比的意义教学设计

时间:2023-02-06 18:40:41 意义 我要投稿

比的意义教学设计

  作为一名为他人授业解惑的教育工作者,通常会被要求编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。那么应当如何写教学设计呢?以下是小编为大家收集的比的意义教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

比的意义教学设计

比的意义教学设计1

  教学目标:

  1.了解分数的主产生,理解单位“1”,理解理解分数的意义,分数单位。

  2.理解分数的意义的过程中,渗透数形结合、应用意识等数学思想方法,培养学生的抽象概括能力。

  3.通过分数意义的学习,让学生初步感受数学的神奇魅力。

  教学重点:

  理解分数的意义。

  教学难点为:

  理解单位“1”。认识分数单位。

  教学准备:

  教具:课件、一个苹果、5支铅笔、一个文具盒

  学具:圆片、正方形、一根一米长的绳子、一板面包(8个)图片(分格)、12个苹果图片

  教法与学法:

  教法:激趣谈话法、讲授法、引导发现法、问题激励法等学法:自主探究法、合作交流法等。

  课前交流:

  师:老师很荣信,来到美丽的太极城――旬阳和你们一起上一节数学课,特别的开心,孩子们你们欢迎我吗?

  生:欢迎

  师:怎么没见你们的掌声呢?

  生:鼓掌

  师:谢谢,老师今天也带来了许多小礼品,想要吗?

  生:想

  师:我不能白送给你们,因为“天下没有免费的午餐”需要你们的付出努力才能得到,上课积极表现、勤于思考、善于发言你们就有机会得到哟。有信心吗?

  【设计意图】:建立关系,活跃课堂学习氛围,为后面的学习做铺垫。

  教学过程:

  一、激趣导入,揭示新知。

  师:今天老师考考我们班孩子们看你们的数学水平达到五年级的水平没有?(出示两块橡皮泥左手一块右手一块),分别出示左右手,问学生几块?

  生:1快。

  师:同学们看的够仔细的啊,现在老师把它们合在一起,用什么数来表示?快速回答我?

  预设一:2(你的数学水平还局限于一年级)

  预设二:1(你能给老师说说为什么是“1”呢?)

  生:指把两个小快的橡皮泥捏成一个整体了,所以可以用“1”表示了。(引出“整体”)

  师:(竖起大姆指,你的想法就是不一般,老师不说你多么优秀,但你就是——与众不同)老师现在又把这一整个橡皮泥平均(强调平均分)分成2份,同学们看看,现在我左手拿的是这整个橡皮泥的多少?

  生:一半、0.5、

  师:有文字表示的,幼儿园都会,有小数表示的,三年级学过。但我要表扬用分数表示的同学,你太给力了,懂老师会理解老师,你一语道破老师的天机了。你能给给大家说说中间一条线表示的是什么?“2”是这个分数的什么?1又叫分数的什么呢?现在老师左手用分数表是?右手呢?这是几个?两个合起来就是一个整体“1”

  师:经过你们的努力你们已经达到了五年级的水平了。现实世界中存在的量,除了一些单位量合成的,可以用自然数表示多少的量之外,还存在许多可以分割的无法用自然数表示的量,这时我们可以用分数来表示。今天我们就来研究下分数的意义。(板书并出示课题)

  师:刚才我们以分橡皮泥共同研究了分数是怎么来的。其实,分数在很早以前就产生了,据科学家研究,仅次于自然。古人在测量物体的长度时也遇到了同样的困惑,请同学们认真看屏幕,古代分数的产生。然后听老师给我们作的介绍(PPT出示介绍录音)

  师:现实在你还在哪儿见过分数(谈生活中的分数)

  生:音乐中,八分音符等于,死海表层的水中含盐量达到,我国的人均水资源占世界平均水平的……

  【设计意图】:通过具体的事物,为学生创设智力陷井,激发求知欲望。同时,对分数的各个部分的名称进行了一次再现的过程。再次为下面学习分数单位及有几个这样的分数单位做好铺垫。学生从历史、现实的生活中,初步了解分数的产生、应用的广泛性,呈现了学习分数的必要性和重要性。

  二、合作探究,理解分数的意义

  1.操作研究

  师:分数重要吗?你想知道分数的哪些知识?

  生:汇报交流,梳理本节课的知识点。

  师:好,首先我们就来围绕什么是分数来研究研究。给同学们五分钟时间,研读教科书第46页的知识,小组交流,打开准备的学具袋,利用自己喜欢的方式表示这个分数。

  2.反馈交流

  师:我刚才转到看了一下,收集了这些表示的方法,现在我请他来告诉大家表示的方法?

  生一:(投影展示)我把圆片一个对折,再对折,这样就平均分成4份了,涂出这样的一份就表示。(老师指导语言的表达:同学们请听我说,我是把……你们听明白了吗?)

  师:嗯,你是把一个圆片平均分成4份,再取其中的一份表示的。真有想法。

  生二:(投影展示)我把一个正方形对折,再对折,这样就平均分成4份了,涂出这样的一份就表示。

  师:你也是把一个图形平均分成4份,用其中的一份来表示的。真好,同学们,有没有用不同的方法来表示的吗?

  生三:我是这样把一根绳子对折再原折,取其中的1份来表示的。

  师:你很有主见了。你把1米长的绳子也平均分成了4份取其中的1份来表示的.,我们把一米长的绳子也可以称为一个计量单位。请坐。同学们,刚才这三位同学给我们分享了用一个圆形、一个正方形、一个计量单位分别平均分成了4份,表示其中的1份涂上不同的颜色,涂色的部分就是这一个物体的。除了上面的这样一个物体外,你还有其它的表示方法吗?

  生四:我是把8个面包平均分成4份,用其中的一份来表示的。

  师:嗯?你的是多少面包?

  生五:2个

  师:(疑惑)上面同学样表的示的都是1部分,怎么这次的却是2个了呢?

  生:上面是一个物体,下面是8个面包,平均分成4份,每份就是2个面包,把这2个包看作是1份,就取这1份。所以8个面包的表示就2个面包了。

  师:你的分析真到位。哪个同学能用刚才这个同学一样的方法表示12个苹果的。

  生:我表示12个苹果的是3个苹果,12个苹果,平均分成4份,每份就是3个,把这3个苹果看作是1份,就取这其中的1份。所以12个苹果的是3个苹果。

  师:你真是个会学习的孩子。不仅学的快还用的快。像8个面包、12个苹果这些物体平均分成4份,取其中的1份也可来表示。

  【设计意图】:在三年级认识分数的基础上,让学生自由表示,加深对分数意义的理解,使学生进一步明确:平均分的整体可以是一个物体,也可以是一些物体,为概括分数的意义做好准备,同时为理解单位“1”做好铺垫。

  3.归纳定义,认识单位“1”

  师:同学表现的非常积极。发言的同学条理清楚声音响亮,听讲的孩子认真仔细思考有序。(用课件展示刚才5个同学汇报的几种情况)现在请大家用心的观察、比较、分析用所表示的物体或计量单位有哪些相同的地方?哪些不同的地方?先自己想一想,再和同桌交流说一说自己的想法。

  生一:相同的地方,我们都是平均分成4份(板书:平均分),表示其中的1份。不同的地方是我们分的物体不同,分的物体的总数不同。

  师:我们把什么物体平均分了?

  生:一个圆、一个正方形,一根一米长的绳子,一些面包、苹果。

  师:回答的非常好!在这里,一个物体、一个计量单位或一些物体等都可以看作一个整体。把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。这个整体我们可以用自然数“1”来表示。(板书:整体 单位“1”)

  师:现在同学们想想,我们还可以把哪些物体看成单位“1”?

  (学生汇报,学生自评)

  师:同学们,通过刚才我们的研究发现,把单位“1”平均分成4份,这样的1份可以用表示,这样的3份呢?

  师:看样子同学们已经掌握了用分数来表示物体的量,现在跟着老师一起说,把单位“1”平均分成4份,表示这样的3份,可以用来表示;把单位“1”平均分成5份,表示这样的2份,可以用来表示;把单位“1”平均分成xx份,表示这样的3份,可以用来表示;把单位“1”平均分成□份,表示这样的△份,可以用?来表示;(并板书)

  课堂评价一:P47页(见PPT)

  课堂评价二:PPT口头完成做一做(P46页的做一做)

  【设计意图】:通过的异同之处,使学生透过表象发现本质,再经历观察、比较、分析总结得出分数的意义,认识单位“1”。再通过两次的课堂练习评价,巩固分数的意义及为分数单位的学习再做铺垫。

  4.认识分数单位,深化单位“1”的理解。

  师:刚才我们把什么看成单位“1”的?

  生:一堆糖

  师:把单位“1”平均分成了(老师指着PPT学生回答:2份、3份、4份、6份)若干份,表示其中一份的数,在数学里也有自己的名称叫“分数单位”。例如的分数单位是。

  师:指着课件(学生用圆片表示后剩下的空白部分)同学们看看空白处可以用什么分数表示?

  生:

  师:的分数单位是?里有几个?

  生:,3个

  三、拓展延伸,强化认知

  1.创造分数:9个橡皮泥,第一个同学取它的,第二个同学取剩下的,发现什么?

  2.师:老师这里有一个图形,只露出了一部分,我只知道是这个图形的,聪明的孩子们你们还能知道这个图形是什么样的吗?画画看。(一帆风顺)

  生:动手操作,交流汇报。

  师:你能读出下面的分数并说说它们的含义(见PPT)

  【设计意图】:通过让学生画隐藏的图形,不仅加深了学生对单位“1”的认识、对分数意义的理解,同时培养了学生的数形结合思想。

  四、数形结合感情数学之美

  老师这里有个图形,你们能用分数表示出阴影部分的大小吗?(八卦图、椭圆)

  师:看到这些图,美不美?还有比这更美的呢?请同学们欣赏下并感悟数学的魅力,从这幅图中你发现了些什么规律?(见PPT)

  【设计意图】:通过直观的图片,激发学生学习数学的欲望,体会数学的价值,培养学生审美观念。

  五、总结收获

  师:同学们今天我们共同学习了哪些内容?

  生:……

  师:孩子们,今天出色的表现让老师非常的惊喜,相信明天的你会更精彩。最后老师用与分数有关的话送语送给你们,或许现在不明白,慢慢的你就会悟出其中的道理的。

  【设计意图】:通过让学生回顾新知,谈收获,给学生再次交流的机会,让学生相互提醒,进一步突出本节课的知识要点。通过直观的图形展示,激发学生学习数学的欲望,感悟数学的价值,同时培养学生的审美观。

比的意义教学设计2

  【教学内容】《义教课标实验教科书数学》(人教版)六年级下册第32-33页例1及“做一做”。

  【教学目标】

  1、明确比例的意义,掌握组成比例的条件,并熟练地判断两个比能否组成比例。能根据不同要求,正确的列出比例式。

  3、通过学习培养学生学习数学的兴趣。培养学生的观察能力、判断能力。

  【教学重点】比例的意义。

  【教学难点】求比值判断两个比能否组成比例,并能正确地组成比例。

  【教学准备】多媒体课

  【自学内容】见预习作业

  【教学预设】

  一、自学反馈

  1、什么叫做比例?

  表示两个比相等的式子叫做比例。

  2、今天是星期天,小瑜和小丽一起到文具店去买东西。

  (1)小瑜用12元买了4本数学本,小丽用9元买了3本,谁买的本子便宜些?

  (2)反馈:

  ①谁买的本子便宜些?说说你的理由。

  ②还有别的方法吗?

  ③这两个比能组成比例吗?为什么?

  二、关键点拨

  1、比例的意义。

  出示课件:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

  时间(时)25

  路程(千米)80200

  根据表中的数量你能写出几个比例?你是怎么想的?他们的比值分别表示什么?

  2、小结:判断两个比能否组成比例,最关键是看什么?

  3、比和比例有什么区别?

  生讨论汇报:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

  三、巩固练习

  1、下面哪组中的两个比能组成比例?把组成的比例写出来。课本第33页“做一做”第1题。

  2、独立完成“做一做”第2题后反馈交流。

  3、5:8和1:5这两个比能组成比例吗?为什么?你能想出一个办法给5:8找个朋友组成比例吗?

  反馈:

  (1)你给5:8找的朋友是(),组成的比例是(),向大家介绍你用了什么方法找到的。

  (2)想一想,能与5:8组成比例的朋友能找几个?你认为这无数个朋友有什么共同特点?

  四、分享收获畅谈感想

  这节课,你有什么收获?听课随想

  反思与体会:

  在本节课中,我充分重视了学生原有的认知基础,即在学生理解掌握比的'意义和基本性质的基础上进行教学的,找准了新知识的生长点,为学生探究新知搭建了平台。其次,主要采取探究的方式,充分发挥了学生小组合作,组间交流的作用。在比例的意义和基本性质的教学,我都把知识的探究过程留给了学生,问题让学生去发现,共性让学生去探索,将学习内容的“大板块”交给学生,给学生留有足够的时间、空间。采取小组合作交流的方式,获取结论,并对结果进行相互评价,从而使他们体会成功,共享合作学习的乐趣。在这个过程中,学生的主观能动性得以发挥,主体地位得到充分体现。最后,针对在以往的教学中发现学生学习完比例后把比例和比混淆的问题,我还特意增加了比和比例从意义、各部分名称、基本性质等方面进行横向对比的教学环节,加深学生对知识的印象。当然,纵观全课,还有很多不足之处,比如:如何在教学过程中让学生探讨的问题更贴近生活?教师要进行怎样的引导还值得我进一步思考。

比的意义教学设计3

  教学内容:

  义务教育课程标准实验教科书《数学》五年级下册P60—64。

  教学目标:

  1.结合具体情境,在学生原有分数知识基础上,了解分数产生的背景,理解分数的意义,理解单位“1”不仅是一个物体,也可以是许多物体;知道分子、分母和分数单位的含义。

  2、经历认识分数意义的过程,进而理解分数的意义和分数单位的意义,并学会用分数描述生活中的事物,体会“整体”与“部分”之间的关系。

  3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。

  4.在轻松和谐的氛围中学习数学,感受生活中处处有分数,并培养抽象、概括能力。教学重难点:明确分数和分数单位的意义,理解单位“1”的含义。教学准备:多媒体课件、练习纸、一支水彩笔

  教学过程:

  一、回忆旧知

  1.师:把6个苹果平均分给2个小朋友,每人分得几个?若老师只有1个苹果平均分给2个小朋友,每人分得多少?

  2.师:你们认识它吗?请大声地读出它?(二分之一)

  它是什么数?

  3.师:你已经知道了分数的哪些知识?

  (分子,分母,分数线)

  二、探究新知

  (一)了解分数的产生

  1.师:对于分数同学们知道的真不少,那你们知道分数是怎么来的吗?

  2.师:我给你们准备了几幅图,大家看(课件出示60页主题图1)。

  3.师:古人把绳子按相同的长度打上结用来测量物体的长度,两个结中间的一段就表示长度的一个计量单位,(指着图)如图上这样的一段就用1表示,这里有1、2、3三段就用(3)表示,剩下的不足一段,还能用1表示吗?(不能)

  4.师:(课件出示60页主题图2)再来看,把桌上的东西平均分给两个同学,每个同学分到的东西还能用整数表示吗?(不能)

  5.师:在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。

  6.师:你知道第一个发明分数的人,他是怎么写这个分数的吗?

  7.师:(课件出示62页主题图)3000多年前,古埃及就有了分数记号,人们借助椭圆表示分子为1的分数;20xx多年前,我们中国用算筹表示分数,像这样上面摆3根,下面摆5根,就表示3/5;后来,印度用阿拉伯数字表示分数,这种方法和我国的类似,只是这两种方法都没有分数线,直至公元12世纪,也就是大约800年前,阿拉伯人发明了分数线,这种方法一直沿用至今。

  8.师:那分数到底表示什么呢?接下去我们就重点研究分数的意义。(板书:和意义)

  (二)探索研究,理解分数的意义

  1.师:你能举例说明1/4的含义吗?(学生答)

  2.师:下列图中的阴影部分能用1/4表示吗?为什么?

  如生说可以,则问:你为什么觉得可以用1/4表示呢?生说理由。

  (强调一定要平均分)(板书:平均分)

  3.动手操作,创作分数。

  (1)操作。

  师:现在你能利用手中的学具,通过折一折、画一画、分一分等方法,创造出几个不同的分数吗?(学生动手操作,教师巡视。)

  (2)交流

  师:谁愿意上来说一说,你得到了哪些分数?这个分数是怎样得到的?

  4.认识单位“1”。

  师:利用手中的学具,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?

  师:象把一张长方形纸平均分,我们可以称之为把一个物体平均分

  把4根香蕉、8块面包平均分,我们又可以称之为把一些物体平均分。

  师小结:

  不管是一个正方形、一个圆形、一条线段、、4根香蕉、8个面包都可以看作一个整体。(板书:一个整体)一个整体可以用自然数来表示,我们通常把它叫做什么?(学生回答:单位“1”,老师板书),这个1要用双引号,因为它不单单表示

  一个物体也可以表示一些物体。

  师:你能举例说说可以把什么看作单位“1”?

  5.概括分数的意义

  师:通过刚才的举例和学习,谁可以更准确地说说怎样才用分数表示呢?(两个学生讲后老师小结)把单位“1”平均分成若干份,(老师板书)这样的一份或几份可以用分数表示。

  (三)认识分数单位

  1、62页做一做

  2、师:自然数的单位是什么?7里面有几个1?26呢?

  分数也有自己的单位,什么是分数单位呢?请同学们自学课本62页。

  3.找生汇报:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫分数,这是分数的意义。而表示其中一份的数叫做分数单位。如2/3的分数单位是1/3。

  3、练习:读出下面的分数,并说出每一个分数的'分数单位。(课件)

  三、巩固新知

  1.完成课本练习十一部分练习。

  2.体会“整体”与“部分”之间的关系

  (结合课件演示)

  师:这1支粉笔,是全部粉笔的1/5,你能猜出一共有几支吗?(5支)师:为什么是5支呢?

  师:现在有2支粉笔,也是全部粉笔的1/5,你还能猜出一共有几支粉笔吗?你是怎么知道的?

  师:现在有3支粉笔,还是全部粉笔的1/5,你还能猜出一共有几支粉笔吗?怎么那么快就猜出来了?

  师:为什么都是,有的是1支,有的是2支,还有的却是3支呢?

  师小结:虽然都是把全部的粉笔平均分成了5份,但是因为单位“1”的数量不同,所以每一份的数量也就不同。因此说一个分数时,一定要强调是哪一个整体的几分之几,即:说清楚是“谁的”几分之几。

  四、全课总结

  师:谁能说一说我们班的每一个同学占全班同学的几分之几?通过这节课的学习,你有哪些收获呢?

  板书设计:

  分数的产生和意义

  一个物体

  一个整体单位“1”

  一些物体

  把单位“1”平均分成若干份,这样的一份或几份可以用分数表示。表示这样一份的数叫分数单位。

比的意义教学设计4

  教学目标:

  1、经历从生活情境到方程模型的建构过程。

  2、理解方程概念,感受方程思想。

  3、通过观察、描述、分类、抽象、概括、应用的学习活动过程达到学习水平的提高。

  教学过程:

  一、情境创设,初建相等关系模型。

  1、师出示天平图,

  认识吗?

  师:天平可以称出物体的质量是多少。

  2、(媒体出示三幅图)下面的三幅图中,哪一幅能称出两只苹果的质量?

  (左右倾斜各一幅,平衡的一幅。图略)

  学生会选择图3,老师顺着学生的思路出示图3天平平衡图

  图3为什么能称出两只苹果的质量?

  你能用一个式子表示出天平两边物体的质量关系么?

  100+100=200

  图1和图2为什么不能称出两只苹果的质量呢?

  你也能用一个式子表示出天平两边物体的质量关系吗?

  100+100>100、100+100<500

  3、三个式子都是表示物体之间质量的关系,数学上把这样表示两边相等的.关系的式子叫做等式。

  你的小脑袋里有等式吗?说一个试试。

  除了用加法表示的还有不一样的吗?(师板书学生说的其它的一些式子)

  师:没想到,同学们对等式是这么的熟悉。

  二、借助基础,拓展等式外延。

  1、下面的几幅图中,天平两边物体的质量关系,哪些可以用等式表示?能表示的试着把它写下来,不能的思考可以用一个什么样的式子表示呢?

  (书上四幅图略)

  选一个等式说一说它表示什么意思?

  天平两边物体的质量关系,一种是用语言表达,一种是用数学式子表示,你愿意选择哪一种?说说你的理由。(突出简洁、清楚)

  2、师:的确,这样的一些数学式子能清楚、简洁地表示出天平左、右两边物体质量之间的关系。

  3、比较:现在写的这些等式与刚才我们说的那些等式有什么不同吗?

  突出含有未知数的等式

  这些含有未知数的等式你见过吗?

  生:没见过;也可能见过,如:用字母表示数中、求未知数x等。

  三、进一步拓宽对等式的理解。

  1、顺着学生的思路组织教学:李老师就为同学们准备了一些生活中同学们常见的一些现象,仔细看一看,这些生活中的现象之间的关系是不是也能用含有未知数的等式来表示呢?

  (师出示四幅生活情境图)

  (1)铅笔盒与笔记本共20元。

  (2)借出的书与剩下的书共150本。

  (3)3瓶相同的色拉油,每瓶x元,共8元。

  三、明确特征,归纳概念。

  其实呀,数学上给这样一些含有未知数的等式起了个很特别的名字叫方程,这就是我们今天要研究的方程的意义。(板书)

  揭示数学上我们把含有未知数的等式叫做方程。

  四、深刻领悟,挖掘内涵。

  1、黑板上的其它式子为什么不是方程?

  2、师:现在同学们知道什么是方程了吗?下面哪些是等式,哪些是方程?(是等式的男生举手,是方程的女生举手)

  36-7=29、60+x>70、8+x

  6+x=14、7+15=22、5y=40

  活动结束了,但思考却刚刚开始,就等式和方程的关系你现在有什么话想说的吗?

  (在活动中理解等式与方程的关系)

  五、实践应用,拓展外延。

  1、你能看图列出方程吗?

  图1:天平(2x=500)

  图2:四个物体16.8元

  图3: 两杯水共有450毫升

  2、从文字表述中找出方程

  (1)小明从家到学校有500米,他每分钟走50米,走了x分钟。

  (2)张师傅每天做x个零件,用了6天做了780个零件。

  (3)王涛放学回家后,去商店买了3本精装笔记本,每本y元。他付给售货员阿姨20元,找回2元。

  3、李老师头脑中有一幅图,我把它用方程表示了出来,猜一猜,老师头脑中可能会是一幅什么样的图?

  出示:5x=200(可提示:如天平图等)

  个别交流的基础上同桌互说。

  六、全课总结:学习到现在你有哪些收获?

  从不能用方程表示到能用方程表示图中的数量关系的一种演变。

  图1:买4个小熊猫玩具,每个x元,120元不够

  图2:买3个,每个x元,120元还不够

  图3:买2个,每个x元,120元正好

  延伸:使两只水杯一样多你能有哪些办法?用方程表示,你能吗?

比的意义教学设计5

  教学目标:

  1、知识目标:使学生在经历实际测量的活动中,了解小数的产生。学生能理解小数的意义,认识小数的计数单位和相邻两个计数单位之间的进率。

  2、能力目标:培养学生动手操作,观察,分析,推理能力和抽象概括能力。

  3、情感目标:通过学习小数的产生和发展过程,提高学生学习数学的兴趣;增强对数学的理解和应用数学的信心。

  学情分析:

  小数的意义是一节概念教学课,是在学生学习了“分数的初步认识”和“元角分与小数”的知识下,以已有的经验为背景,让学生经历认、读、写小数的学习过程并理解小数的意义,体会小数与生活的密切联系,从而实现认识的提升。

  教学重点:认识小数的产生和意义。认识小数的计数单位和相邻两个计数单位之间的进率。

  教学难点:理解小数的意义。

  教学过程:

  一、创设情境,了解小数的产生。

  1、回忆一下:我们学过什么长度单位?

  2、请同学们看一下这条绳子,谁来估一估绳子的长度呢?请同学们都来量一量,验证一下结果。再来看看这根绳子,谁来估计一下它的长度,也请同学们上来量一量。刚才同学量的绳子的长度是30厘米,就是3分米,如果老师让大家用米来作单位。怎么表示呢?

  3、刚才我们在测量这条绳子的时候,如果用米作单位,就得不到整数的结果。其实像这样得不到整数结果的例子在生活中还有很多很多,于是聪明的人们除了发明用分数来表示之外,还发明了用小数来表示,于是小数就产生了。

  4、揭题。(板书:小数的意义)

  二、自主探讨,理解小数的意义。

  (一)研究一位小数

  1、出示米尺:这是什么?这是一把一米长的尺子,请同学们仔细看看,老师把这把米尺平均分成了多少份呢?每一份是多长?如果用米作单位,写成分数是多少?写成小数又是多少?

  这样的3份是多长?写成分数是多少?写成小数是多少?这样的7份呢?

  2、请同学们看,这几个小数的小数部分都只有一位,这样的小数我们把它叫做一位小数。

  3、小结:我们把1米的尺子平均分成10份,这样的.一份或几份可以用一位小数来表示。

  4、说说你发现了什么?(分母是10的分数可以用一位小数来表示。)

  (二)研究两位小数(自助探究)

  1、如果我把1米的尺子平均分成了100份,1份是多长?用米作单位,写成分数是多少?写成小数是多少?4份呢?这样的8份呢?

  2、像这样的小数,小数点后面有几位数,这样的小数我们叫做几位小数。

  3、小结:我们把1米的尺子平均分成100份,可以用两位小数来表示。

  4、说发现。

  (三)研究三位小数。(自主探究)

  1、如果我把这每一段再平均分成10份,那么整条米尺我把它分成了几份?1份是多长?用米作单位,写成分数是多少?写成小数是多少?6份呢?13份呢?请同学们再说2个用毫米作单位的长度。刚才这两位同学说出了5毫米,23毫米,请同学们拿出草稿本,把这两个长度用分数表示,再用小数表示。

  2、像这样的小数,小数点后面有几位数?这样的小数我们叫做三位小数。

  3、小结:我们把1米的尺子平均分成1000份,可以用三位小数来表示。

  4、说发现。

  (四)推导

  1、如果我把1米的尺子平均分成了10000份,写成分数应该是几位小数呢?看来同学们的学习能力很强是,能够通过前面的知识,推出后面所学的知识。

  1、讨论:分数和小数有怎样的联系呢?请同学们小组讨论,概括出分数和小数的联系。

  刚才同学们通过讨论得出,分母是十的分数可以用一位小数来表示。分母是一百的分数可以用两位小数来表示。分母是一千的分数可以用三位小数来表示。这个就是小数的意义。

  三、合作交流,探讨小数的计数单位。

  1、填一填。

  (1)0.3里有()个1/10,0.7里有()个1/10。0.04里有()个1/100,0.08里有()个1/100。

  填一填,说说你是怎么想的。

  像这样,0.3、0.7这样的一位小数,我们都可以看成是由若干个0.1来组成的,那么我们就说十分之一是一位小数的计数单位。读作十分之一,写作0.1。(板书:一位小数的计数单位时十分之一,写作:0.1)

  同样的道理,像这样,0.04、0.08这样的两位小数,我们都可以看成是由若干个0.01来组成的,那么我们就说百分之一是两位小数的计数单位。读作百分之一,写作0.01。(板书:两位小数的计数单位时百分之一,写作:0.01)

  请同学们猜一猜,三位小数的计数单位是什么?写作什么?(板书:三位小数的计数单位是千分之一,写作:0.001)

  2、0.1里有()个0.01,0.01里有()0.001。小组讨论,汇报。

  0.1里有10个0.01,我们就说0.1与0.01的进率是10,同样道理,0.01里有10个0.001,说明他们的进率也是多少?

  四、巩固练习。

  课件出示练习。

  五、总结。

  这节课你有什么收获?

比的意义教学设计6

  教学内容:

  九年义务教育六年制小学数学第十二册P64——65

  教学目标:

  1、使学生经历从具体实例中认识成反比例的量的过程,初步理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。

  2、使学生在认识成反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

  3、使学生进一步体会数学与日常生活的.密切联系,增强从生活现象中探索数学知识和规律的意识。

  教学重点:

  认识反比例的意义

  教学难点:

  掌握成反比例量的变化规律及其特征

  设计理念:

  课堂教学中注重从学生的已有的生活经验出发,引导学生观察、分析,从而发现成反比例量的规律,概括成反比例量的特征。努力为学生提供探究的时空,让学生自己发现、自己探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去。

  教学步骤教师活动学生活动

  一、复习铺垫1、怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系?

  2、判断下面两种量是否成正比例?为什么?

  时间一定,行驶的路程和速度

  除数一定,被除数和商

  3、单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例?

  4、导入新课:

  如果总价一定,单价和数量的变化有什么规律?这两种量又存在什么关系?今天,我们就来研究和认识这种变化规律。

  学生口答,相互补充

  二、探究新知1、出示例3的表格(略)

  学生填表

  2、小组讨论:

  (1)表中列出的是哪两种相关联的量?它们分别是怎样变化的?

  (2)你能找出它们变化的规律吗?

  (3)猜一猜,这两种量成什么关系?

  3、全班交流

  学生初步概括反比例的意义(根据学生回答,板书)

  4、完成“试一试”

  学生独立填表

  思考题中所提出的问题

  组织交流,再次感知成反比例的量

  5、抽象表达反比例的意义

  引导学生观察例3和“试一试”,说说它们的共同点。启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,反比例关系可以用怎样的式子来表示?

  根据学生的回答,板书:x×y=k(一定)

  揭示板书课题。

  学生填表

  小组讨论、交流

  学生初步概括

  相互补充与完善

  独立填表

  交流汇报

  学生概括

  三、巩固应用1、练一练

  每袋糖果的粒数和装的袋数成反比例吗?为什么?

  2、练习十三第6题

  先算一算、想一想,再组织讨论和交流。

  要求学生完整地说出判断的思考过程。

  3、练习十三第7题

  先独立思考作出判断,再有条理地说明判断的理由。

  4、练习十三第8题

  先填表,根据表中数据进行判断,明确:长方形的面积一定,长和宽成反比例;长方形的周长一定,长和宽不成反比例。

  5、思考:

  100÷x=y,那么x和y成什么比例?为什么?

  6、同桌学生相互出题,进行判断并说明理由。

  讨论、交流

  独立完成,集体评讲

  说一说

  填一填,议一议

  讨论

  相互出题解答

  四、总结反思

  这节课你学会了什么?你有哪些收获?还有哪些疑问?课后你能与同学相互出题进行练习吗?

  评价总结

比的意义教学设计7

  教学目标:

  1、根据除法中商不变的性质和分数的基本性质,利用知识的迁移,领悟并理解比的基本性质。

  2、通过自主探究,掌握化简比的方法并会化简。

  3、渗透事物是普遍联系的辨证唯物主义观点。

  教学重难点:

  理解比的基本性质,推导化简比的方法正确化简比。

  教法:

  引导探究

  教学过程:

  一、导入:

  1、谈话导入,在日常工作和生活中,常常要把两个量进行比较。举例说明,杨利伟在“神舟”五号飞船里向人们展示了联合国旗和中华人民共和国国旗。

  2、提问:根据这些信息,你能提出什么数学问题?

  板书课题:

  二、探究新知:

  1、学生按学习指南自学。

  学习指南:根据题意可以怎样表示长和宽的关系?

  2、汇报自学情况

  3、教师指导:

  长是宽的3/2倍,我们又可以把他们之间的关系说成长和宽的比是3比2;宽是长的2/3,我们又可以说成宽和长的比是2比3。

  4、苹果有4个,梨有5个。

  提问:苹果和梨的关系可以怎样说?

  尽量找学困生回答。

  5、教师总结:刚刚我们比较了两个同类的量,不仅两个同类的量可以用比表示,而且不同的两个量也可以用比来表示。

  6、学生举例。

  请学生举出一个可以用比表示两个数量之间关系的例子,尽可能让学生多举例子。

  学生互相讨论后,再指名回答。

  7、指导学生自学教材后,说说比的含义。

  板书课题:比的意义

  3比2 3:2

  2比3 2:3

  100比2 100:2

  两个数相除又叫两个数的比。

  比的'各部分名称

  15:10=15÷10=3/2

  前项比号后项比值

  教师重点指导:

  (1)关于“比值通常用分数表示,也可以用小数表示,有时也可能是整数”,你怎样理解?

  (2)比的后项为什么不能为0?

  比分数除法的联系与区别

  三.课堂检测:

  1、完成教材第44页“做一做”的第1、2题。

  2、完成教材第47页练习十一的第1——3题。

  四.小结:

  谈一谈本节课的收获。

比的意义教学设计8

  教学内容:

  课本43—44页以及相关练习

  教学目标:

  1、使学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。

  2、引导学生加强知识之间的联系,使学生掌握的知识系统化,提高学生分析解决问题的能力。

  教学重点:

  理解比的意义以及比与除法、分数的关系

  教学难点:

  弄清比和比值的联系和区别。

  教学准备:

  课件,投影。

  教学过程:

  一、创设情境,生成问题

  师:同学们,你们知道我国的第一艘载人飞船叫什么吗?(出示情境图)

  问:怎样用算式表示国旗长与宽的关系?(引导学生说出:可以求长是宽的几倍?或求红旗的宽是长的几分之几?)

  小结:长和宽的倍数关系可用除法表示。

  二、探索交流,解决问题

  1、比的意义

  (1)两个同类量的比

  比较这两个数量之间的关系,除了除法,数学上还有一种表示方法,即“比”。可以说成是:长和宽的比是15比10,或宽和长的比是10比15。

  不论是长和宽的比还是宽和长的比,都是两个长度的比,相比的'两个量是同类的量。

  思考:两个数量组成比时,谁比谁,谁在前,谁在后,可以交换位置吗?为什么?(小组交流,汇报补充,深层体会比的意义)

  (2)两个不同类量的比

  “神舟”五号进入运行轨道后,在距地350km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252km。怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?

  (算式:42252÷90,依据是速度可以用路程÷时间表示)

  对于这种关系,我们也可以说:飞船所行路程和时间的比是42252比90,这里的42252千米与90小时是两个不同类的量。

  问:路程和时间的比表示什么含义?(生自由发言,理解“路程比时间”表示速度)

  (3)归纳比的意义。

  通过上面两个例子,你认为什么是比?(学生试说,教师总结:两个数相除,又叫做两个数的比。)

  2、比的写法

  (1)阅读课本自学

  问题:几比几怎样写?怎样读?

  比的各部分名称是什么?

  怎样求比值?比值可以怎样表示?

  比和比值有什么联系和区别?

  (2)小组交流汇报。

  3、比、除法和分数的联系

  (1)比与除法的关系

  问:比的前项相当于什么?后项相当于什么?比值相当于什么?比的后项可以是零吗?为什么?

  小组交流汇报。

  (2)比与分数的关系。

  根据分数与除法的关系,可以推知比与分数有什么关系?(引导学生回答:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。)

  三、巩固应用,内化提高

  1、完成课本“做一做”。

  2、练习十一第1、2题。

  四、回顾整理,反思提升

  通过这节课的学习,你有什么收获?

  课后延伸:

  在生活中找一找,在哪里存在比?表示什么含义?

  板书设计:

  比的意义

  15:10 = 15 ÷ 10= 3/2

  前项比号后项比值

比的意义教学设计9

  单元教材分析

  本单元是在学生学习了整数乘除法以及解简易方程,学习了分数乘法知识的基础上,学习分数除法和比的初步知识.这些知识为学生学习分数除法打下了基础,学习本单元的知识对加深学生对计算方法的理解和提高学生的计算能力有很好的作用.教材内容包括:分数除法,解决问题,比和比的应用.这些知识都是学生进一步学习的重要基础,通过本单元的学习,学生一方面基本上完成了分数加,减,除的学习任务,比较系统地掌握了分数四则运算;另一方面又开始了比的初步知识的学习,为后面学习百分数和比例提供了基础.两方面的收获,都将在进一步的学习中发挥重要的作用.

  单元教学目标

  1、使学生在具体情景中,感知分数除法的意义,掌握分数除法的计算方法,能正确地用口算或笔算的方法进行分数除法的计算.

  2、使学生学分用分数除法来解决已知一个数的几分之几是多少,求这个数的实际问题.

  3、理解比的意义和比的基本性质,知道比与分数,除法之间的关系,能正确地求比值和化简比,能运用比的有关知识解决实际问题.

  4、让学生在具体生动的情景中感受学习数学的价值.

  单元教学重点

  1、分数除法的计算;

  2、分数除法问题的`解答;

  3、比的意义和基本性质的理解与运用.

  单元教学难点

  1、理解分数除法计算法则的算理;

  2、比的应用.

  1、分数除法

  教学目标

  1、理解分数除法的意义,指导并初步掌握分数除以整数的计算法则,能正确地计算分数除以整数。

  2、使学生理解整数除以分数的算理,掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算,并培养学生的推理归纳能力。

  教学重点

  1、理解分数除法的意义与整数除法的意义相同。

  2、学会分数除以整数的计算法则,并能应用法则正确计算。

  3、一个数除以分数的算理。

  4、掌握分数除法的统一法则。

  教学难点

  1、学会分数除以整数的计算法则,并能应用法则正确计算。

  2、引导学生推导出整数除以分数的方法。

  3、对于一个数除以分数的算理的理解。

  第一课时分数除法的意义和分数除以整数

  教学过程:

  一、创设情景导入:

  同学们,前面我们学习了分数乘法,掌握了它的意义和计算法则,并用它解决了相应的实际问题。这节课开始老师将和你们一起去逐步探究分数除法的意义和计算法则,还要解决相应的实际问题。本节课我们先探究分数除法的意义和分数除以整数。

  二、新知探究:

  (一)分数除法的意义

  1、出示例1的教学挂图,让学生看图观察图意,指名口答图意和应该怎样列式.

  2、你能把上面的问题改编成用除法计算的问题吗?(学生独立思考,口答问题和列式)

  3、100g=1/10kg,你能将上面的问题改成用kg作单位的吗(引导学生将整数乘除法应用题改变成分数乘除法应用题)

  4、引导学生观察比较整数乘除法的问题和改写后的问题,分析得出整数除法和分数除法的联系以及分数除法的意义.

  5、练习:课本28页做一做.学生独立练习,订正时让学生说明为什么这样填.

  (二)分数除以整数

  1、小组学习活动:

  问题⑴把一张纸的4/5平均分成2份,每份是这张长方形纸的几分之几?

  问题⑵把一张纸的4/5平均分成3份,每份是这张长方形纸的几分之几?

  [活动要求]

  ①先独立动手操作,再在组内交流,

  ②讨论:通过折纸操作和计算,你发现了几种折纸方式,每种方式应怎样列式计算?你发现了什么规律?

  2、汇报学习结果:

  3、学生独立阅读教材

  4、归纳总结:这节课你们学会了什么?

  指导学生归纳出:分数除以一个不等于0的整数,等于分数乘以这个整数的倒数.

  三、巩固与提高

  ①把7/8平均分成4份,每份是多少?什么数乘6等于3/17?

  ②如果a是一个不等于0的自然数,1/3÷a等于多少?1/a÷3等于多少?你能用一个具体的数检验上面的结果吗

  四、课后作业

  练习八第1、2、3题

  五、板书设计:

  分数除法的意义和分数除以整数

  例1.100×3=300(ɡ)1/10×3=3/10(㎏)

  300÷3=100(ɡ)3/10÷3=1/10(㎏)

  300÷100=3(盒)3/10÷1/10=3(盒)

  例2.4/5÷2=4÷2/5=2/54/5÷2=4/5×1/2=2/5

  4/5÷3=4/5×1/3=4/15

比的意义教学设计10

  教学内容:

  苏教版教科书第1~2页的内容。

  教学目的:

  ⑴在具体的情景中,让学生理解等式、方程的含义,体会等式和方程的关系,能根据情景图正确地列出方程。

  ⑵在观察、分析、抽象、概括和交流的过程中,让学生经历将现实问题抽象成式和方程的过程,积累将现实问题数学化的经验,感受方程的思想方法及价值,发展抽象能力和符号感。

  ⑶学生在数学活动的过程中,养成独立思考、主动与他人合作交流等习惯,获得成功的体验,培养对数学的'学习兴趣。

  教学流程:

  一、情景引入,初步展开新课。

  ⑴出示“天平”情景图,了解学情。

  让学生说说,你知道了什么?

  天平;两边是一样重的;指针在中间表示就表示相等等等。

  ⑵用等式表示天平两边物体的质量关系。

  先写出等式;交流等式:50+50=100,交流这样列式的思考;揭示概念,象这样表示两边相等的式子就是等式。

  二、继续出示情景图,深入展开新课。

  ⑴出示情景图,明确要求。

  用式子表示天平两边物体的质量关系。

  ⑵独立思考,试写式子。

  学生在书上独立填写。

  ⑶学情反馈,班级交流。

  让学生自行上黑板写不同的式子。

  可能会出现下面这些式子:x+50>100,x+50≠100, x+50=100+50,x+50<200,x+50≠200,x+x=200,2x=200等。

  甄别确认正确答案。

  ⑷尝试分类,理解方程的意义。

  明确要求——分类;为类别起名,等式,不等式;独立分类,等式:x+x=200,2x=200 ,x+50=100+50,50+50=100,不等式:x+50>100,x+50≠100,x+50<200,x+50≠200。

  再分类,不等式感悟“>”和“<”比“≠”更准确;等式分类:等式中有一部分叫等式(含有未知数)。

  ⑸体会等式和方程的关系。

  用符号表示等式和方程的关系,例如集合图等;用形象的情景表示等式和方程的关系,例如部分和总数等。

  三、独立练习,进一步内化新知。

  ⑴完成练一练1。

  确定用不同的符号表示方程和等式,确定寻找等式和方程的思路和方法;交流矫正。

  ⑵下面哪些是等式,哪些是方程?用线连一连。

  9—x=3 20+30=50

  80÷4=20 等式 x+17=38

  x—15 方程 36+ x<40

  7y=63 54÷x=9

  ⑶完成第2页试一试和看图列方程。

  先独立列方程,再在小组里交流列式的思考。

  ⑷完成练习一1~3。

  重点交流第2题。

比的意义教学设计11

  教学目标:

  (一)在学生初步认识分数和小数的基础上,进一步理解小数的意义。

  (二)使学生理解和掌握小数的计数单位及相邻两个单位间的进率。

  (三)培养学生的观察、分析、推理能力。

  教学重点和难点:

  在学生初步认识一位和两位小数的基础上,进一步把认数范围扩展到三位小数,使学生明确小数表示的是分母是10,100,1000,……的分数,并了解小数的计数单位及相邻单位间的进率,既是本课的重点,也是本课的难点.

  教学过程:

  一、小数的产生。

  1、谈话导入

  问:在三年级时我们初步认识了小数,你能说一个小数吗?

  (根据学生的回答,选一部分板书)

  问:你还知道小数的`哪些知识?

  2、那小数是怎样产生的呢?(出示课件)

  ①先出示课件,让学生观察,哪些能用整数表示?哪些得不到整数的结果?

  ②小结:在测量时、计算时及物体的单价,有的能用整数表示,有的得不到整数的结果。像这样得不到整数结果的例子在生活和学习中有很多,聪明的人们于是想到了用分数、小数来表示,于是小数便产生了。(板书:小数产生)

  二、小数的意义。

  1、认识一位小数

  师: 0.1米 还可以怎么表示?

  生1:用分数表示是1/10米

  生2: 1分米

  师:你是怎么想的?

  生:把 1米 平均分成10份,每一份是1分米,用分数表示是1/10米,用小数表示是 0.1米 。

  师: 0.3米 是几分米?用分数表示是多少米,用小数表示是多少米?(生略)

  师: 0.8米 是几分米?用分数表示是多少米,用小数表示是多少米?(生略)

  师:像0.1、0.3、0.8……这样的小数,小数点后面只有一位数,这样的小数叫一位小数。

  (板书:一位小数)

  2、认识两位小数

  师: 0.01米 还可以怎么表示?

  生1:用分数表示是1/100米

  生2: 1厘米

  师:你是怎么想的?

  生:把 1米 平均分成100份,每一份是 1厘米 ,用分数表示是1/100米,用小数表示是 0.01米 。

  师: 0.05米 是几厘米?用分数表示是多少米?(生略)

  师: 0.09米 是几厘米?用分数表示是多少米?(生略)

  师:像0.01、0.05、0.09……这样的小数,小数点后面有两位数,这样的小数叫(两位小数)。

  (板书:两位小数)

  3、认识三位小数

  师: 0.001米 还可以怎么表示?

  生1:用分数表示是1/100米

  生2: 1毫米

  师:你是怎么想的?

  生:把 1米 平均分成1000份,每一份是 1毫米 ,用分数表示是1/1000米,用分数表示是1/1000米。

  师: 0.007米 是几毫米?用分数表示是多少米?(生略)

  师: 0.012米 是几豪米?用分数表示是多少米?(生略)

  师:像0.001、0.007、0.012这样的小数,小数点后面有三位数,这样的小数叫(三位小数)。(板书:三位小数)

  师:分母是几的分数能写成四位小数?(1000)

  分母是几的分数能写成五位小数?(10000)

  师:依次类推(板书:......)

  4、概括小数的意义

  师:(结合板书)这些都是同学们刚刚写出的分数和小数,不同的分数可以写成相对应的小数,例如:1/10可以写成0.1;

  5/100可以写成0.05; 12/1000可以写成0.012。

  那么分数和小数之间的这种联系,谁能用自己的话来说一说呢?

  师:下面分小组说一说你们各自的想法。

  (汇报讨论结果。)

  组1:分母是10、100、1000的分数可以用小数来表示。

  组2:十分之几是一位小数,百分之几是两位小数,千分之几是三位小数……。

  组3:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……。

  组4:分母是10、100、1000的分数可以用小数来表示,比如说十分之几可以用一位小数来表示,百分之几可以用两位小数表示,千分之几可以用三位小数表示……。

  小结:我们一起来看板书,刚刚你们已经说到了分母是10的分数可以用一位小数来表示,分母是100的分数可以用两位小数来表示,分母是1000的分数可以用三位小数来表示,用一句话概括就是——分母是10、100、1000……的分数可以用小数表示。

  这就是。(板书:小数的意义)

  5、认识小数的计数单位。

  师:0.3里面有( )个0.1 0.8里面有( )个 0.1

  生1:0.3里面有( 3 )个0.1

  生2:0.8里面有( 8)个

  师:像0.3、0.8这样的一位小数都是由许多个 0.1 组成的,我们就说 0.1 是一位小数的计数单位,用分数表示是十分之一。

  师:那么你们猜一猜,两位小数的计数单位是什么?

  生: 0.01 是两位小数的计数单位,用分数表示是百分之一。

  师:那三位小数的计数单位是(? )

  生:0.001(千分之一)

  师:那四位小数的计数单位是( ?)

  生:0.0001(万分之一)

  师:依次类推(板书:......)

  6、认识进率

  (结合板书)一位小数的计数单位是0.1,两位小数的计数单位是0.01,三位小数的计数单位是0.001,那0.1里面0.1有( )个0.01

  0.1里面有( )个0.001 (课件出示)

  生:0.1里面有( 10)个0.01

  0.01里面有( 10 )个0.001

  师:为什么0.1里面有( 10)个0.01,0.01里面有( 10 )个0.001,同学们可以结合板书去思考?(四人一小组进行讨论)

  生:讨论

  生:汇报

  生1: 0.1米 =1分米 0.01米 = 1厘米 1分米= 10厘米

  所以0.1里面0.1有( 10 )个0.01 ......

  师:0.1里面有( 10)个0.01,0.01里面有( 10 )个0.001 ,依次类推(板书:......)

  用一句话可以怎么概括?

  师:(课件出示) 每相邻两个计数单位之间的进率是10

  师:(结合板书)0.1里面有( 10)个0.01,0.01里面有( 10 )个0.001 ,那0.1里面有( )个0.001 ?

  生:0.1里面有( )个0.001 ?

  师:你们是怎么想的?生:......

  四、巩固练习。

  师:从上课开始到现在,我就发现同学们的推理能力特别强,那剩下的时间我们就一起去闯智慧关,有没有信心,接受挑战?(有)

  师:请看大屏幕,第一关(课件出示)

  1、填一填(书51页做一做)

  2、哪两只手套是一副?用线连一连。(书55页第2题)

  第二关

  3、在( )里可以填几

  ( )个0.01是0.1 0.8里面有( )个0.1

  0.35里面有( )个0.1和( )个0.01组成的

  0.2里面有( )个0.1,有( )个0.01,有( ), 个0.02

  4、想一想

  1元4角2分=( )元 2.56元=( )元( )角( )分

  35厘米=( )米=( )分米 0.68米 =( )分米=( )厘米

  第三关

  5、在括号里填上适当的分数和小数

  五、课堂小结。

  这一节课我和小朋友合作得非常成功,我相信每一个同学都有很多的收获,谁先来说一说?

比的意义教学设计12

  设计说明

  复习课既不像新授课那样有“新鲜感”,又不像练习课那样有“成就感”。而是担负着查缺补漏、系统整理和巩固发展的任务。所以,要让每个学生都积极参与复习,在轻松、平等、和谐的氛围中学习,让学生在独立思考、合作交流、活泼愉悦的过程中“温故而知新”。

  1.以学生自主学习为主。

  这部分知识比较多、散,但难度不大,所以让学生先独自整理,再汇报交流。这样就让学生逐渐地形成了自己的知识体系,也能更好地理解和掌握所学知识,同时在梳理知识的过程中养成反思的意识和习惯,形成归纳总结能力。

  2.梳理知识与做习题相结合。

  汇报交流中,老师出示相应的习题加以检验,以便让学生相互学习,查缺补漏,夯实自己的知识基础,形成基本能力。

  课前准备

  教师准备PPT课件

  教学过程

  导入新课

  交代本节课的复习内容。

  师:同学们,这节课我们结合教材习题,复习与分数有关的知识。

  整理复习

  引导学生构建分数知识框架。

  1.回忆与分数有关的知识有哪些?独自整理,组内交流。(师巡视,有针对性地进行指导)

  2.全班汇报,补充交流。(师举例辅助并检验)

  梳理的知识如下:

  (1)分数的意义。

  ①观察下图,理解什么是分数,什么是分数单位。

  ②分数可以分为哪几类?

  分数

  (2)分数与除法的关系。

  ①根据下面的式子,说一说分数和除法之间有着怎样的联系和区别。

  =13÷42

  ②根据学生汇报整理分数与除法的关系。(课件出示)

  分数与除法的`关系

  联系

  区别

  分数

  分子

  分数线

  分母

  是一种数,也可看作两个数相除

  除法

  被除数

  除号

  除数

  是一种运算

  (3)复习分数的基本性质。

  联系分数与除法的关系以及商不变的规律来理解分数的基本性质。

  分数的分子和分母同时乘或除以一个相同的数(0除外),分数的大小不变。

  (4)结合复习约分。

  ①把一个分数的分子、分母同时除以它们的公因数,分数值不变,这个过程叫作约分。

  ②约分的步骤:找出分子和分母的最大公因数;利用分数的基本性质,分子、分母同时除以它们的最大公因数。

  ③约分的目的:把分数约成最简分数。

  (5)结合和、和复习通分。

  ①把分母不相同的分数化成和原来分数相等,并且分母相同的分数,这个过程叫作通分。

  ②通分的两个要点:和原来分数相等;分母相同。

  (6)结合○和○复习比较分数的大小。

  ①同分母分数相比较:分子越大,分数越大;

  ②同分子分数相比较:分母越小,分数越大;

  ③分子、分母都不相同的分数相比较的方法。

  方法一:先把两个分数化成分母相同的分数,再比较大小。

  方法二:先把两个分数化成分子相同的分数,再比较大小。

  补充知识点:通分一般以最小公倍数作分母。

  (7)先想一想分数加减法应该怎样计算,再计算下面各题。

比的意义教学设计13

  一,教学内容

  "义务教育课程标准实验教科书数学"五年级上册p53~54方程的意义

  二,教材分析

  方程的意义对学生来说是一节全新的概念课,让学生用一种全新的思维方式去思考问题,拓展了学生思维的空间,是数学思想方法认识上的一次飞跃.方程的意义是学生学了四年的算术知识,及初步接触了一点代数知识(如用字母表示数)的基础上进行学习的,同时也是学习"解方程"的基础,是渗透用方程表示数量关系式的一个突破口,是今后用方程解决实际问题的一块奠基石.

  三,教学目标

  根据新课标的要求,结合教材的特点和学生原有的相关认识基础及生活经验确定本节课的教学目标:

  1,使学生在具体的情境中理解方程的含义,体会等式与方程的关系,并会用方程表示简单情境中的等量关系.

  2,经历从生活情境到方程模型的构建过程,使学生在观察,描述,分类,抽象,交流,应用的过程中,感受方程的思想方法及价值,发展抽象思维能力和增强符号感.

  3, 让学生在学习中体验到数学源于生活,充分享受学习数学的乐趣,进一步感受数学与生活之间的密切联系.

  四,教学重点,难点

  教学重点:理解方程的含义,以及在具体的情境中建立方程的模型.

  教学难点:正确寻找等量关系列方程.

  五,教学设想

  概念教学本来就比较抽象,而且方程思想作为一种全新的思维方式又有别于学生一贯的算术思路,因此在教学时要重视学生在理解的基础上感知方程的意义,充分利用学生原有的认识基础,关注由具体实例到一般意义的抽象概括过程,尽量直观化,生活化,发挥具体实例对于抽象概括的支撑作用,同时又要及时引导学生超脱实例的具体性,实现必要的抽象概括过程.经历从具体-----抽象------应用的认知过程.

  六,教学准备:课件,天平,实物若干等

  七,教学过程:

  课前准备:利用学具(简易天平)感受天平平衡的原理.

  教学过程

  学生活动

  设计意图

  一,创设情景,建立表象

  1.认识天平.

  2.同学们通过课前的实际操作你发现要使天平平衡的条件是什么

  (天平两边所放物体质量相等)

  3.用式子表示所观察到的情景:

  情景一:导入等式

  (1)天平左边放一个300克和一个150克的橙子,天平的右边放一个450克的菠萝

  300+150=450

  (2)天平左边放四盒250克的牛奶,右边放一盒1000克的'牛奶

  250+250+250+250=1000

  或250×4=1000

  情景二:从不平衡到平衡引出不等式与含有未知数的等式

  (1)

  在杯子里面加入一些水,天平会有什么变化

  要使天平平衡,可以怎么做

  情景三:看图列等式

  (1)

  x+y=250

  (2)

  536+a=600

  直观认识天平

  回忆课前操作实况理解平衡原理

  观察情景图,先用语言描述天平所处的状态,再用式子表示

  先观察天平从不平衡到平衡这一组动态的操作,再用语言进行描述进而用数学符号进行概括从中感悟不等式与等式的区别,同时进一步加深对等式的理解

  观察课件显示的情景图,小组合作交流用等式表示所看到的天平所处的状态

  数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.学生通过课前"玩学具"已建立天平平衡的条件是左右两边所放物体的质量相等的印象,通过天平的平衡原理引入等式是为下一步认识方程作好必要的铺垫,同时通过天平的直观性又进一步让学生体会等式的含义.

  通过学生的观察以及对情景的描述并用等式表示,直观具体,生动形象,能充分调动学生的学习积极性和强烈的求知欲望同时又培养学生的语言表达能力及符号感(从具体情境中抽象出数量关系并用符号来表示,理解符号所代表的数量关系).

比的意义教学设计14

  教学内容:

  教科书第40页的例3,完成随后的练一练和练习九的第3—7题。

  教学目标:

  1、理解比例的意义。

  2、能根据比例的意义,正确判断两个比能否组成比例。

  3、在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。

  教学重点:

  理解比例的意义,能正确判断两个比能否组成比例。

  教学难点:

  在学生观察、操作、推理和交流的过程中,发展学生的探究能力和精神。

  教学准备:

  两张照片。

  预习作业:

  1、预习课本第40页例3,

  2、分别写出每张照片长和宽的比,并比较这两个比的关系,知道什么叫做比例。

  3、在课本上完成第40页练一练。

  教学过程:

  一、预习效果检测

  1、昨天学习了图形的放大和缩小?放大或缩小后的图形与原来的图形有什么关系?

  2、关于比你有哪些了解?(生答:比的意义、各部分名称、基本性质等。)

  还记得怎样求比值吗?希望这些知识能对你们今天学习的新知识有帮助。

  3、什么叫做比例?

  二、合作探究

  1、认识比例

  (1)呈现放大请后的两张长方形照片及相关的数据。要求学生分别写出每张照片长和宽的比。

  (2)比较写出的两个比,说说这两个比有什么关系?你是怎样发现的?(求比值,或把它们分别化成最简比)

  (3)是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:6.4:4=9.6:6。或6.4/4=9.6/6

  数学中规定,像这样的式子就叫做比例。(板书:比例)

  (4)你能说说什么叫比例吗?(让学生充分发表意见,在此基础上概括出比例的意义)

  (5)学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

  2、学以致用

  (1)学习比例的意义有什么用呢?(可以判断两个比是否可以组成比例。)

  (2)分别写出照片放大后和放大前的长的比和宽的.比,这两个比也能组成比例吗?

  学生独立完成,再说说是怎样想的?由此可以使学生对比例意义的丰富感知。

  (3)你能根据以上照片提供的数据,再写出两个比,并将它们组成比例吗?

  3、交流“练一练”的完成情况。

  三、当堂达标检测

  1、做练习九第3题。

  先写出符合要求的比,再说清楚相应的两个比是否能够组成比例的理由。

  2、做练习九第4题

  独立审题,说说解题步骤,在独立完成。同时找两个同学板演。

  3、做练习九第7题

  (1)弄懂什么是“相对应的两个量的比”。如240米是4分钟走的路程,所以240米与4分钟是相对应的两个量。

  (2)分组完成,同时四人板书,再讲评。

  完成后反馈、引导学生进行汇报交流,及时修正自己的答案。

  提出疑问,总结全课。

比的意义教学设计15

  【设计思想】

  教学活动中,从教师教与学生学向师生互教互学转变,彼此形成一个真正的学习共同体。创造性处理教材,对教材知识进行教学重组与整合,为学生提供了有一定思考性,挑战性的学习素材,充分有效地将教材知识激活,促使学生积极参与学习。关注学生独立思考,自主探究和合作交流。

  【教学内容】

  人教版小学六年级上册第43—44页内容。

  【教材及学生情况分析】

  “比的意义”是小学六年级第十一册教材中第四单元的起始课,是本册教材的教学重点之一。它在教材中起着承上启下的重要作用。通过对这部分内容的教学,不仅可以使学生对已有的两个数相比的知识得以升华,同时也能够对学生进一步学习比的性质、比的应用和比例的相关知识打下坚实的基础。“比的意义”这部分知识内容繁杂,学生缺乏原有感知、经验、不易理解和掌握。针对知识内容特点和学生的认知规律,在教学过程中,我采用组织学生围绕“比”的问题,自主、探究、合作交流、分析、概括、比较、总结的教学方法,突出了传统的教学模式,实现学生自主学习。在教学过程中,培养了学生的创新精神。

  【教学目标】

  1.使学生在具体的情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。

  2.使学生经历探索比与除法、分数关系的过程,初步理解比与分数、除法的关系,明白比的后项不能为0的道理,会把比改写成分数的形式。

  3.使学生在数学活动中,培养学生分析、综合、抽象、概括等能力,体会数学知识之间的联系,感受数学学习的乐趣。

  【教学重难点】

  理解比的意义,比与分数、除法的关系。

  【教学准备】

  多媒体课件

  【教学过程】

  一、创设情境,引入比。

  1.图片激趣。(展示“神七”图片)

  2.出示主题图。

  提问:你能不能用算式表示长和宽的关系?

  3.揭题:比较两个数量之间的关系还可以用一种新的方法——比。

  4.提问:有关比你还想了解什么?

  二、自主探索,认识比。

  (一)初步认识比的意义

  1.启发谈话:用“比”怎样表示长和宽这两个数量之间的关系呢?刚才有同学会说,谁来试着说一说。

  “15÷10表示长是宽的几倍”,我们还可以说成“长和宽的比是15比10”

  “10÷15表示宽是长的几分之几”还可以怎样说成“宽和长的比是10比15”

  2.认识不同量之间的比。

  (1)生读例题,师:谁能解决小精灵给我们带来的问题?速度怎么求?

  (2)指出:像路程和时间这两个有着相除关系的量,我们也可以用“比”来表示。

  交流得出:路程与时间的比是42252:90,

  3.总结概括比的意义。

  (1)观察一下这几组式子,总结相同的特点。

  (2)提问:你认为两个数的比表示的是两个数量之间怎样的一种关系?

  (3)小结:“两个数的比”归根结底表示的都是“两个数相除”。

  4.练习

  考考你们:

  (1)4÷5,又叫做();

  ()÷(),又叫做18比2。

  (2)有5个红球和10白球,

  白球和红球的个数比是()。

  红球和白球的个数比是()。

  5.看书自学,汇报交流:

  (1)比的写法。

  (2)比的各部分名称。

  (3)如何求比值。

  (4)比与除法、分数的关系。

  6.利用表格整理知识

  比

  前项

  :(比号)

  后项

  比值

  除法

  被除数

  ÷(除号)

  除数

  商

  分数

  分子

  —(分数线)

  分母

  分数值

  7.讨论:比的后项可以为0吗?为什么?

  8.出示足球赛比分。(解答足球赛中的1﹕0现象)

  三、多层练习,巩固新知

  (一)正确判断,明辨是非。

  1.杨利伟在地球上的体重是66千克,在地球上的体重只有11千克,他在地球上的月球上体重比是13:78。()

  2.杨利伟身高是168厘米,他儿子的身高是1米,杨利伟和儿子的身高的比是168:1。()

  3.“神舟五号”发射时10秒飞行79千米,那么“神舟五号”发射时所行的路程和时间的比是79:10。()

  (二)试一试。

  下图是配制溶液时洗洁液与水的比。(洗洁液与水的比是1:8)

  把溶液里的洗洁液看作1份,水可看作几份?溶液可看作几份?

  可以怎样表示洗洁液与水的体积之间的关系?还可以怎样表示洗洁液与溶液的体积之间的关系?

  四、拓展知识

  介绍黄金比的知识,让学生对所学的知识在生活中的应用有了更深的体会,并通过介绍黄金比的妙处,让学生有更强烈的学习欲望。

  五、请你欣赏,美丽之比

  (课件出示:五星红旗图、神庙图、神秘的古埃及金字塔、芭蕾舞演员。)

  六、回顾本课,自由小结。

  通过今天的学习你们有什么收获?在我们的生活中“比比皆是”,只要你做个有心人,你会发现在我们身边有很多有趣的比。

  教后反思:

  “比的意义”一课是人教版数学教材中六年级上册“分数除法”这一单元的内容,是学生初次接触比的知识的第一个内容。能否透彻理解比的意义,对以后有关比的知识的学习,起到了至关重要的作用。可以说这节内容在整个比的知识中占有举足轻重的地位。并且“比的意义”中包含的知识点比较多,如:比的意义、比的表示方法、比的各部分名称、比值的求法、比与除法和分数之间的联系和区别、比的后项不可为零。如何把这么多的知识,紧促而成功的串联是我课前备课中的一个主体思想。

  因为比的意义实际是两个数的相除关系,所以设计时我先引导学生从研究两个数的关系入手,通过典型例子的`独立解答和讲解,使学生明确两个数相除就是两个数的比,使学生把比的知识纳入已有的知识结构之中。然后,通过学生的观察、自学、思考、回忆、小组讨论等一系列活动,使学生进一步理解比的意义,掌握比各部分的名称以及比和除法、分数的关系,加强知识间的联系;并且使学生的多种感官参与教学活动,提高了学生主动参与学习的积极性。

  《数学课程标准》倡导自主探究、合作交流、实践创新的教学学习方式,强调从学生的生活经验和已有的知识背景出发,为学生提供充分的从事教学活动和交流的机会,促使他们在自主探究的过程中真正理解和掌握基本的数学知识技能、数学思想和方法,同时获得广泛的数学活动经验。本节课的教学中,我就是采取了合作探究与自主学习相结合的教学方式,重视了学生知识的形成与发展过程,注重了学生观察、类比、分析、概括和自学等能力的培养。整节课安排有序,环环紧扣,变化有致,既有高潮又有适时调整,课堂教学自然流畅,活而不乱,教与学的双边关系处理得非常好,充分体现了勇于创新的精神。具体体现在以下几个方面:

  一、师生关系的变革。

  教学活动中,从传统意义上的教师教与学生学向师生互教互学转变,彼此形成一个真正的学习共同体,老师的作用特别体现在:

  1.设计空间较大的问题,给学生发现的时间和空间。

  2.精心组织与呈现学习材料,创设富有挑战性的问题情境。学习材料的合理组织与呈现,能够富有挑战性的问题情境,激发学生强烈的探究欲望,能够引导学生有序思维,积极发现,从而提高课堂教学的效率。

  3.重视学习活动中的知识生成,凸现学生学习主人地位。

  二、教学内容的变革。

  本节课我能创造性地处理教材,对教材知识进行教学重组与整合,为学生提供了有一定思考性,挑战性的学习素材,充分有效地将教材知识激活,促使学生积极参与学习。

  改进教材是为了更好地融入学生熟悉、鲜活的生活内容,更有利于发挥学生自身的课程资源优势,从而更好地为学生的发展服务。

  三、学习方式的变革

  关注学生独立思考,自主探究和合作交流。具体表现在:

  1.指令性活动向自主探究转化。教师通过提供学习材料使学生始终处于观察、探究、交流等高层次的思维活动之中。

  2.问答式教学向学生独立思考基础上的合作学习转变。

  3.学习过程从封闭预设走向开放、生成。

  学生学习的数学应是生活中的数学,是学生“自己的数学”。数学来自于生活,又必须回归于生活。数学只有在生活中才能赋予活力与灵性。教学中的教与学联系生活,让学生感受到比在生活中无处不在。由于“比的意义”内容繁杂,在一开始,根据内容特点和学生的认知规律,紧密联系生活实际,让学生观察生活中的比,初步感知比,使学生对比感兴趣,非常乐意探究知识,巧妙地导入新课。在出示例题后,组织学生围绕“比”的问题去研究、探索、讨论、概括、总结,实现了自主学习,这样,尊重学生的主体地位,培养创新精神。

  比在数学中是一个重要的概念,体会比的意义和价值是教材内容的数学核心思想。但在实际中,学生记住“比”概念容易,但要真正理解比的意义往往比较困难。于是,我没有采取给出几个实例,就直接定义“比”的概念,而是以系列情境为学生理解比的意义提供了丰富的直观背景和具体案例。这样易于引发学生的讨论和思考,并在此基础上抽象出比的概念,使学生体会引入比的必要性以及比在生活中的广泛存在。这样既不显得单薄,也不显得零碎,利于学生探究和掌握知识。

  采取自主学习的形式,促进了学生能力的发展。知识、能力并重是现代人素质培养的要求,也是成功学习的内在规律。学生掌握知识仅仅是教学活动的一个方面,更重要的是要对学生进行情感、态度、价值和自学能力的培养。本节课中“比的读写”、“比的构成”、“比的各部分名称”“求比值”等都是比较浅显的知识。教学时我不断把学习的主动权交给学生,让他们自主学习,然后通过集体讨论反馈认识,这样的课堂是学生的课堂,真正体现了学生的主体地位。

【比的意义教学设计】相关文章:

《比的意义》教学设计03-19

比的意义教学设计04-07

小数的意义教学设计07-20

分数的意义教学设计11-23

分数的意义教学设计01-30

《分数的意义》教学设计02-13

比的意义教案教学设计08-25

方程的意义教学设计12-19

比的意义教学设计【荐】03-27