

  2、课外延伸。两个数相除,商9余4,被除数、除数、商、余数之和等于867,求原来的被除数和除数各是多少?

  板书设计

  运算的意义

  加法:加、减法互为逆运算把两个数合并成一个数的运算。

  加数+加数=和

  一个加数=和-另一个加数

  减法:已知两个加数的和与其中的一个加数,求另一个加数的运算。被减数-减数=差

  被减数-差=减数

  被减数=减数+差

  乘法:乘、除法互为逆运算求几个相同加数的'和的简便运算。一个因数×另一个因数=积

  一个因数=积÷另一个因数

  除法:已知两个因数的积与其中一个因数,求另一个因数的运算。被除数÷除数=商

  除数=被除数÷商

  被除数=商×除数

  教学反思:今天复习的是四则运算的意义和法则,对这一直感到很烦恼:如果单纯地让孩子回忆意义和法则,全部到位,一节课的时间也就所剩无几了,根本没有练习的时间;而更为重要的是学生会背诵法则是否表示他能正确合理地进行计算了呢?这答案当然是否定的。基于这样一种考虑,今天我并没有强求学生背诵意义法则,特别是法则,主要是结合具体的习题练习来复习。显然,学生也更喜欢更愿意通过习题来复习,而不是枯燥地背诵。

  比的意义教学设计 篇5

  一、成语引入:

  1、回顾分数,了解学生的起点。

  师:老师今天为大家带来了一个好吃的?猜猜看,是什么?哦,请看电视,是(蛋糕)

  师:你能用一个数表示其中的一份吗?(生答师板书)

  师:关于这个分数,你都知道些什么?

  生1:我知道“4”是分母,“1”是分子,1和4中间那条线叫做分数线。

  二、展开——分数意义的研究

  1、研究,理解单位1。

  (1)探究,用多种材料表示出。

  师:刚才同学们说,可以表示把一个蛋糕平均分成4份,取其中的一份。还可以表示什么?老师为大家提供了几种材料,你们能动手分一分,并且用来表示吗?我们准备的材料有哪些呢?

  课件边展示老师边说:奥,是一张长方形的纸,一米长的绳子一条,画有四个熊猫的图片一张,小圆片12个。请同学们选择你喜欢的材料表示出,然后互相说一说你是怎么表示的。

  师:同学们,你们听清要求了吗?那我们赶紧行动吧!

  小组活动。

  (2)反馈

  师:谁愿意来说说你是怎样来表示的?

  生1:我把一张长方形纸对折,再对折,展开后把其中的一份涂成了红色,就是这个长方形的。

  生2:我把一条绳子两次对折,其中的一份就是这条绳子的。

  生3:我把4只熊猫平均分成了4份,其中的一份(1只)就是这些熊猫的。

  生4:我把12个小圆片平均分成4堆,其中的一堆(3个圆片)就是这些小圆片的。

  (3)归纳

  师:同学们,刚才你们用了这么多的方式表示出了,我们一起来看电视,回顾一下:在表示的过程中,都有什么相同的地方和不同的地方。

  生:我们都是把一个物体平均分成4份的。

  师:是的,我们都是把这些物体平均分成4分表示其中一份的数是。(板书:平均分成4分,表示这样1份的数)

  师:刚才在表示有的过程中,有不同的地方吗?小组的同学可以商量一下。

  小组商量。

  师:谁来说一说?

  生说:有的是把一个物体平均分成4份,比如长方形的纸,1米长的绳子,有的是把一些物体平均分成4份,比如4只熊猫、12个小圆片。

  师:是不是这样?

  师:有的是把一个长方形分成4份,那么一个长方形我们可以把它叫做一个物体。(板书:一个物体)

  刚才我们把这根绳子平均烦人昵称4份,这根绳子的长度是多少?(生:1米)

  像这样1米长的线段,我们把它叫做一个计量单位。(板书:一个计量单位)

  像4个熊猫、12个小圆片,它们都是由许多物体组成的一个整体。(板书:一个整体)

  师:大家看,一个物体、一个计量单位、一个整体,都有什么字?(生说)

  师:“1”是吧,我们就把它通常叫做单位“1”。(板书:单位“1”及大括号)

  师:单位“1”有哪些呢?

  生:一个物体、一个计量单位、一个整体

  师:那么一个物体出了可以是一张长方形的纸外,还可以是什么?(生说)

  师:那一个计量单位还可以是什么呢?

  师:那一个整体还可以是什么呢?

  师:一个物体、一个计量单位、一个整体都叫做单位“1”,那刚才同学们在表示的时候,实际上是把谁平均分成4份?大家一起说。(单位“1”)

  (4)研究几分之几

  师:对我们是把单位“1”平均分成4份,表示这样的1份就是。(板书:把)

  那剩下的部分,如果用分数表示,应该是多少?()

  师:表示什么?

  师:老师如果把单位“1”平均分成12份,表示这样7份的数,应该是多少(找生:)

  师:像这样的分数,你能说一个吗?表示什么?

  师:那像这样的分数能写多少个?

  师:这么多的分数,你能根大家说说什么叫分数吗?(生说师补充板书:若干份、几)

  再找生说,并板课题:分数。反问:什么叫分数?再找几个学生回答。

  师:这就是分数的意义。(补充课题)

  师:关于分数的意义,你清楚了吗?下面老师请你在演草纸上写一个分数,并和你的小组同学说说这个分数表示的意义。(生写交流)

  师:谁愿意把你写的分数说一说?(找生说)

  2、理解分数单位。

  师:(指黑板上的分数)同学们,你们看,这里这么多的分数,它们的分母有的是4、6、12,那分母都表示什么?(生:把单位“1”平均分的份数)

  师:你们再看看这些分子?又表示什么呢?(生:取这样的几份)

  师:如果把单位“1”平均分成若干份,表示这样的1份的数,就叫做分数单位。(板:分数单位)

  反问:什么叫做分数单位?(生说)

  师:(指黑板任意一个分数)它的分数单位是多少?它有几个…?

  师:看看,刚才你写的分数,它的分数单位是多少?它有几个这样的分数单位?和你的同位说一说?。

  (三)练习

  师:看来大家对今天知识掌握的不错,下面我就来考考大家?

  1、课件出示:(教材63页第1题)。用分数表示下面各图中的涂色部分。

  师:会吗?(找生口答,并问为什么?说到第四幅图时有2种答案。可以问,还有补充吗?)

  2、教材63页第2题。(略)

  师:刚才这些图大家会用分数表示,接下来这些物体你能用分数表示吗?课件出示(喊声在黑板上做,并请这个学生订正,同学们把答案写在演草本上。)

  3、7题。

  师:老师这里还有一些图片,你们看看它们又表示什么意思呢?

  课件出示:

  头部的高度约占身高的'(图)

  长江干流约的水体受到不同程度的污染。(图)

  死海表层的水中含盐量达到。

  师:这里的、、表示什么意思,请你说一说。

  生1:如果把人的身高看作单位1,平均分成8份,一个人头部高度就是这样的1份。

  生2:把长江干流水体所有的水看作单位1,平均分成5份,有3份受到了不同程度的污染。

  生3:这里的表示把死海表层海水看作单位1,平均分成10份,盐就有这样的3份。

  4、请你任选一个分数,并在图上用涂色表示出来。(苹果图)

  师:接下来,老师请每个同学都动手,(课件出示)请你任选一个分数,并在图上用涂色表示出来。请同学们拿出你们的练习卡,开始做。

  师:为什么都是十二个苹果,分得的每一份的数量却不一样呢?

  生说师结:刚才我们都把12个苹果平均分,分的份数不同,每一份的数量也不同。

  (五)拓展

  师:同学们今天这节课表现的非常不错,这节课有多少同学发言?站起来。你能说说发言的同学占全班的几分之几吗?现在发言的人占全班的几分之几?,

  师:看来分数就在我们身边,你能联系实际举一个有关分数的例子吗?

  师:同学们,这节课我们一起研究了什么?(生说:分数的意义),那你知道分数是怎样产生的吗?课前我让同学们调查了分数的产生及历史,谁愿意上来为大家介绍。

  师:谢有学同学还做成了幻灯片呢!真用心,我们一起看看!

  师:这节课就上到这儿,同学们再见!

  板书设计:

  分数的意义

  一个物体分数单位

  把单位“1"一个计量平均分成若干份,表样的一份或几份的数,叫做分数。

  一个整体

  《分数的意义》教学案例这篇文章共7996字。

  比的意义教学设计 篇6

  教学目标:

  1、通过探究活动,理解反比例的意义,并能正确判断成反比例的量。

  2、引导学生揭示知识间的联系,培养学生分析判断、推理能力

  教学流程:

  一、复习铺垫,猜想引入

  师:(1)表格里有哪两个相关联的量?(2)这两个相关联的量成正比例关系吗?为什么?

  2、猜想

  师:今天我们要学习一种新的比例关系反比例关系。(板书:反比例)

  师:从字面上看反比例与正比例会是怎样的关系?

  生:相反的。

  师:既然是相反的,你能联系正比例关系猜想一下,在反比例关系中,一个量会怎样随着另一个量的变化而变化?它们的变化会有怎样的规律?

  生:(略)

  反思:根据学生认知新事物大多由猜而起的规律,从概念的名称正、反两宇为切入点,引导学生顾名思义,对反比例的意义展开合理的猜想,激起学生研究问题的愿望。

  二、提供材料,组织研究

  1、探究反比例的意义

  师:大家的猜想是否合理,还需要进一步证明。下面我提供给大家几张表格,以小组为单位研究以下几个问题。

  (1)表中有哪两个相关联的量?

  (2)两个相关联的量,一个量是怎样随着另一个量的变化而变化的?变化规律是什么?

  2、小组讨论、交流。(教师巡回查看,并做适当指导。)

  3、汇报研究结果

  (在汇报交流时,学生们纷纷发表自己的看法。当分析到表3时,大家开始争论起来。)

  生1:剩下的路程随着已行路程的扩大而缩小,但积不一定。

  生2:已行路程十剩下路程=总路程(一定)。

  (最后通过对比大家达成共识:只有表2和表3的变化规律有共性。)

  师:表2和表3中两个量的变化规律有哪些共性?(生答略。)

  师:这两个相关联的量叫做成反比例的量,它们的关系叫做反比例关系。(完成板书。)

  师:如果用字母A和B表示两个相关联的量,用C表示它们的积,你认为反比例关系可以用哪个关系式表示?[板书]

  反思:教材中两个例题是典型的反比例关系,但问题过瘦过小,思路过于狭窄,虽然学生易懂,但容易造成知其然,而不知其所以然。通过增加表3,更利于学生发现长宽=长方形的面积(一定)这一关系式,有助于学生探究规律。同时还增加了表1、表4,把正比例关系、反比例关系、与反比例雷同(和一定)的情况混合在一起,给学生提供了甄别问题的机会。

  4、做一做(略)

  5、学习例6

  师:刚才我们是参照表格中的具体数据来研究两个量是不是成反比例关系,如果这两个量直接用语言文字来描述,你还会判断它们成不成反比例关系吗?(投影出示例题。)

  三、巩固练习,拓展应用

  1、基本练习。(略)

  2、拓展应用。

  师:你能举一个反比例的例子吗?(先自己举例,写在本子上,再集体交流。)

  交流时,学生们争先恐后,列举了许多反比例的'例子。课正在顺利进行时,一个同学举的正方形的边长边长=面积(一定),边长和边长成反比例的例子引起了学生们的争论,教师没有马上做判断,而是问学生:能说出你的理由吗?有的学生说:因为乘积一定,所以边长和边长成反比例关系。对他的意见有的同学点头称是,而有的同学却摇头忽然,一名同学像发现新大陆一样大声叫起来:不对!边长不随着边长的扩大而缩小!这是一种量!一句话使大家恍然大悟:对啊!边长是一种量,它们不是相关联的两个量,所以边长和边长不成反比例。后来又有一名同学举例:边长4=正方形的周长(一定),边长和4成反比例。话音刚落,学生们就齐喊起来:不对!边长和4不是相关联的两个量。

  反思:通过你能举一个反比例的例子吗?这样一个开放性练习题,让学生联系已有的知识,使新旧知识有机结合,帮助学生建立起良好的认知结构,这同时也是对数量关系一次很好的整理复习机会,通过举例进一步明确如何判断两个量是否成反比例。

  3、综合练习

  四、总结

  反思:

  《数学课程标准》中指出:学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。而现行的小学数学高年级教材,内容偏窄、偏深,部分知识抽象严密、逻辑性强、脱离学生的生活实际,与新教材相比明显滞后。如何将新的课改理念与旧教材有机整合,是我们每一个数学教师应该思考探索的课题。

  比的意义教学设计 篇7

  一、教材分析

  反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。

  二、学情分析

  由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。

  三、教学目标

  知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式。

  解决问题:能从实际问题中抽象出反比例函数并确定其表达式。情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际。

  四、教学重难点

  重点:理解反比例函数意义,确定反比例函数的表达式。

  难点:反比例函数表达式的确立。

  五、教学过程

  (1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;

  (2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单

  位:m)随宽x(单位:m)的变化而变化。

  请同学们写出上述函数的'表达式

  14631000(2)y=tx

  k可知:形如y=(k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=

  是自变量,y是函数。

  此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际。由于是分式,当x=0时,分式无意义,所以x≠0。

  当y=中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。

  举例:下列属于反比例函数的是

  (1)y=(2)xy=10(3)y=k-1x(4)y=-

  此过程的目的是通过分析与练习让学生更加了解反比例函数的概念问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)

  已知y与x成反比例,则可设y与x的函数关系式为y=

  kx?1

  k已知y+1与x成反比例,则可设y与x的函数关系式为y+1=xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=

  已知y+1与x-1成反比例,则可设y与x的函数关系式为y+1=kx?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。

  例:已知y与x2反比例,并且当x=3时y=4

  (1)求出y和x之间的函数解析式

  (2)求当x=1.5时y的值

  解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2

  和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业

  通过此环节,加深对本节课所内容的认识,以达到巩固的目的。

  六、评价与反思

  本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式。应该对这一方面的内容多练习巩固。

  比的意义教学设计 篇8

  教学目标:

  1、进一步认识分数,理解分数的意义。

  2、认识分数单位,感受到单位的价值。

  3、体会到数学好玩,进一步喜欢数学。

  教学过程:

  一、师生谈话,调节气氛

  二、简单提问,找准学生知识起点

  师:这儿有一个关于分数的问题,一起来看看,说是猪八戒吃西瓜,他把一个西瓜平均分成4份,吃了3份,怎么用分数表示猪八戒吃的西瓜?

  生:

  师:能说说是怎么想的吗?

  生:平均分成4份,取其中的3份就是

  师:那么,还有这样一个问题:孙悟空拔出一根毫毛,变成6只猴子,3只公的,3只母的,你想到了什么分数?

  生:

  师:说说怎么想的?这个分数表示什么?

  生:表示公猴或母猴占猴子总数的六分之三

  师:还想到了什么分数?

  生:

  师:说说是怎么想的。

  ……

  三、探究新知

  (一)、大头儿子的难题----引出单位

  (课件播放动画片:小头爸爸出去买沙发套,到了商店发现忘了测量沙发的长度,于是打电话让大头儿子测量一下,可是家中没有尺子)

  师:这可怎么办?你有什么好办法吗?

  生:可以找个东西代替尺子测量。

  师:一起来看看大头儿子是怎么解决的。

  (课件继续播放故事:大头儿子想起可以找个东西代替尺子测量,于是他问爸爸戴领带了没有,爸爸回答戴了,于是他从家中找出一条爸爸的领带进行测量,他先将领带对折,发现不行,再对折,还是不行,又对折了一次,折出这很后放在沙发前)

  师:你知道大头儿子将领带平均分成了几份吗?

  生:8份。

  师:那你知道沙发的长度了吗?

  生:知道。

  师:请大家独立把答案写在作业本上。

  (指名交流结果)

  生:

  师:为什么是?

  生:大头儿子把领带平均分成了8份,一份就是,沙发的长度占其中的7份,也就是有7个,所以表示为

  师:爸爸叫大头儿子测量沙发长度,为什么大头儿子首先想得到的是找尺子

  生:因为尺子有单位,比较容易看出长度

  师:那大头儿子没有尺子上的单位,又怎么测量出了沙发长度的呢?

  生:将领带平均分成8份,就有了这个单位,然后数数有几个这样的`单位就可以了。

  师:原来分数就是这样产生的,今天我们就进一步来认识分数。

  (板书课题)

  师:分数的再认识究竟是认识什么?你对分数有哪些问题?

  生1:分数是什么?

  生2:为什么要认识分数?

  生3:怎么确定一个分数?

  师:现在我们就带着这些问题一起来认识分数。

  师:大头儿子在测量沙发长度是产生了这个分数,那这个分数是怎么产生的?

  生:先把领带平均分成8分,这样就有了八分之一这个分数单位,然后再数数有几个这样的单位就行了。

  师:也就是说,首先要创造一个单位,这在测量中很重要,那么如果要量一个教室的长要用什么单位?

  生:米。

  师:量一枝铅笔的长用什么做单位?

  生:厘米。

  师:为什么你会做这样的选择?

  生:因为测量较长的物体就会选择较大的长度单位,测量较短的物体就选择较短的单位

  师:正是这样,不光是测量长度,测量面子、重量等都是这样的。也就是说不同的尺子就是单位不同。大头儿子用领带来测量沙发的长度,他创造了一把尺子,其实就是创造了一个新的单位。

  师:一起来看一组分数,你知道他的单位吗?

  (出示一组分数,指名说出分数单位,教室板书)

  师:观察一下这些分数单位,你发现了什么?

  生1:所有的分数单位分子都是1。

  生2:分数单位与原分数比较,分母不变,分子都变成了1。

  师:是的,像这样分子是1的分数又叫分数单位。你知道为什么大头儿子在测量沙发时要创造八分之一这个单位,而不是创造二分之一、四分之一这样的分数单位呢?

  生1:因为只有创造八分之一这个单位才好数。

  生2:如果是二分之一、四分之一这样的分数单位,就数不出有几个这样的整单位。

  师:原来要根据实际情况来确定单位呀!

  师:古埃及人在进行分数运算时,只使用分子是1的分数,因此这种分数也叫做埃及分数。埃及分数,曾经是一个被人瞧不起的,古老的课题,但它隐含着十分丰富的内容,许多新奇的迷等待着人们去揭开。

  (二)、大臣们的难题-----规定单位

  (课件演示动画过程,古代君臣一行几人正在花园中赏景,皇帝一时心血来潮,询问大臣们眼前的池塘中有几桶水,并限时回答否则重罚,这下可忙坏了大臣们,大家七手八脚的拿桶来测量,可怎么也搞不清楚,这时旁边的一个小孩哈哈大笑说:这么简单的问题还要这样大动干戈吗?我知道)

  比的意义教学设计 篇9

  一、教材分析

  1、教学内容:人教版六年级下册P39正比例的意义。

  2、教材的地位和作用:这部分内容是在学生学习了比和比例的基础上进行教学的,着重使学生理解正比例的意义。正比例关系是比较重要的一种数量关系,学生理解并掌握这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的实际问题。同时通过正比例的教学进一步渗透函数思想,为学生今后学习打下基础。

  3、教学重点,难点、关键:

  教学重点是理解正比例的意义,难点是能准确判断成正比例的量,关键是发现正比例量的特征。

  4、教学目标:

  根据本课的具体内容,新课标有关要求和学生的年龄特点,我从知识技能、过程与方法、情感态度三个方面确立了本课的教学目标。

  知识与技能:学生认识成正比例的量以及正比例关系,并能正确判断成正比例的量。

  过程与方法:学生经历从具体实例中认识成正比例的量的过程,通过察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。

  情感态度:在主动参与数学活动的过程中,进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

  二、学况分析

  六年级学生具备一定的分析综合、抽象概括的'数学能力。在学习正比例之前已经学习过比和比例,以及常见的数量关系。本节课在此基础上,进一步理解比值一定的变化规律。学生容易掌握的是:判断有具体数据的两个量是否成正比例;比较难掌握的是:离开具体数据,判断两个量是否成正比例。

  三、教法

  遵循教师为主导,学生为主体,训练为主线的指导思想,通过游戏引入、自主探究、合作学习等方式进行教学,让学生在自主、合作、探究的过程中归纳正比例的特征。

  四、学法

  引导学生在观察比较的基础上,独立思考、小组合作交流。具体表现在学会思考,学会观察,学会表达,并对学生进行激励性的评价,让学生乐于说,善于说。

  五、教学过程

  本节课我安排了六个教学环节

  第一个环节:游戏导入,激发兴趣

  用游戏的方法将学生带入轻松愉快的学习氛围,激发学生的学习兴趣,活跃课堂气氛,同时也为后面教学做好了铺垫,使学生很快进入学习状态。

  第二环节:引导观察,启发思考

  教学中让学生自己计算游戏得分,并引导学生进行观察,从而得出:得分随着赢的次数的变化而变化,他们是两种相关联的量,初步渗透正比例的概念。

  第三环节:创设情景,观察实验

  用多媒体呈现数据的获取过程,让学生直观地感受到水的体积和高度是两个相关联的量以及二者之间的变化规律。

  第四环节:探究成正比例的量

  学生在反复观察、思考,讨论、交流的过程中自己建立概念,深刻的体验使学生感受到获得新知的乐趣。

  第五环节:巩固练习,拓展提高

  第六环节:全课小结

  六、效果预测

  在教学的始终,我一直引导学生主动探索正比例的意义,加上课件的辅助教学和课堂练习,学生在理解掌握并且运用新知上,一定会轻松自如。所以,我预测本节课学生在知识、能力和情感上都能全面促进,达到预定的教学目的。

  本节课在教学设计和具体环节的安排上,可能还存在不足的地方,恳请各位评委给予批评指正。

  比的意义教学设计 篇10

  教学目标:

  1、进一步理解小数的含义。

  2、学生认识单名数和复名数,在明确各种计量单位和单位间进率的基础上,会进行简单的名数改写。

  3、通过收集生活中的'小数,体验生活中处处有数学。

  教学重点:

  使学生掌握单名数与复名数改写的方法,熟练的进行单名数与复名数改写。

  教学难点:

  熟练的进行时间单位单名数与复名数的改写。

  教学过程:<

【比的意义教学设计】相关文章:

比的意义教学设计02-06

《比的意义》教学设计03-19

比的意义教学设计04-07

小数的意义教学设计07-20

分数的意义教学设计11-23

分数的意义教学设计01-30

《分数的意义》教学设计02-13

比的意义教案教学设计08-25

方程的意义教学设计12-19

比的意义教学设计【荐】03-27