方程的意义教学反思(通用28篇)
作为一名人民老师,我们要有一流的课堂教学能力,教学反思能很好的记录下我们的课堂经验,教学反思我们应该怎么写呢?以下是小编为大家收集的方程的意义教学反思,仅供参考,希望能够帮助到大家。
方程的意义教学反思 篇1
《方程的意义》本课是人教版五年级上册第五单元的起始课,属于概念教学。对于概念的学习来说,如何理解定义是重要的,方程的意义不在于方程概念本身,而是方程更为丰富的内涵。就本节课反思如下:
1.埋新知伏笔
等式的认识是学习方程的一个前概念,因此,在认识方程之前,我先安排了一个关于“等号”意义话题的讨论。出示如:2+3=57+2=4+5,这两个题中“=”分别表示什么意思?2+3=5这个题中“=”表示计算结果,而7+2=4+5表示是一种关系,让学生对等号的认识实现一种转变,从而为建立方程埋下伏笔,也体现了思考问题着眼点的变化。但在实际教学中,由于我临时改变思路,根据课件天平左盘放着20千克和50千克的物体,右盘放着70千克的物体,学生列出算式20+50=70,我就问这个等号表示什么意思?由于这个算式有了天平具体的直观形象,学生一下子过渡到等号表示一种关系。我想让学生体会等号从表示一种过程过渡到表示一种关系,但课后我反思没有必要,以前学生已经知道等号表示一种过程,本节课主要让学生认识到等号还表示一种关系,为建立方程打下基础,所以,当学生已经在天平直观形象中认识到等号表示一种关系,就可以往下进行。所以,这个环节浪费了时间,同时我认识到课前每个环节都要慎思。
2.导概念实质。
新授环节是本节课的核心环节。我让学生以讲故事的形式生动讲解每幅图的意思,让学生经历认识方程的过程,力求让学生在愉悦的氛围里深刻的思考中,体验方程从现实生活中抽象出来。从而列出方程并认识方程。但我认为这还不够,还要对方程的内涵和外延要有更深层次的理解。于是我安排了以下4道习题:
第1题:下面这些式子是方程吗?
X×2-5=100y-2=35()+3=5苹果+50=300
通过这些习题的训练,让学生明白方程中的未知数可以是任何字母,可以是图形,也可以是物体或者画括号等。让学生体会到其实方程在一年级就已经悄悄地来到了我们的身边,和我们已经是老朋友了,只是在一年级我们没有给出它名字,()+3=5就是方程的雏形。
课后我反思这一环节应该增加一些不是方程的习题,如:2X-3>62X+9让学生在各种形式的式子中辨别方程会更好些。
第2题,出示天平图,左盘放着一个160克的苹果和一个重X的梨,右盘放着240克砝码,你能列出方程吗?很多学生列的方程是160+X=240,我就出示240-160=X这个式子是方程吗?让学生在思辨中明晰,它只有方程的形式而没有方程的实质,进一步明白方程的定义中“含有”未知数指的就是未知数要与已知数参加列式运算,从而进一步理解方程的意义。
第3题,出示了天平图,左盘放着250克砝码,右盘放着一个重a克和b克的物体,让学生列方程。通过此题的训练,学生知道了方程中的未知数可以不只是一个,可以是两个或者更多个。方程的内涵和外延逐渐浮出水面。
课后我反思,通过此题的训练,也应该让学生明白不同的数用不同的未知数表示。
第4题,一瓶800克果汁正好倒满5小杯和容量300克的一大杯,现在没有天平还有方程吗?
生1:800=300+5X
生2:800=300+y
师;为了不让别人产生误会,要写上一句话,写清X、y分别表示什么。
这样为以后学习列方程解决问题打下基础,会减少漏写设句的'几率。也让学生明白,没有天平要想列出方程,要在已知数与未知数之间建立起等量关系。
本节课我以等式入手建立方程的概念,以判断方程为依托,让学生进一步理解方程的意义,以解决问题为抓手,让学生产生矛盾冲突,深刻体会“含有”未知数的真正含义,从而理解方程的意义,在层层递进的练习中加深对方程意义的理解。整个教学过程为学生提供了丰富的感性材料,使学生在一种思辨的状态中体验到方程是表达等量关系的数学模型,又为学生的后续学习列方程解决实际问题做了很好的铺垫。
方程的意义教学反思 篇2
这一次学校开展了活动,在活动中我们集体备课选定了《方程的意义》一课作为研讨课。这课的难点是区分“等式”和“方程”,为能突破这一难点我们精心设计了这节课的教学过程。
新课前先是出示了口算卡:
接着在方程意义教学过程中为了使学生能明白什么是相等关系,我们先用了一把1米长粗细均匀的直尺横放在手指上,通过这一简单的小游戏使学生明白什么是平衡和不平衡,平衡的情况是当左右两边的重量相等时(食指位天直尺中央),紧接着引入了天平的演示,在天平的左右两边分边放置20+30的两只正方体、50的砝码,并根据平衡关系列出了一个等式,20+30=50;接着把其中一个30只转换了一个方向,但是30的标记是一个“?”天平仍是平衡状态。得出另一个等式20+?=50,标有?的再转换一个方向后上面标的是x,天平仍保持平衡状态,由此又可以写出一个等式20+x=50。整个过程注重引导学生通过演示、观察、思考、比较、概括等一系列活动,由浅入深,分层推进,逐步得出“等式”——“含有未知数的等式”——“方程”。
虽然整个教学任务好象是完成了。但从学生的练习中我们发现还有一部分学生对“等式”和“方程”的关系还是没有真正弄清,例好在练习题中有一道讨论题:“方程都是等式,而等式不一定是方程。”这句话对吗?(答案是对的) 但是通过小组同学的合作学习和争论,答案不一。虽然做错的同学最后被做对的同学说服了,但这也说明了“等式”和“方程”的教学过程中还存在问题。其实我们是忽视了“等式”和“方程”的直接对比
我们的口算题引入本来是为这节课的`学习进行铺垫,但在第一次上课时,口算题我们做完后没有再回过头来再充分利用。课后经过大家的评课和科培中心老帅的指点,看起来是很简单的几道口算题,其中隐藏着等式和方程的关系。第二节课中我们通过改进,在讲完“等式”和“方程”后又回到口算卡,将口算卡的题通过变化——只是等式| ,——既是等式又是方程,这样进行对比使学生对 “等式”和“方程”的关系就弄得明明白白了。
方程的意义教学反思 篇3
《方程的意义》是一节数学概念课,概念教学是一种理论教学,往往会显得枯燥无味,但同时它又是一种基础教学,是以后学习更深一层知识,解决更多实际问题的知识支撑,因此我们应该重视概念教学的开放性,自主性与概念形成的自然性。
一、生活引入,注重体验。
数学课程标准指出:数学教学,要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳、类比、猜测、交流、反思等活动,获得基本的.数学知识和技能,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心。
《方程的意义》这节课与学生的生活有密切联系,因此在课始,采用学生生活中常见的跷跷板游戏,让学生感受到类似于天平的“相等”和“不等”。这样在结合天平感受这种关系以及最终体会到方程中“相等”的关系时,学生就会感受水到渠成。
二、自主学习,辨析完善。
因为五年级学生已经进入了高年级,是有一定的学习能力的。所以,认识方程中,我选择了放手让学生进行自学。并给出了一定的自学提纲:
(1)是方程,我的例子还有。
(2)不是方程(可以举例)。
(3)我还知道。这里学生自学时是带着自己例子进行思辨性的自学,所以感觉学生理解的还是比较的透彻的,在交流哪些不是方程时,学生理解了等式、不等式、方程之间的关系:方程一定是等式,等式不一定是方程,不等式一定不是方程等等。
三、结合实际、理解关系。
根据数量之间的关系列出方程也是本节课的重点之一。同时,这点也是后续列方程解决实际问题的一个基础。所以在出示实际问题列出方程时,我总是追问:你是怎么想的?让学生感受到搞清数量之间的关系是正确列出方程的前提条件。
另外,在练习的设计上,增加一些思维的难度和挑战也是锻炼学生数学思维的一个常态化的工作。
当然这节课还存在一些问题,比如对等式的突出得不够,学生“说”的训练不够,应该给学生更多的表述的机会。
方程的意义教学反思 篇4
今天的第二节课,我执教了《方程的意义》一课,这是一块崭新的知识点,是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学,但理解起来有一定的难度的数学教学过程,首先应该是一个让学生获得丰富情感体验的过程。要让学生乐学、好学,让学生在教学过程中获得积极的情感体验,下面就结合我所执教的<<方程的意义>>这节课,谈谈我在教学中的做法和看法。
回顾我的教学,我认为有如下几个特点:
一、设置情景引导,促进学生的自主学习
在执教中通过天平的演示:认识天平,同学们说天平的作用、用法。让他们对天平建立起一个初步的认识。
二、合作交流,总结概括
通过对天平的观察得出等式的概念,接着应让学生自己独立思考。通过比较等式与方程,以及不等式与方程的不同,得出方程的概念,体现学生自主学习的能力,而不应该替学生很快的说出答案,在将出方程的概念后,应该让学生通过变式训练明白不仅X可以表示未知数,其他的字母都可表示未知数。在此教学过程中,教师应充当一个导游的角色,站在知识的岔路口,启发诱导学生发现知识,充分发挥学生的学习潜能,将有一定难度的问题放到小组中,采用合作交流的方式加以解决,逐步的引导学生对问题的'思考和解决向纵深发展,有利于培养学生的倾听习惯和合作意识。
三、回归生活,体会方程
在建立方程的意义以后,设计了根据情境图写出相应的方程,并在最后引入生活实例,从中找出不同的方程。这一过程学生在生活实际中寻找等量关系列方程,进一步体会方程的意义,加深了对方程概念的理解,同时也为以后运用方程知识解决实际问题打下基础。
从学生已有的知识储备来看,他们会用含有字母的式子表示数量,大多数学生知道等式并能举例,向学生提供表示天平左右两边平衡的问题情境,大部分学生运用算术方法列式。但是,学生已有的解决数学问题的算术法解题思路对列方程会造成一定的干扰。对于利用天平解决实际问题较感兴趣,但是,要求学生把看到的生活情境转化成用数学语言、用关系时表示时可能存在困难,对于从各种具体情境中寻找发现等量关系并用数学的语言表达则表现出需要老师引导和同伴互助,需要将独立思考与合作交流相结合。
课堂上让学生借助于天平平衡与不平衡的现象列出表示等与不等关系的式子,为进一步认识等式、不等式提供了观察的感性材料,然后引导学生对式子分类,建立等式概念,并举出新的生活实例进行强化。最后引导学生分析、判断,明确方程与等式的联系与区别,深化方程的概念。
本节课从课堂整体来看还可以,有大部分学生的思维还较清晰、会说;可还有部分学生不敢说,或者是不知如何表述,或者是表述的不准确,我想问题的关键是学生的课堂思维过程的训练有待加强,数学课堂也应该重视学生“说”的训练,在说的过程中激活学生的思维,让学生在新课程的指引下学会自主探索,学得主动,学得投入。
不足之处还有很多,比如:课件制作的不够精细,完美!所以应用起来不够方便!
方程的意义教学反思 篇5
《方程的意义》这一课的教学。难点是区分“等式”和“方程”,为突破这一难点我这样设计了这节课的教学过程。
新课前进行三分钟口算。上课开始进行简单的小游戏:把粗细均匀的直尺横放在手指上,使直尺平衡。通过这一简单的小游戏使学生明白什么是平衡和不平衡,以此使学生能明白在方程意义教学过程中什么是相等关系,天平中的平衡的情况是当左右两边的重量相等时(食指位天直尺中央),紧接着引入了天平的演示,在天平的左右两边分边放置20+30的两只正方体、50的砝码,并根据平衡关系列出了一个等式,20+30=50;接着把其中一个30只转换了一个方向,但是30的标记是一个“?”天平仍是平衡状态。得出另一个等式20+?=50,标有?的再转换一个方向后上面标的是x,天平仍保持平衡状态,由此又可以写出一个等式20+x=50。整个过程注重引导学生通过演示、观察、思考、比较、概括等一系列活动,由浅入深,分层推进,逐步得出“等式”——“含有未知数的等式”——“方程”。虽然整个教学任务是完成了。但从学生的练习中我们发现还有一部分学生对“等式”和“方程”的关系还是没有真正弄清。
教学反思:
本节课的设计充分关注了学生已有的知识经验,结合具体的问题情境,引导学生通过操作、实验、分析、比较,归纳出了方程的意义。教学中教师没有将等式、方程的概念强加给学生,而是充分尊重学生原有知识水平,结合具体情境,引导学生分析数量间的相等关系,再用含有未知数X的等式表示出等量关系,并用天平平衡原理来解释各数量之间的'相等关系,使学生理解等式及方程的意义,尊重了学生年龄特点和认知水平。
教学中为学生创设了多次问题情境,引导学生独立思考和小组合作研究。如用含有字母的式子表示出数量关系式,用含有x的等式表示数量变化情况等。
总之,本节课从学生认知规律和知识结构的实际出发,让他们通过有目的的交流、讨论,主动构建自己的认知结构,一方面调动了学生的学习热情,另一方面使学生借助集体思维,加深对方程意义的认识,激发了学生的探究欲望,培养了学生的学习兴趣。在今后的教学中:我们还要注意将“等式”和“方程”进行直接对比。以使学生理解和区分“等式”和“方程”。口算题引入铺垫后,要再回过头来充分利用。在讲完“等式”和“方程”后再回到口算题上,将口算题通过变化由等式到既是等式又是方程,这样进行对比使学生弄明白“等式”和“方程”的关系。
方程的意义教学反思 篇6
师出示天平,左盘放一茶壶,右盘放两茶杯,天平保持平衡。问:这说明什么?如果设一把茶壶重a克,1个茶杯重b克,则可以用一个等式来表示:即a=2b(板)。
师:想一想,怎样变换能使天平仍然保持平衡呢?待学生思考片刻,进而问:往两边各放一个茶杯,天平会发生什么变化?
教师演示加以验证,在已平衡的天平两边同时增加一个相同的杯子,天平保持平衡。这个过程可以表示为a+b=2b+b 。
师:如果两边各放上2个茶杯,天平还保持平衡?两边各放上同样的一个茶壶呢?
学生回答后,老师一一演示验证。
师:想一想,怎样变换能使天平保持平衡?天平两边增加同样的物品,天平保持平衡。如果天平两边减少同样的物品,天平会保持平衡吗?
生:平衡
在第三步的基础上同时减少一个茶壶,天平保持平衡,用式子表示就是2a-a=2b+a-a 。因此天平保持平衡的规律概括起来可以怎么说?天平两边增加或减少同样的物品,天平会保持平衡。(课件)
应用,进一步验证。展示数学书p55页第2幅图的场景,1个花盆和几个花瓶同样重呢?该怎么办?两边同时减少一个花瓶,天平保持平衡。
师: 通过刚才的实验,我们发现了什么,谁来总结一下
生:(1)天平两边同时增加或减少同样的物品,天平保持平衡;
(2)天平两边的质量同时扩大或缩小相同的倍数,天平保持平衡。
师: 我们可以发现,天平保持平衡时可以用一个等式来表示,当天平两边发生变化时,等式的两边也在发生变化,天平保持平衡,等式也保持不变。从天平保持平衡的规律,我们可以发现等式保持不变的规律吗?想一想,四人小组讨论。
生: (1)等式两边都加上或减去相同的`数,等式保持不变;
(2)等式两边都乘或除以相同的数(0除外),等式不变。
反思:本节课从看得见、摸得着的天平到抽象的方程,是学生认识上的一大飞越,要让学生达到由具体到抽象的真正理解,就要在教学过程中把传授知识变为渗透思想,教给学生学习知识的方法。本节课巧妙地把天平与方程中“相等”联系起来,让学生在不断调整天平平衡的过程中,对方程的意义有了较好的理解。数学学习需要学生有一个主动探索的心态,有一个敢干质疑的精神。在本环节中为学生创设了一个相互交流、相互学习、相互帮助解决的和谐的课堂学习环境,同时又让学生在相互交流中深化了新知,在交流中提高了准确表达能力,这样不仅使课堂有了活气,学生放得开,学得活,而且从思想上给了学生一个思维的台阶,使得教学难点得以分解。
方程的意义教学反思 篇7
《方程的意义》是一节数学概念课,概念教学是一种理论教学,理论性、学术性较强,往往会显得枯燥无味,但同时它又是一种基础教学,是以后学习更深一层知识,解决更多实际问题的知识支撑,因此这节课我重视了概念教学的开放性,自主性与概念形成的自然性。这节课是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学,但理解起来有一定的难度。数学教学过程,首先应该是一个让学生获得丰富情感体验的过程,要让学生乐学、好学,让学生在教学过程中获得积极的情感体验。下面就结合这节课,谈谈我在教学中的做法和看法:
一、猜数字游戏导入,激趣揭题
课开始前,先来做一个抽扑克牌猜数字的游戏,老师通过了解学生利用扑克牌上的数字“先乘2,再加上3,用所得的和乘5,最后减去25”得出的结果是50,很快猜出学生抽到的扑克牌是6。此时学生表现的很惊奇,此时,老师问“想知道老师为什么能猜得这么准这么快吗?是数学王国的“方程”帮了老师的忙。你想知道什么是方程吗?咱们就先从它(出示天平)学起。”游戏的方式激起学生对方程的好奇心,激发学习本课的兴趣。本课最后一环节的“游戏揭密”不仅沟通了数学活动之间的联系,更使学生初步体会到方程作为一种数学模型在解决实际问题中的价值。
二、合作交流,总结概括
通过天平的演示:认识天平,同学们说天平的作用、用法。在这个环节要充分发挥低视的动手能力,注意了对学困生的引导,在这个方面给学困生了更多的机会去接触天平,起码让他们对天平建立起一个初步的认识。通过对天平的观察得出许多式子。让学生合作交流观察式子进行分类,得出等式的概念,通过比较等式与方程,以及不等式与方程的不同,得出方程的概念,体现学生自主学习的能力。从实际情景中列出等式和不等式,让学生用数学的符号把要说的话(两件事情等价)表达出来,使学生经历用数学的简洁方式表达生活现象的过程,不仅使学生初步感知了方程的表现形式,更渗透了建模思想。在此教学过程中,教师启发诱导学生发现知识,充分发挥学生的学习潜能,将有一定难度的问题放到小组中,采用合作交流的方式加以解决,逐步的引导学生对问题的思考和解决向纵深发展,有利于培养学生的倾听习惯和合作意识。
三、回归生活,体会方程
让抽象的方程定义融入一种生动的思辨情境中,使学生在对“被墨迹掩盖了的式子是不是方程”的合理解释中,形成对方程外部特征的深刻印象。不仅为检验学生对方程概念的理解,更为学生提供了一个开放的思考空间。学生不仅展示了学习的结果,感知了方程的多样性。同时在对自己所列方程的一一判断中,加深了对方程意义本质的理解。在建立方程的意义以后,设计了根据情境图写出相应的方程,并在最后引入生活实例,从中找出不同的方程。这一过程学生在生活实际中寻找等量关系列方程,进一步体会方程的意义,加深了对方程概念的理解,同时也为以后运用方程知识解决实际问题打下基础。
四、在“看”“说”和“写”中体会方程
当方程的意义建立后,我让学生观察一组式子判断它们是不是方程,通过判断说明这些式子为什么是“方程”,为什么“不是方程”,体会方程与等式的关系,加深对方程意义的理解。再让学生自己写出一些方程,展示自己写的方法。
五、实际运用,升华提高
设计了闯关比赛摘智慧星的练习形式,展开练习。在练习设计中由易到难,由浅入深,使学生的思维不断发展,使学生对于方程意义的.理解更为深刻,特别使让学生自由创作方程这一练习题,既让学生应用了知识又培养了学生的创新思维。
本课时教学设计,改变了传统学习方式,利用课本的静态资源通过现代化教学手段,把数学情景动态化,大大激发了学生的学习兴趣,充分体现了以学生为主,让学生独立思考,不断归纳,把学生从被动地接受知识转为自己探究,为学生提供了自主探究,合作交流的空间。在学习中体会到了学习数学的乐趣,在获取知识的同时,情感态度,能力等方面都得到发展。
当然这节课还存在一些问题:
1、对等式与方程的关系突出得不够。对方程的定义中“含有未知数和等式”这两个必要的条件强调不到位,导致学生在选择题时有个别学生把y+24选择为方程。
2、对学生“说”的训练不够,应该给学生更多的表述的机会。
3、自己的课堂语言还不够准确、不够丰富,有待于提高。
经常有人说“课堂教学是一门遗憾的艺术”,只有不断的总结,不断的反思,才有不断的进步,也才能将遗憾降到最低点。
方程的意义教学反思 篇8
本节课的重点是理解方程的意义,能正确地判断一个式子是否是方程。我从学生已有的知识出发,结合学生的认知规律,寻找新旧知识点衔接点。决定打破教材的教学程序。分以下四个层次展示探究过程:
(一)我先出示一架天平,让学生观察,天平处于平衡状态,然后,在天平的左边加两个砝码(例:10克、20克),右边加一个30克的砝码,让学生再次观察天平仍然处于平衡状态。让学生初步感知天平左边的质量10+20是30(克),和天平右边的'30克是相等的。然后在平衡的天平左边仍然放两个砝码(例:20克、?克),右边放一个砝码(60克),这时天平仍然处于平衡状态,学生再次感知天平左右两边所放砝码的质量是相等的。不同的是,由具体的数量过渡到了未知数量的参与,这在孩子认知思维上又加深了一步。
(二)着重启发学生根据信息表达题目中数量间的相等关系,为正确列出方程打下坚实的基础。逐个出示课本信息窗的主题图,首先让学生仔细阅读信息,引导学生用文字表述题目中的相等关系,再鼓励学生任意用一个未知数表示题中的问题,并列出含有未知数的式子。在这个环节,速度一定放慢,鼓励每个学生都要参与。
(三)师点拨,像这样左右两边表示的意义一样,我们可以用等号连接,像这样的式子,我们给它起个名字叫——等式,而后让学生举出几个等式的例子。(注意:学生举例时,要鼓励学生呈现不同的形式。纯数字的等式和含有字母的等式)引导让学生对以上等式进行分类,学生很容易把等式分成了两类,一类是纯数字的等式,另一类是含有字母的等式。通过读课本学生明白了:含有字母的等式就叫方程,为了加深学生对方程的理解,让每人举出3个方程,同桌判断对否。这样由直观到抽象,做符合学生的认知规律,学生学得轻松,积极性很高、效果也很理想。
特别是在探讨“等式”和“方程”的区别与联系时,学生的思维被激活,课堂活动的气氛达到了高潮。那就是学生举得例子很形象,恰如其分,超出了我的意料。他们把“等式”比做一个鸡蛋(蛋清和蛋黄),“方程”就是鸡蛋中的蛋黄。他们解释说:“蛋黄一定是鸡蛋,也就是方程一定是等式,鸡蛋不全是蛋黄也就是说等式不一定是方程”。孩子们的潜力真是不可低估、他们语出惊人,令我震惊,我及时就给他们高度的评价,孩子们创新之花是多么的美丽、灿烂。我要保存这火花的余温,让它再次绽放在我的课堂上。
方程的意义教学反思 篇9
《方程的意义》是一节数学概念课,是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学,但理解起来有一定的难度。下面就结合我所执教的《方程的意义》这节课,谈谈在教学中的做法和看法。
回顾教学过程,我认为有如下几个特点。
一、复习导入,激趣揭题
该环节主要复习与新知识有间接联系的旧知识,为学习新知识铺垫搭桥,以旧引新,方程是表达实际问题数量关系的一种数学模型,是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学的,因此开课伊始我结合与学生有关的一些生活现象出示了一组题,要求学生用含有字母的式子表示出来。这些题的出现即能让学生复习巩固以前所学的知识也能让学生体会到我们生活中有很多现象都能用式子表示出来,激起学生的学习兴趣,引出这节课的学习内容,这样的开课很实际,很干脆,也很有用。
二、实践操作,建立方程模型
本节课的探究交流主要体现在“含有未知数的等式,称为方程”的这一概念获取过程中,在这个过程中我首先是让学生通过观察天平“平衡现象→不平衡到平衡→不确定现象”三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的特征,抽象出方程的概念,即由“式子→等式→方程”的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用。通过这一系列的观察、思考、分类、归纳突破本课的重难点。
三、回归生活,体会方程
在建立方程的意义以后,设计了根据情境图写出相应的方程,并在最后引入生活实例,从中找出不同的方程。这一过程学生在生活实际中寻找等量关系列方程,进一步体会方程的意义,加深了对方程概念的理解,同时也为以后运用方程知识解决实际问题打下基础。
四、教学中的不足
1、从学生已有的知识储备来看,他们会用含有字母的`式子表示数量,大多数学生知道等式并能举例,向学生提供表示天平左右两边平衡的问题情境,大部分学生运用算术方法列式。但是,学生利用算术方法的解题思路,对列方程造成了一定的干扰。
2、对于利用天平解决实际问题虽然较感兴趣,但是,要求学生把看到的生活情境转化成用数学语言,用含有未知数的数量关系表示时,存在困难。
3、我应留给学生足够的时间去思考,而不应该替学生很快的说出答案。
五、改进措施
在以后的课堂中,我想首先是在课下的备课环节,重点的知识应重点去备,一定要详实,具体,充分考虑各种可能出现的情况,作到讲出一种,备出十种。备学生有时比备教材更为重要,稍微与学生脱节的备课都会在课堂教学中产生不小的影响。课上表述任务要求一定要具体,每一个形容,都会有不同的理解,学生也会完成到不同的层次上,要清晰,易理解,使学生能够按照要求操作、完成。
方程的意义教学反思 篇10
教材比旧教材对方程教学的要求提高了。《方程的意义》是本单元教学的第一课时,这堂课的概念多,“含有未知数的等式,叫做方程”“使等式左右两边相等的未知数的值,叫做方程的解”“求未知数的值的过程,叫做解方程”,而且学生容易混淆。在教学设计时,把“方程的意义”作为教学的重点,而对“方程的解和解方程”概念的教学想通过学生的自学和新旧知识(求未知数x)的联系,让学生自己去理解。所以在设计教学方案时,重点考虑的是方程意义的教学。方程意义的教学目标定位是,不仅仅是让学生了解方程的概念,能指出哪些是方程;更多思考的是学生对方程后继的学习和发展,注重知识的渗透,如:近期的“用字母表示数”“用方程解应用题”、远期的解较复杂方程或方程组时用到的“等式的性质”以及“不等式”“集合”知识等。
在课堂教学中,方程意义的教学初步达到了预期的教学目标。在讨论等式和方程的关系时,学生能清楚的表达,指出哪些是方程哪些不是方程能说明自己的理由。在知识渗透方面:当教师在天平放上未知重量的物体时,学生能自觉用字母表示求知数x+50=200;在左边放入一个一元硬币和一个五角硬币,右边放一个5克砝码,天平平衡时,学生通过争论用不同的字母表示不同的求和数x+y=5,学生自己说明了理由;在讨论等式和方程的关系时,学生也能自己理解集合图的含义。由此可见,学生的潜力是很大的,关键是看教师是否把握了合适的教学时机。这堂课上完,还有一个体会就是教学时间不够,知识巩固的时间太少。
方程意义的`教学的练习足足用了27分钟。“方程的解和解方程”的教学因为练习时间不足,而不到位。课后我一直想“这27分钟花得是否值得?怎样处理知识目标和发展目标的关系?”。还有方程意义教学时天平的演示,一直是我在演示,学生在看,学生的自主性不够,这是我教学设计时就有的困惑,但如果让分小组学生自己操作,教学时间会更加不够。该怎样解决这个矛盾?我又设想,对教材作些处理。把“方程的解和解方程”的教学放到下一课时,剩下的时间,利用学生头脑中刚刚建立的天平这一数学模型,加强学生列方程的练习。这样处理是否会更好。
方程的意义教学反思 篇11
本节课的探究交流主要体现在“含有未知数的等式,称为方程”的这一概念获取过程中,在这个过程中我首先是让学生通过观察天平“平衡现象→不平衡到平衡→不确定现象”三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的特征,抽象出方程的概念,即由“式子→等式→方程”的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用,《方程的意义》教学反思。通过这一系列的观察、思考、分类、归纳突破本课的重难点。在这几个环节中有这样几个特点:
1、用天平创设情境直观形象,有助学生理解式子的意思
等式是一个数学概念。如果离开现实背景出现都是已知数组成的等式,虽然可以通过计算体会相等,但枯躁乏味,学生不会感兴趣。如果离开现实情境出现含有未知数的等式,学生很难体会等式的具体含义。天平是计量物体质量的工具,但它也可以通过平衡或者不平衡判断出两个物体的质量是否相等,天平图创设情境,利用鲜明的直观形象写出表示相等的.式子和表示不相等的式子,可以帮助学生理解式子的意思,也充分利用了教材的主题图。
2、对方程的认识从表面趋向本质
(1)在分类比较中认识方程的主要特征。在教学过程中,学生通过观察和操作得到了很多不同的式子,然后让学生把写出的式子进行分类。先让学生独立思考,再在组内交流,讨论思考发现式子的不同,分类概括。有人可能先分成等式和不是等式两类,再把等式分成不含未知数和含有未知数两种情况;有人可能先分成不含未知数和含有未知数两类,再把含有未知数的式子分成等式和不是等式两种情况。尽管分的过程不完全一致,但最后都分出了含有未知数的等式,经过探索和交流,认识方程的特征,归纳出方程的意义。
(2)要体会方程是一种数学模型。“含有未知数的等式”描述了方程的外部特征,并不是本质特征。方程用等式表示数量关系,它由已知数和未知数共同组成,表达的相等关系是现象、事件中最主要的数量关系。要让学生体会方程的本质特征。在教学过程中,通过观察天平的相等关系(如左盘中是100克的杯子和x克水右盘中是250克砝码,天平平衡,解释方程的具体含义),感受方程与日常生活的联系,体会方程用数学符号抽象地表达了等量关系,对方程的认识从表面趋向本质。
3、在“看”“说”和“写”中体会式子
当方程的意义建立后,我让学生观察一组式子判断它们是不是方程,通过判断说明这些式子为什么是“方程”,为什么“不是方程”,体会方程与等式的关系,加深对方程意义的理解。再让学生自己写出一些方程,展示自己写的方法。
方程的意义教学反思 篇12
《方程的意义》这是一块崭新的知识点,对于五年级的学生来说,理解起来也有一定的难度。这是一节数学概念课,概念教学是一种理论教学,理论性、学术性较强,往往会显得枯燥无味,但同时它又是一种基础教学,是以后学习更深一层知识,解决更多实际问题的知识支撑。因此,在教学中我通过创设贴近学生生活的`情境来激发学生的学习兴趣,从而使他们愿学、乐学,为以后进一步学习方程打下基础。
在教学设计时,我把“方程的意义”作为教学的重点,方程意义的教学目标定位是,不仅仅是让学生了解方程的概念,能指出哪些是方程;更多思考的是学生对方程后继的学习和发展,注重知识的渗透。课堂上让学生借助于天平平衡与不平衡的现象列出表示等与不等关系的式子,为进一步认识等式、不等式提供了观察的感性材料,然后引导学生对式子分类,建立等式概念,并举出新的生活实例进行强化.最后引导学生分析、判断,明确方程与等式的联系与区别,深化方程的概念.
本节课从课堂整体来看还可以,有大部分学生的思维还较清晰、会说;可还有部分学生不敢说,或者是不知如何表述,或者是表述的不准确,我想问题的关键是学生的课堂思维过程的训练有待加强,数学课堂也应该重视学生“说”的训练,在说的过程中激活学生的思维,让学生在新课程的指引下学会自主探索,学得主动,学得投入。
方程的意义教学反思 篇13
方程的意义这部分内容是学生初步接触了一点代数知识之后进行教学的,重点是“方程的意义”。设计的意图是想通过观察天平“平衡现象→不平衡到平衡→不确定现象”三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的特征,抽象出方程的概念,即由“式子→等式→方程”的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用。因此本课设计了活动探索、自主分类、抽象概括、灵活运用4个环节,让学生通过观察、分析、抽象、概括,建立起方程的概念,明确方程与等式的关系。
根据儿童思维发展的递进性,设计了三个层次的活动,一是通过学生观察,抽象出相应的数学式子,建立起“平衡—相等、不平衡—不相等”的.概念;二是通过自主探索,合作交流的学习方式,使不同能力的学生都得到有效发展;三是引导学生对“等式”观察,将等式分为“含有未知数”和“不含未知数”两类,然后抽象出方程的概念。最后通过判断与独立创作方程两个学生活动,进一步理解了方程的意义,明确方程与等式的关系。教学实施中的不足之处:教师在教学中用语不够准确精练,对学生的数学语言表达能力指导欠缺,对学生的发言教师倾听程度不够,未能很好把握课堂教学中生成的课堂教学资源。
方程的意义教学反思 篇14
《方程的意义》这是一块崭新的知识点,对于五年级的学生来说,理解起来也有一定的难度。这是一节数学概念课,概念教学是一种理论教学,理论性、学术性较强,往往会显得枯燥无味,但同时它又是一种基础教学,是以后学习更深一层知识,解决更多实际问题的知识支撑。因此,在教学中我通过创设贴近学生生活的情境来激发学生的学习兴趣,从而使他们愿学、乐学,为以后进一步学习方程打下基础。
在教学设计时,我把“方程的意义”作为教学的重点,方程意义的教学目标定位是,不仅仅是让学生了解方程的概念,能指出哪些是方程;更多思考的是学生对方程后继的学习和发展,注重知识的渗透.课堂上让学生借助于天平平衡与不平衡的现象列出表示等与不等关系的.式子,为进一步认识等式、不等式提供了观察的感性材料,然后引导学生对式子分类,建立等式概念,并举出新的生活实例进行强化.最后引导学生分析、判断,明确方程与等式的联系与区别,深化方程的概念.
本节课从课堂整体来看还可以,有大部分学生的思维还较清晰、会说;可还有部分学生不敢说,或者是不知如何表述,或者是表述的不准确,我想问题的关键是学生的课堂思维过程的训练有待加强,数学课堂也应该重视学生“说”的训练,在说的过程中激活学生的思维,让学生在新课程的指引下学会自主探索,学得主动,学得投入。
方程的意义教学反思 篇15
《方程的意义》这一课的教学。难点是区分“等式”和“方程”,建立方程的数模模型在脑中。
事先我曾经试教用天平来为学生建立等式模型,效果比较好,后进生也能理解方程的意义,但是会出现使用方程的过程中,经常会产生误差,学生就经常误解方程是不相等的。
为了解决这一误解我就尝试着用跷跷板做游戏来让他们感受同等的等量关系,用文字来陈述第三种情境,让他们感受到大于、小于、等于关系。学生的兴趣此时如我所料确实比较高,可是我忽视了后进生,用这三种情境太过于抽象,让基础薄弱的学生不一定能立马反应过来。经过万主任的点拨,我好好的思考后我觉得应该给他们把天平和跷跷板同时呈现,用形象的图片呈现三种情境,他们的数模才会更容易建立。
第二环节的巩固新知识时候,我让学生小组讨论被墨汁挡住的式子是否是方程时候,我回头想想我有点操之过急,我应该让他们先从基础的辨析后再来做这题,然后渗透集合思想让他们区分方程,这样这题的回答可能会更加的'出彩。
第三个知识深入时候,看图列式我也应该更加明确告知学生式子的要求。也就是因为前面的起点太高,所以一些后进生把题意理解错误,使答题不够准确。
总之,本节课从学生认知规律和知识结构的实际出发,让他们通过有目的的交流、讨论,主动构建自己的认知结构,调动了学生的学习热情,加深对方程意义的认识,激发了学生的探究欲望,培养了学生的学习兴趣。在今后的教学中:我应该注意后进生,尽量多多从基础出发,注意帮助学生建立数学模型,更要把数学思想时刻灌输的课堂中。
方程的意义教学反思 篇16
本节课从两个学生比较熟悉的实际问题入手,通过对所列方程的观察,并与一元一次方程类比,自然导出一元二次方程的意义及其相关的一些概念,既渗透了类比的数学思想,又加强了新旧知识间的联系,有助于学生对新知识的理解与接受,降低了知识点的难度,减轻了学生的学习负担。
计过程中,不过于强调形式化的定义,也不要求学生死记硬背,只要能辨认一些概念即可,最后出示的一个实际问题,目的让学生进一步体会一元二次方程学习的重要性及实际价值,同时也为下一节一元二次方程的解法及应用的学习设置悬念、埋下伏笔,激发学生的求知欲望,培养学生自主探究的习惯与能力。
本节课教学,注重知识与实际的联系,让学生认识到学习数学的重要性,注重学生的个性发展,采取自主探究与合作交流的学习方法,让学生经历思考、讨论、合作、交流的过程,使学生始终处于学习的'主体地位,培养学生与人交流、与人合作的能力。从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得数学理解的同时,在思维能力、情感、态度与价值观等多方面得到发展。
分层作业中必做题巩固本节课的基本要求,体现了“人人都能获得必要的数学”;选做题密切联系生活,体现“人人学有价值的数学;不同的人在数学上得到不同的发展”,创设了具有实践性、开放性的问题情境,启发学生思考现实生活中可能蕴涵某些数学知识的现象,初步学会“用数学”的意识。通过训练,在日常生活中,学生就会用数学的眼光观察、探究现实世界,发现问题,通过自己的思考解决问题。
方程的意义教学反思 篇17
作为开学第一课,课本就将方程这样一种重要的数学思想方法凸显出来,可见方程的地位之大,的确,方程对丰富学生解决问题的策略,提高解决问题的能力,发展数学素养有着非常重要的意义。方程是一种特殊的等式,而等式的原型便是天平,可惜没找到实物,但不妨碍学生通过已有经验来自我构建。
首先出示5个式子,让学生根据自己的标准分成两类:等式与不等式,用“=”连接的便是等式,用其他如“﹥﹤≠≈”等不等号连接的式子是不等式。然后指出不等式需要到初中学习,今天我们研究等式。观察这几个等式,可以分为几类?指出,已经知道的数叫已知数,不知道的叫未知数,等式里有未知数,便是方程,方程包括在等式里,是一种特殊的等式。这样,算是新课内容结束了。接着根据关系式列方程。
从认知规律来看,本节课的设计完全符合标准,正本反馈,还是有些问题的。
一、学生生活经验不足,导致找不准数量关系。
妈妈买一台电话机,单价116元,付出x元,找回84元。学生的答案让你意象不到,什么形式都有,他们会将这三个数通过一定的符号随意地组合起来,让我哭笑不得。在此之前有一个文具盒与笔记本共20元的问题,还引导学生编成了应用题加以理解,不想还是有问题。所以学校应该斥资建立一个超市,让学生在真实的`生活情境中找到发展的可能,有些数学问题真的只是生活,根本就不是数学。
二、加强备课力度,任何小的问题都不能存在。
还是上面一道题,根据以往列算式的经验,很多学生列成116+84=x,这是可以理解的,正因为我只是在课堂上强调:根据经验,未知数不单独放一边,这样跟算式的区别不大,但效果不很好。我想,将三种式子都板书出来,116+84=x,x-116=84,x-84=116,然后指出我们列方程习惯上不采用第一种,因为将x去掉,不影响答案,而选择二、三两种中的一种,
方程的意义教学反思 篇18
这一次学校开展了开课活动,在活动中我备课选定了《方程的意义》一课作为研讨课。这课的难点是区分“等式”和“方程”,为能突破这一难点我设计了这节课的教学过程。
本节课教学《方程的意义》,为准备这节课,我研读了这节课的内容,并与旧教材的进行了对比,思考着新教材为什么这样设计?
旧教材先利用天平认识等式,然后认识方程。而新教材通过情境,先让学生提出问题,学生在解决问题的过程中,学到用含有字母的式子表示数量之间的关系,在此基础上,利用天平理解等式的意义,最后揭示方程的意义。
在设计这节课时,我把方程的意义作为教学重点,不仅让学生了解方程的概念,还要会判断哪些是方程。更多思考的是学生对方程的后继学习与思考,注重知识的渗透。如后面学习的等式的性质、用方程解应用题等等。
课堂上我让学生根据创设的情境,提出数学问题,学生几乎提不出表示两者之间关系的问题,都是些求未知数的问题。这时教师就直接出示要求的问题,然后让学生先找等量关系式,我发现只有极少数孩子能找到等量关系。由于找等量关系式教材中第一次出现,学生不知道从哪入手。学生思考讨论了一段时间,我发现也没有结果,我就引导着学生进行分析信息,找到了等量关系。找到了等量关系式,再列含有字母的式子就简单多了。课下我分析,主要是我在备课时,高估了学生,如何引导还需要多研究。这也是我下一步训练的重点。
为了让学生弄清楚方程与等式的关系,我通过天平的演示,让学生理解等式的意义,学生很容易根据天平列出算式。然后教师指出,我们刚才列出的这些式子都叫等式,在这些等式中,你们又发现了什么?学生很容易得出两种等式:一是不含未知数的等式,一种是含有未知数的等式,在此基础上,让学生比较得出方程的概念,然后通过练习判断哪是方程,那些不是方程?最后,让学生用画图的形式表示出等式与方程的关系,教材中没有出现这个内容,但我补充进去了,我觉得这样有助于学生加深对方程意义的理解。本节课从课堂整体来看,大部分学生思维比较清晰,会表述,但也有部分学生表述不清,发言不够积极。看来,课堂教学还要激活学生的思维,调动起学生的积极性,作为教师,还要多想些办法。
“自主合作探究”一直是我们所倡导的学习方式,但如何有效地实施?我认为,“自主学习”必须在教师的科学指导下,通过创造性的学习,才能实现自主发展。“合作探究”必须在学生独立思考的基础上进行,否则,学生则没有自己的主见,交流则会流于形式,没有深度。有了学生的独立思考,当学生展示交流时,不同的思路与方法就会发生碰撞,教师要尊重学生探求的结果,引导学生对自己的结果与方法进行反思与改进,促使全体参与,加生对知识形成过程的理解,培养梳理概括知识的的能力。
在整个教学过程中,教师作为主导者,要启发诱导学生发现知识,充分发挥学生的潜能,逐步的引导学生对问题的思考和解决向纵深发展,有利于培养学生的倾听习惯和合作。先引入了天平的演示,然后在天平的左右两边分边放置20g和30g的两只正方体、50g的砝码,并根据平衡关系列出了一个等式,20 +30=50;接着把其中一个30g只转换了一个方向,但是30g的标记是一个“?”天平仍是平衡状态。得出另一个等式20 +?=50,标有?的再转换一个方向后上面标的是x,天平仍保持平衡状态,由此又可以写出一个等式20 +x=50。整个过程注重引导学生通过演示、观察、思考、比较、概括等一系列活动,由浅入深,分层推进,逐步得出“等式”――“含有未知数的等式”――“方程”。
本节课的设计充分关注了学生已有的知识经验,结合具体的问题情境,引导学生通过操作、实验、分析、比较,归纳出了方程的.意义。教学中我没有将等式、方程的概念强加给学生,而是充分尊重学生原有知识水平,结合具体情境,引导学生分析数量间的相等关系,再用含有未知数X的等式表示出等量关系,并用天平平衡原理来解释各数量之间的相等关系,使学生理解等式及方程的意义,尊重了学生年龄特点和认知水平。
教学中为学生创设了多次问题情境,引导学生独立思考和小组合作研究。
虽然整个教学任务好象是完成了。但从学生的练习中我们发现还有一部分学生对“等式”和“方程”的关系还是没有真正弄清,例好在练习题中有一道讨论题:“方程都是等式,而等式不一定是方程。”这句话对吗?(答案是对的)但是通过同桌小组同学的合作学习和争论,答案不一。虽然做错的同学最后被做对的同学说服了,但这也说明了“等式”和“方程”的教学过程中还存在问题。学生对其还存在模糊概念。进一步研究。
创建形象、生动、与生活密切联系的数学情境,使学生经历“数学情境――建立模型――解释应用”这一学习过程,新课程标准指出:要让学生自主经历知识的来龙去脉,努力的过程比成功的结论对学生的发展更有意义。学生最开心的,应该是自己经过探索后的发现。整个教学过程,是一个让学生获得丰富情感体验的过程,是一个学生乐学、好学、积极进行情感体验的过程。
方程的意义教学反思 篇19
本节课,学生学习积极性非常高,课堂上同学们积极参与,认真思考,提出疑问,顺利掌握了方程的定义。上完这节课我的主要收获如下:
1、通过天平平衡或者不平衡判断出两个物体的质量是否相等,天平图创设情境,科学课上认识了天平,利用鲜明的直观形象写出表示相等的式子和表示不相等的式子,可以帮助学生理解式子的.意思,也充分利用了教材的主题图。
2、在教学过程中,学生通过观察和操作得到了很多不同的式子,在得到相关式子时,直接引导学生进行对比,分别总结出各自的特征,最后我把方程的式子全部圈了出来,告诉学生,在数学上把这样的关系式叫做方程,让后让学生自己总结方程的概念,学生们很自然就归纳出这一类式子的特征,总结出了方程的概念。
3、在学生总结出方程的意义之后,自己列方程,并同桌互相检查,有解决不了的问题全班交流,在交流过程中,学生对方程的理解偏差和用字母表示数含糊的知识都暴露了出来,通过指名学生发言,学生在争论中逐步明白了相关知识,以前没问题的学生也在讨论中深化了认识。
方程的意义教学反思 篇20
关于“直线的倾斜角和斜率“的教学设计花了我很长的时间,设计了多个方案,想在”倾斜角“和”斜率“的概念形成方面给予同学更多的空间,也用几何画板做了几个课件,但觉得不是非常理想,以至于到了上课的时间仍旧没有满意的结果。但由于备课的时间还是非常的充分的,上课还是比较游刃有余的。但上是上了,感觉还是有点不爽。
其一,对”倾斜角“概念的形成过程的教学过程中,发现普通班和重点班在表达能力上的区别还是比较明显的,当问到”经过一个定点的直线有什么联系和区别时?”普通班所花的时间明显要比重点班多,但这也表明自己的问题设计还缺乏针对性。如果按照“平面上任意一点--->做直线(3条以上)---->说明区别和联系--->加上直角坐标系---->说明区别和联系”的顺序来设计问题,回答起来可能难度更低一点,同时也更加突出直角坐标系的作用。
其二,对通过的直线的斜率的'求解教学,通过给出实际问题,引出疑问引起大家的思考的方式会更加自然一些。比如,一开始便推出“比较过点A(1,1),B(3,4)的直线和通过点A(1,1),C(3,4.1)的直线”的斜率的大小”,然后得到直观的感受:直线的斜率和直线上任意两个点的坐标有关系。再推导本问题中的两条直线的斜率公式,最后得到一般的公式。
其三,”不是所有的直线都有斜率”以及斜率公式具备特定前提条件,在学习之处,要指出,但不要过分强调,更符合学生的认知规律,使学生的知识结构能够逐步完善,知识能力螺旋上升。
方程的意义教学反思 篇21
本课为人教版第四单元教学内容,本教材解方程方法利用了天平平衡的原理,采用了等式的性质来教学解方程。形如x±a=b一类的方程利用等式的基本性质一学生很容易解决,形如ax=b与x÷a=b一类的方程,利用等式的基本性质二学生也很容易解决。但行如a-x=b和a÷x=b此类的方程,学生就无从下手了,如果利用等式的基本性质解,方程变形的过程及算理解释比较麻烦。解决问题时当需要列出形如a-x=b或a÷x=b的方程时,我就要求学生根据实际问题的数量关系,列成形如x+b=a或bx=a的方程。但我觉得回避这两类问题不是很好的方法,否则,我们的教学就会显得片面和狭隘。如:一共有128人平均分成Х组,每组8人,学生们都不假思索地列出了128÷x=8,但是利用等式的基本性质学生就不会解,但你也不能说这个方程列错了呀。
因此我当有学生列了a-x=b或a÷x=b的方程时,我借机教了利用算术思路解方程(被减数=差+减数,被除数=商xx除数)介绍老板教材的解方程的方法。基础好的孩子就容易接受新的方法,而基础差的孩子就还是无法解答此类问题。
另外教材要求,在学生用等式基本性质解方程时,方程的'变形过程应该要写出来,等到熟练以后,再逐步省略。这样的要求,在实际操作中,带来了书写上的繁琐。因为用等式基本性质解方程,每两步才能完成一次方程的变形。这相对于简单的方程,尚没什么,但对一些稍复杂的方程,其解的过程就显得太繁琐了。
看来教材利用等式的基本性质来解简易方程也是存在着一些问题,不知各位老师有什么好的方法来解决这些问题呢?请不吝赐教!
方程的意义教学反思 篇22
学习解析几何知识,"解析法"思想始终贯穿在全章的每个知识点,同时"转化、讨论"思想也相映其中,无形中增添了数学的魅力以及优化了知识结构。在学习直线与方程时,重点是学习直线方程的五种形式,以直线作为研究对象,通过引进坐标系,借助"数形结合"思想,从方程的角度来研究直线,包括位置关系及度量关系。大多数学生普遍反映:相对立体几何而言,平面解析几何的学习是轻松的、容易的,但是,也存在"运算量大,解题过程繁琐,结果容易出错"等致命的弱点等,无疑也影响了解题的质量及效率。
在进行直线与方程的教学中,要重视过程教学,不仅要重视公式的应用,教师更要充分展示公式的背景,与学生一道经历公式的形成过程,同时在应用中巩固公式。在推导公式的过程中,要让学生充分体验推导中所体现的数学思想、方法,从中学会学习,乐于学习。应该说,自己在教学过程
中也是遵循上述思路开展教学的',而且也取得了一定的效果。下面谈一下对直线与方程的教学反思:
(1)教学目标与要求的反思:
基本上达到了预定教学的目标,由于个别学生基础较差,没有达到教学目标与要求,课后要对他们进行个别辅导。
(2)教学过程的反思:
通过问题引入,从简单到复杂,由特殊到一般思维方法,让学生参与到教学中去,学生的积极性很高,但师生互动与沟通缺少一点默契,尤其基础较差的学生,有待以后不断改进。
(3)教学结果的反思:
基本上达到了预定教学的效果,通过数形结合思想方法,培养学生能提出问题和解决问题的思维方式,学会反思,从而提高学生综合解题的能力。
方程的意义教学反思 篇23
长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数,解简易方程教学反思。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的`思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。通教材的老师也主张用等式的基本性质解方程。
在我的教学过程中却出现了这样的问题 ,利用等式的基本性质解形如x+a=b与x-a=b, ax=b与x÷a=b一类的方程,学生方法掌握起来比较简单。但写起来比较繁琐。然而遇到a-x=b、a÷x=b的方程时,由于小学生还没有学习正负数的四则运算,如果利用等式的基本性质解,方程变形的过程及算理解释比较麻烦;但是在教学过程中我们不可避免地会遇到根据现实情境从顺向思考列出X当作减数、当作除数的方程,要学生学会解这些方程,是正常的教学要求,这是不应该回避的,否则,我们的教学就会显得片面和狭隘。于是,我又要求学生遇到X当作减数、当作除数的方程时,要求学生会用减法和除法各部分之间的关系来做。但是,我发现这让有些孩子无所适从。我现在感到很困惑,我们到底怎样做才是合理得呢?恳请各位老师指教。
方程的意义教学反思 篇24
直线与方程是解析几何的起点,是与初中一次函数直线紧密联系,也就是数形结合思想突出的重要一章,所以学好这一章非常有必要。
直线与方程这一章体现了数形结合思想,直线方程的五种形式需要学生的灵活应用。但许多学生在做题中用斜截式较多,可能是学生在初中已经学习了一次函数。所以我们在学习直线的方程时,要不断强化学生对其他直线方程的应用。学生在做题中通常会忽略K的存在性,这需要不断加强,还有就是各个方程运用的限定条件。数形结合是本模块重要的数学思想,这不仅是因为解析几何本身就是数形结合的典范,而且在研究几何图形的性质时,也充分体现“形”的直观性和“数”的严谨性。教学过程应“接头续尾,注重过程”。教材中求直线方程采取先特殊后一般的逻辑方式,几种特殊形式的方程:斜截式、点斜式、两点式、截距式的几何特征明显,但各有其局限性。而一般形式的方程虽无任何限制,但几何特征却不明显。通过引导,使学生经历下列过程:首先建立坐标系,将几何问题代数化,用代数语言描述几何要素及其相互关系;进而,将几何问题转化为代数问题;处理代数问题;分析代数结论的几何含义,最终解决几何问题。通过上述活动,使学生感受到解析几何研究问题的一般程序。由“形”问题转化为“数”问题研究,同时数形结合的思想,还应包含构造“形”来体会问题本质,开拓思路,进而解决“数”的.问题。
总之,在直线与方程这一节中,我们以后的教学更应该注重学生能力的培养,让学生自己推导公式,在推导的过程中认识公式,使学生理解公式,从而认识解析法的数学魅力,正确运用解析法,而不是把公式当做是记忆的东西,一味的死记硬背,而忘掉条件限制。
方程的意义教学反思 篇25
本节课的教学设计,通过适当的创设情境,调动学生的学习兴趣,然后以问题做链,环环相扣,运用前段时间学习的求曲线的方法引导学生探索方程,使学生的探究活动贯穿始终。从圆的标准方程的推导到标准方程的求解都是在问题的指引下,通过我的适度引导、侧面帮助、不断肯定,由学生探究完成并走向成功。在内容上,有如下感悟:
1、圆是最简单的曲线。本节教材安排在学习了曲线方程概念和求曲线方程之后,学习三大圆锥曲线之前,旨在熟悉曲线和方程的理论,为后继学习做好准备。同时,有关圆的问题,特别是直线与圆的位置关系问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法。因此,教学中应加强练习,使学生确实掌握这一单元的知识和方法。
2、在解决有关圆的问题过程中多次用到配方法、待定系数法等思想方法,教学中应多总结。
3、解决有关圆的问题,要经常用到一元二次方程的理论、平面几何知识和前面学过的解析几何的`基本知识,教师在教学中要注意多复习、多运用,培养学生运算能力和简化运算过程的意识。
4、有关圆的内容非常丰富,有很多有价值的问题,建议适当选择一些内容供学生研究。例如:由过圆上一点的切线方程引申到切点弦方程就是一个很有价值的问题,类似的还有圆系方程等问题。
5、应该重视激发学生的求知欲。教学圆的认识时,注重给学生创设思维空间,注意引导学生积极体验,自己产生问题意识,自己去探索、尝试、解决、总结,从而主动获取知识。
方程的意义教学反思 篇26
一、从课堂反思
1、这堂课从简单问题入手,由浅至深,比较符合初一学生的认知性,学生了解了概念后马上让他们开启自己的智慧大门,并让学生自己找到符合概念的条件,加深印象。穿插式的练习,让学生能够趁热打铁,更加熟练的掌握和理解一元一次方程的一些概念。在上课的过程中更重视的'是学生的探索学习,以及数学“建模”能力的培养。为后面学习打下基础。
3、在课堂的第二个环节中,通过实际问题的引入,让学生动起脑来,阶梯型问题的设置使得一些后进生也投入到课堂中来,体现了差异性的教学。在学生慢慢列出方程的同时其实也培养了他们的逻辑思维能力,也体会到了列方程它与算式相比较之下的优点,合作式的学生活动增进了学生的合作交流能力,我并通过一些激励性的话语激发学生参与数学的兴趣,在列完方程的最后让学生归纳出列方程解应用题的基本步骤。使学生加深对知识的掌握也培养了他们的语言组织能力以及学会标准的数学用语。
二、从教学方法反思
本节课本着 “尊重差异”为基础,先“引导发现”,后“讲评点拨”,所以再讲解前面概念的时候,我稍稍放慢速度让后进生听的明白,因为方程是解应用题的基础,抓住基础知识再去发展他们的逻辑思维能力对后进生是十分重要的。
三、从学生反馈反思
这堂课学生能积极思考,认真学习,课后作业都能及时完成。作业质量较好,但是对于稍难点的实际问题得列式还是有一些问题。在应用题的列式方面是所有学生学习的一个难点,这是我后面课堂要注意的地方:如何去教会学生找到数量关系去列方程。
方程的意义教学反思 篇27
教师想方设法为学生设计好的问题情景,同时给学生提供充分的思维空间,学生在参与发现和探索的过程中思维就会创在一个又一个的点上,这样的教学日积月累对于培养学生的创新意识和创新能力是有巨大的作用的'。我认为学好数学最好的方法是在发现中学习,在学生的再创造中学习,并引导学生去学习。
教学设计中教师要根据目的要求,内容多少,重点难点,学生的条件,以及教学设备等合理地分配教学时间。其次,要注意节省时间,特别是在讲授新知识时,要抓住重点,不能企图一下讲深讲透。要安排一定的练习时间。通过练习的反馈,再采取必要的讲解或补充练习。再次,要注意尽量安排全班学生的活动,如操作、练习巩固,解应用题等,避免由少数人代替全班学生的思维活动,使大多数学生成为旁观者。要注意在一节课内提高学生的平均做题率。此外,还要注意选择有效的练习方式和收集反馈信息的方式,以便节约教学时间,并能及时发现问题。
班级的学生有整体的特点,当一定存在个体差异。如果要求每一个教学目标都人人过关,实属不智行为。效率是整体利益的平衡结果,不能因为个别同学目标未达成而牺牲整体的时间利益,这会造成新的教学问题。所以在集体教学时,把握大多数,将整体利益平衡好,这样的集体教学才是有效率可言的。当然教师在教学过程还是要关注每一位学生,关注其是否在听教师的讲解分析,以及自身是否在积极思考问题。千万不可只顾自己按照教案设计去讲,而忽视学生的思维。
方程的意义教学反思 篇28
用方程解决生活中的问题,关键在于让学生能正确寻找问题中的数量关系式,从问题到方程教学反思。掌握了数量关系式,问题便可迎刃而解。问题是学生在以前的学习中缺乏这样的训练,对如何分析数量关系没有一定的基础和经验,这给教学此内容带来了诸多不便,为此,我们教师在学生的数量关系的分析上还要多花时间,多帮助学生,“磨刀不误砍柴功”,为了能让学生顺利掌握新知,教者始终把数量关系的训练作为教学的主线贯穿在教学过程中。
我们教师复习了等式的性质后,出示了“看图列方程并解答”的'实际问题,学生有了前面的学习基础,很容易根据图中表示的等量关系列出方程,但这并不是教者的最终目的,学生解答师生共同评价,在此老师向学生抛出了问题:“你是根据什么关系来列方程的?”此时让学生初步感受到数量关系对列方程解决问题的重要。“那么,我们怎样写出数量关系式?”师出示第2题复习题“根据条件,写出数量关系式。”学生通过这次的练习后,对解方程的已有了足够的经验储备,这时老师不失时机地出示例题,让学生探究解决问题的途径,学生便自然地想到了数量关系,那列方程便也是水到渠成的事了。
另外,在解决问题的过程中,我们教师还鼓励学生从多角度对问题展开思考和研究,并要求学生把方程解法和算术方法进行比较,寻找之间的联系和区别,组交流中明白为什么不能这样列。像学生在解答中出现144÷X=1.5这样的方程,教者应给予肯定,但也要向学生讲清这类方程用我们现在所学的等式性质解决有一定困难,只有以后进一步学习新的本领才能很容易解决这类,在这里既有对学生获得知识的肯定,也有善意的提醒和无声的激励,为学生进一步努力学习留下思考的空间和探究的天地。
【方程的意义教学反思】相关文章:
方程的意义教学反思06-28
《方程意义》教学反思07-11
《方程的意义》教学反思09-24
方程意义教学反思02-01
方程的意义的教学反思11-24
《方程的意义》的教学反思11-24
方程的意义教学反思07-02
方程的意义教学反思集锦09-23
方程的意义教学反思【热】01-16
方程的意义教学反思【精】01-17