【推荐】小数的意义教学设计(通用25篇)
作为一名教学工作者,时常要开展教学设计的准备工作,借助教学设计可以更好地组织教学活动。那么写教学设计需要注意哪些问题呢?以下是小编为大家收集的【推荐】小数的意义教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
小数的意义教学设计 篇1
教学目标:
1、知识目标:使学生在经历实际测量的活动中,了解小数的产生。学生能理解小数的意义,认识小数的计数单位和相邻两个计数单位之间的进率。
2、能力目标:培养学生动手操作,观察,分析,推理能力和抽象概括能力。
3、情感目标:通过学习小数的产生和发展过程,提高学生学习数学的兴趣;增强对数学的理解和应用数学的信心。
学情分析:
小数的意义是一节概念教学课,是在学生学习了“分数的初步认识”和“元角分与小数”的知识下,以已有的经验为背景,让学生经历认、读、写小数的学习过程并理解小数的意义,体会小数与生活的密切联系,从而实现认识的提升。
教学重点:
认识小数的产生和意义。认识小数的计数单位和相邻两个计数单位之间的进率。
教学难点:
理解小数的意义。
教学过程:
一、创设情境,了解小数的产生。
1、回忆一下:我们学过什么长度单位?
2、请同学们看一下这条绳子,谁来估一估绳子的长度呢?请同学们都来量一量,验证一下结果。再来看看这根绳子,谁来估计一下它的长度,也请同学们上来量一量。刚才同学量的绳子的长度是30厘米,就是3分米,如果老师让大家用米来作单位。怎么表示呢?
3、刚才我们在测量这条绳子的时候,如果用米作单位,就得不到整数的结果。其实像这样得不到整数结果的例子在生活中还有很多很多,于是聪明的人们除了发明用分数来表示之外,还发明了用小数来表示,于是小数就产生了。
4、揭题。(板书:小数的意义)
二、自主探讨,理解小数的意义。
(一)研究一位小数
1、出示米尺:这是什么?这是一把一米长的尺子,请同学们仔细看看,老师把这把米尺平均分成了多少份呢?每一份是多长?如果用米作单位,写成分数是多少?写成小数又是多少?
这样的3份是多长?写成分数是多少?写成小数是多少?这样的7份呢?
2、请同学们看,这几个小数的小数部分都只有一位,这样的小数我们把它叫做一位小数。
3、小结:我们把1米的尺子平均分成10份,这样的一份或几份可以用一位小数来表示。
4、说说你发现了什么?(分母是10的分数可以用一位小数来表示。)
(二)研究两位小数(自助探究)
1、如果我把1米的尺子平均分成了100份,1份是多长?用米作单位,写成分数是多少?写成小数是多少?4份呢?这样的8份呢?
2、像这样的小数,小数点后面有几位数,这样的小数我们叫做几位小数。
3、小结:我们把1米的尺子平均分成100份,可以用两位小数来表示。
4、说发现。
(三)研究三位小数。(自主探究)
1、如果我把这每一段再平均分成10份,那么整条米尺我把它分成了几份?1份是多长?用米作单位,写成分数是多少?写成小数是多少?6份呢?13份呢?请同学们再说2个用毫米作单位的长度。刚才这两位同学说出了5毫米,23毫米,请同学们拿出草稿本,把这两个长度用分数表示,再用小数表示。
2、像这样的小数,小数点后面有几位数?这样的小数我们叫做三位小数。
3、小结:我们把1米的尺子平均分成1000份,可以用三位小数来表示。
4、说发现。
(四)推导
1、如果我把1米的尺子平均分成了10000份,写成分数应该是几位小数呢?看来同学们的学习能力很强是,能够通过前面的.知识,推出后面所学的知识。
1、讨论:分数和小数有怎样的联系呢?请同学们小组讨论,概括出分数和小数的联系。
刚才同学们通过讨论得出,分母是十的分数可以用一位小数来表示。分母是一百的分数可以用两位小数来表示。分母是一千的分数可以用三位小数来表示。这个就是小数的意义。
三、合作交流,探讨小数的计数单位。
1、填一填。
(1)0.3里有()个1/10,0.7里有()个1/10。0.04里有()个1/100,0.08里有()个1/100。
填一填,说说你是怎么想的。
像这样,0.3、0.7这样的一位小数,我们都可以看成是由若干个0.1来组成的,那么我们就说十分之一是一位小数的计数单位。读作十分之一,写作0.1。(板书:一位小数的计数单位时十分之一,写作:0.1)
同样的道理,像这样,0.04、0.08这样的两位小数,我们都可以看成是由若干个0.01来组成的,那么我们就说百分之一是两位小数的计数单位。读作百分之一,写作0.01。(板书:两位小数的计数单位时百分之一,写作:0.01)
请同学们猜一猜,三位小数的计数单位是什么?写作什么?(板书:三位小数的计数单位是千分之一,写作:0.001)
2、0.1里有()个0.01,0.01里有()0.001。小组讨论,汇报。
0.1里有10个0.01,我们就说0.1与0.01的进率是10,同样道理,0.01里有10个0.001,说明他们的进率也是多少?
四、巩固练习。
课件出示练习。
五、总结。
这节课你有什么收获?
小数的意义教学设计 篇2
教学目标:
1、在现实情境中认识两位小数、三位小数等,从而理解小数的意义,体会小数和分数的联系,会正确读写小数。
2、在用小数进行表达的过程中,感受小数与生活的联系,进一步培养数感和观察、比较、抽象的能力,增强学习数学的兴趣和信心。
教学过程:
一、回顾导入:
1、师:在三年级时我们一起认识了小数,你还记得吗?
(稍作停顿,学生回忆小数知识)
你对小数有了哪些了解?(生独立发言)
(可以是读写方法、意义、一位小数、组成部分、使用情况等)
2、师(板书:0.3):会读吗?(生齐读)
你是怎样理解0.3的?
3、揭题:今天起我们将继续学习小数的相关知识。
(出示课题:小数的意义和读写方法)
二、展开新授:
1、教学例1:
(1)课件播放例1:
师:你能读出这三种物品的价格吗?
(个别读,师板书价格及读法)
0.05:请两生个别读再齐读,这个读法与以前学过的数的读法有什么不同?
小数部分依次直接读出数字就可以了。
(2)用角或分做单位,说出这些物品的价钱。
生答师追问:
3角为什么可以写成0.3元?
5分为什么写成0.05元呢?
(1元=?分,1分是一元的几分之几?可以写成多少元?
5分是一元的几分之几,可以写成多少元?)
4角8分是一元的几分之几,可以写成多少元?
书p25/1(1)课件出示,直接口答。
(2)齐读0.05、0.48:
0.05、0.48分别是一元的几分之几?
与以前认识的`小数有什么不同?
揭示两位小数、一位小数的概念。
2、教学例2:
(1)师:用分作单位的数是一元的百分之几,可以写成两位小数。生活中还有很多用到两位小数的情景。
(出示一把米尺):把一米平均分成100份,每份长多少?
1厘米是1米的几分之几?
可以写成小数是?
(2)播放例2的课件,师稍作讲解。生独立完成书上的尺子图。
全班交流书写情况。
29厘米呢?
你想到了多少厘米,写成小数是多少米?
(3)师:把一米平均分成1000份,每份长多少呢?
1毫米是1米的几分之几?可以写成小数是?
播放课件,稍作讲解。生独立完成书上的尺子图。
全班交流书写情况,并齐读这些小数,(指导:小数部分的零不能省略读)
(4)师:他们是几位小数?
分别表示千分之几?
有没有四位小数呢?你能举个例子吗?
他表示多少分之多少?
按照这样的方法还有五位小数、六位小数位数更多的小数。我们以后将学到的圆周率还是个无限小数呢。
3、小结、揭示小数的意义:
师:齐读黑板上小数和对应的分数。
黑板上的这些小数是由怎样的分数改写成的?
你还发现了什么?
课件出示:分母是10、100、1000的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几
学生默读理解。
师:两个省略号分别省略的什么?你能补充吗?
三、巩固练习:
1、试一试:(课件播放题目)
师指导:第一幅图把正方形平均分成了几份?每一份是什么形状的?
第二幅图能?
第三幅图把什么看作整数1了?
平均分成了几份?你是怎样看出来的?
每一份是什么形状的?
独立填书。
全班交流,并结合图说说0.7、0.43、0.009分别表示什么?
2、练一练第二题,独立完成在书上。
全班交流。
3、练习五第二题、第三题。
独立练习,口头汇报。
0、300表示什么?
4、练习五第四、五题。
独立练习,全班交流。
四、总结:
师:谁能来归纳一下今天我们的学习内容?你有哪些收获?
小数的意义教学设计 篇3
教学目标:
1.结合具体情境,通过操作、观察、类比等活动理解小数的意义。
2.经历探索小数意义的过程,体会小数与生活的联系,培养归纳能力。
3.在学习小数意义过程中,培养探求知识的兴趣,提高独立探索和合作交流的能力。
教学重点:
理解小数的意义。
教学难点:
理解小数的计数单位。
教学过程:
一、创设情境,复习引入
1.师:同学们,你们在日常生活中,都见过哪些种类的蛋呢?……看来大家见过的蛋还真不少。接下来,我们一起走进《蛋的世界》,看看里面有多奇妙,好不好!这节课我们一起来探究小数的意义。(板书:小数的意义)
请同学们先回想一下,对于小数,你已有那些认识?……谁能举出一些小数的例子?并说说它表示的意义吗?
生1:0.2表示把一正方形平均分成10份,取其中的2份,是十分之二也就是0.2。
师:说得很好,谁再来说一个?
生2:0.5表示十分之五,
生3:0.4表示十分之四。
师:像这样的小数同学们都能说出来吧!(根据学生的回答,教师板书一组一位小数:0.2、0.5、0.4……,并说明一位小数表示十分之几)现在老师如果让你把这些小数用画图的方式表示出来,你能行吗?
生:能!
师:下面请同学们从这三个小数中,选择你喜欢的一个用画图的方式表示出来?好吗?
生:好!
师:哪位同学展示一下你画的小数?把你的想法和画法和同学们说一说?
生1:先画一条线段,平均分成10份,取其中的5份,是十分之五,也就是0.5。
师:老师想问问你,为什么取其中5份就是0.5?
生1:因为其中一份是0.1,5份就是0.5。
师:谁想再来展示一下?
生2:我先画一个长方形平均分成10份,取其中的2份,是十分之二,也就是0.2。
师:刚才同学们用自己喜欢的'方法画出了自己喜欢的小数,看这些小数,它们都是几位小数?
生:一位小数。
师:一位小数他们画法虽然不同,但是有共同点。谁来说说这两种画法的共同之处?
生:都是把一个物体平均分成10份,然后再取其中几份,来表示小数。
2.谈话:看来同学们前面的知识掌握的不错,课前,老师从几种动物的蛋的质量中也搜集了一些小数,请同学们看大屏幕。(课件出示情境图)
二、结合情境,探究新知
1.学习小数的读写。
(1)师:请同学们仔细观察情境图,你获得了那些数学信息?
(学生根据情境图说出信息)
师:这个小数读作?第二个小数读作?
这位同学读得非常正确,谁想再来读一读?谁来说说读小数时应注意什么?
(读小数时,小数点前面部分和整数读法一样,小数点后面部分依次读出每一个数。)
(2)师:谁来读一读下面这两条信息?这两条信息中有两个小数,谁能到黑板上把这两个小数写出来,其他同学写在练习本上。谁来说说写小数时应注意什么?
(写小数时,小数点前面部分和整数的写法一样,小数点后面部分依次写出每一个数。)
2.学习两位小数的意义。
(1)在正方形纸片上表示出0.25。
这组信息给我们提供了4个小数,像0.25、0.06这样的小数在图上怎样表示呢?老师为每位同学准备了一张画有正方形的纸,现在请同学们从这两个小数中选择一个小数在这个正方形中表示出来。
谁能到前面来说说你的想法和画法?
学生到前面交流。
师:你是把什么看作一个整体,平均分成()份,表示其中的()份,用分数表示是(),0.25里面有()个0.01。
老师想问问你,为什么取6份(或25份)就表示0.06(或0.25),一格(份)就是0.01,6份(或25份)就是0.06(或0.25)。
小数的意义教学设计 篇4
教学目标:
1、理解小数的产生和意义,认识小数的计数单位及进率。
2、通过抽象概括,培养学生初步的逻辑思维能力。
3、结合教材和教学,有机渗透“实践第一”与“事物之间是普遍联系”的辩证唯物主义观点的启蒙教育。
教学重、难点:
教学重点:概括小数的意义,认识其计数单位和进率。
教学难点:理解小数的意义,掌握分数单位与小数单位之间的关系。
课前准备:
请学生测量自己周围的物体,如课桌、黑板、门窗、大幅挂图等的长与宽(或高),整理收集好数据。
教学过程:
一、导入
1、我们数学课本的定价是多少元?(板书:5.10元)小明的身高是1.21米,小兰的体重是38.2千克(板书:1.21米、38.2千克)。你们知道这些都叫什么数吗?我们在哪册课本中学过?小数是怎样产生的?
2.请同学们把各自测量周围物体的长、宽(或高)的数据说一说。(教师将各个数据分别按“整米数”和“非整米数”两类板书)这些不够整米数的部分,如果仍然要用“米”作单位写出来,除了用分数表示外,还可以用怎样的数表示出来呢?请同学们阅读课本内容。
3.师生共同归纳:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。(板书:小数的产生)但是,小数的意义又是什么呢?这节课,我们就来着重研究它。
二、新授
1、3分米是怎样写成小数0.3米的呢?同学们请看(出示一把米尺),这把米尺的总长是1米,把它平均分成10份。每份是多少?1分米是几分之几米?把1/10米写成小数是多少米?小数点右边有几位小数?左边的数位上写什么?(板书:0.1米)
那么,3分米是几分之几米?写成小数是多少米?小数点右边有几位小数?(板书:3/10米、0.3米)7分米是几分之几米?写成小数是多少米?小数点右边有几位小数?(最后让学生把测量实物得到的数据也写成以米为单位的小数,同桌互相检查评改)
归纳小结:把分米数写成以米为单位的数,得到的是十分之一或十分之几米的数,可用一位小数来表示。(板书:一位小数)
2、把1米平均分成100份,每份就是1小格,这1小格是多少?写成分数是几分之几米?把它写成小数是多少米?小数点右边有几位小数?左边写什么?(板书:1厘米、1/100米、0.01米)
启发学生类推:谁能说出3厘米、6厘米各用分数和小数来表示是多少米?(同时让学生在书上的括号里写出来,并指名一生板演填空)各有几位小数?3和6写在小数点右边的哪位上?(再让学生把测量实物得到的'数据写成以米为单位的小数,同桌互相检查评改)
归纳小结:把厘米数写成以米为单位的数,得到的是百分之一或百分之几米的数,有几位小数?(板书:两位小数)
3、把1米平均分成1000份,每份是多少?(板书:1毫米)(用投影仪显示1厘米中的“毫米”小格)这1毫米是几分之几米?怎样写成小数?小数点右边有几位小数?(指名一生板演填写,其他学生写在练习本上)6毫米、13毫米怎样写成分数和小数?小数点右边的第一、第二、第三位上。各表示几个1/1000米呢?
引导小结:把毫米数写成以米为单位的数,得到的是怎样的分数?能写成几位小数呢?(板书:三位小数)
(布置学生将收集到几分米、几厘米、几毫米的数写成以米为单位的小数,然后互相检查评改)
4、如果继续分下去,得到1/10000、1/100000……的数。能写成几位小数?你会写吗?试一试,再互相检查。
5、归纳概括。用投影仪显示下列问题。
在上面的例子中,这些分数都能直接写成小数,这些分数的分母分别是多少?
表示十分之几、百分之几、千分之几……的分数,它的分数单位各是多少?每相邻两个计数单位间的进率是多少?(如:1/10里面有多少个1/100?)与整数的进率有什么联系和区别?
像这种分母是10、100、1000……且相邻的计数单位的进率是10的分数,可以怎样依照整数的写法写成小数?
因为整数左边数位上的数是右边相邻数位上的数的10倍,所以小数数位也可以从左到右由高位到低位排列,在整数与小数部分之间用小圆点(小数点)隔开来。
小数的计数单位有哪些?同分数单位有什么联系与区别?(引导学生对照板书内容想一想、比一比、议一议,然后回答)
6、让学生阅读课本上有关的内容后,完成课本上“做一做”的练习,最后让同桌学生互相说说:自己测量得到的数据是怎样写成小数的?
三、全课总结、质疑
四、巩固练习
1、口答:在5/10、1/2、1/100、1/15、1/80等数中,哪些分数能直接写成小数?为什么?写成的小数是多少?
2、口答:判断对错,错的要订正。
(1)11/1000写成小数是0.011米。
(2)0.18是18个0.1。
(3)0.33的计数单位是百分之一。
(4)0.57表示百分之五十七。
3、抢答。(看到小数答相等的分数,看到分数答相等的小数)
0.5 16/100 0.25 4/1000 0.075
4、书面作业。(略)
5、机动题:在下面的○里填上“>”、“<”或“=”。
8/10○0.08 96/100○0.95
4角○0.4元
6、思考题:113毫米、15厘米用小数表示出来是多少米?
[评析:小数的意义是本节课的教学重点,由于小学生的年龄和认知特点,对于小数的意义无论在表述上,还是在理解上都有一定的困难。在设计教学过程时,本课有如下特点:
1、充分感知,使学生明确小数的产生源于实践。
认知规律告诉我们,要使学生形成表象,加强感知是必不可少的。教学中,教师首先从贴近学生生活实际的身高、体重、书本价格的表示中。引出了小数在实际生活中有着广泛的应用,使学生明白小数的产生源于生活实践,激发了学生学习小数的兴趣和强烈的求知欲望。接着又通过测量门窗、黑板、课桌、大幅挂图等实物的长度和宽度的实际操作活动,使学生明白不能得到整米数的结果,这时也常用小数来表示。通过操作感知,使学生明确由于日常生活、生产的需要,从而产生了小数,渗透了“实践第一”的辩证唯物主义观点的启蒙教育。
2、凭借表象。展开联想推理。
建立表象后,以表象为依托,通过观察米尺,联系旧知,结合采集的数据有层次地展开联想推理。教师引导学生通过回忆、复习,把分米数、厘米数改写成用分数形式表示的米数,再改写成小数表示的米数。从而说明十分之几的数用一位小数表示,百分之几的数用两位小数表示。把毫米数改写成米数时,通过知识迁移,引导学生写出三位小数,并类推出千分之几的数用三位小数表示。在教学中,通过“观察分析实例一联想类推一结论”的过程,找到了分数(特定分母)与小数在数位、定义、进率等方面的实质性联系,为小数意义的抽象概括作了充分的铺垫。这样,学生不但学得轻松,而且培养了学生分析、联想类推的能力。
3、培养学生抽象概括的能力。建立新的认知结构。
教师不失时机地充分利用教材,引导学生通过“想、议、比、读”等方法,抽象概括出小数的意义。在这个过程中,教师主要抓住三点:
(1)抓住位数的扩展规律这根主线,界定能仿照整数写法的特定分数的范围;
(2)通过小数的特征,建立抽象的概念——小数的意义;
(3)联想、分析、概括小数的意义。在学生有了充分的感性认识的基础上,通过自学课本及教师的启发。逐步理解小数意义的各个要素。
然后教师设疑:
(1)能直接写成小数的分数,它的分母是多少?
(2)表示其中一份的分数各是多少?相邻两个计数单位间的进率是多少?为什么?与整数相邻的计数单位间的进率有什么联系和区别?
(3)像这种分母是10、100、1000……的分数。可以怎样依照整数的写法写成小数?
(4)小数的计数单位有哪些?让学生借助教材分析讨论,使学生在回顾知识的同时。加深对知识的理解。学生对小数的意义有了潜在的理解后,教师及时地引导学生抽象概括,使学生学习小数的意义有一完整、清楚的认识,能够较完整地表达出小数的意义。形成新的认知结构。
4、把握训练内容,巩固强化新知。
练习不仅是内化和巩固对知识的理解。而且是形成基本技能与发展智力的重要手段。本节课紧紧围绕小数的意义和小数的计数单位两方面,设计多层次的练习。在练习中注意思维步骤的物化,按照“一看、二比、三写、四查”的步骤思考和运作,从而有效地培养了学生良好的学习习惯。
同时,多媒体动态直观的演示、正确新颖多渠道的反馈形式、风趣生动的教学语言以及简洁科学的板书设计,牢牢吸引了学生的注意力,使教学目标顺利达成。
小数的意义教学设计 篇5
一、教学目标
1、理解小数的意义,能够说出小数各部分的名称。
2、正确掌握小数的读、写方法。
3、通过观察、测量体验小数与生活的关系。
4、在合作与交流中的过程中,感受数学学习的乐趣。
5、体验数学在身边,感受数学学习的价值和乐趣。
二、教学重点和难点
1、认识小数学概念。
2、小数表示形式。
3、理解小数的含义是本课的重点、也是难点。
三、教学过程
一)创设情景,导入新课
创设情景,引导学生交流搜集到的生活中的小数。
教师根据学生回答随机板书:
1、一张桌子的高度是0.7米;
2、教室窗户的宽是0.85米;
3、一份汴梁晚报价格是0.50元
4、每度电的价格是0.52元。
5、一棵包菜的重量是0.625千克。
6、奥运冠军刘翔的身高是1.89米,体重是74.11千克。
问题思考:为什么在这些地方需要用小数来表示?
引导学生在读一读这些小数,在读的过程之中,如果有错误,教师当即指导。
问题:1、这些都是小数,你知道关于小数的哪些知识呢?
2、关于小数你还想知道些什么?
3、今天我们就进一步研究小数的意义。(揭示课题)
这样的设计在于把枯燥的数学知识与学生的生活实际相联系,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。
二)新授部分
1、0.7米表示什么意义?谁来说说(借助课件,帮助学生理解)
引导学生完整说:刚才我们把1米平均分成10份,每份长1分米,就是1/10米,还可以写成0.1米。谁也来就像这样完整说一说。
师:这就是0.7米的意义。对照板书中的分数和小数,你能发现什么?
学生思考后再交流,十分之几可以写成一位小数,反之,一位小数也可以用十分之几表示。
问题:十分之五等于多少?0.8等于多少?
我们过去三年级所认识的0.1米、0.2米以及0.7米都是表示把一米平均分成10份得到的分数,那么1米还可以平均分成多少份呢?
每份长1厘米,就是1/100米,还可以写成0.01米.
问:谁愿意再来说说0.01米的意义。学生完整地说出:
1米平均分成100份,每份长1厘米,就是1/100米,还可以写成0.01米。
想一想0.85米表示什么?
重点让学生自己来说一说。
观察:对照板书,那么你们又有什么新的发现?
得到:百分之几可以写成两位小数,两位小数表示百分之几。
师:能举些例子吗?现在我们如果将1米平均分成1000份,每份多长?用分数、小数如何表示?
你又能发现什么呢?(得到:千分之几可以写成三位小数)请再举例。
师:如果将1米平均分成10000份呢?能再举例吗?
接着学习下面的几个小数:0.50元、0.52元、0.625千克
把小数在实际生活中的运用结合起来,使学生体验教学就在身边,感受数学学习的`乐趣。
归纳:刚才我们分的是1米、1元、1千克等,都可以用整数“1”来表示,我们把整数1平均分成10份100份1000份、……这样的一份或几份是十分之几、百分之几、千分之几……还可以写成一位小数、两位小数、三位小数。
三)练习加强理解
1、读小数:1.35元0.49米0.98千米0.87千克
2、1厘米=()/()分米5角=()元
3、王新买了三本书,价钱分别是9角8分、7角、3元2角。如何表示
四)教学反思
1、认识小数是小学阶段教学小数的知识,教学过程中引导学生与实际生活中量长度、买东西等具体事件联系起来,引导学生结合生活经验学习小数的内容。
2、本节课教学包括一位小数的意义、读写方法,是后继学习比较小数大小和小数加减计算的思考基础。学生在日常生活中大量的接触小数,小数的读和写并不是孩子的难点,让学生借助生活实际去理解小数的意义才是学生的学习的关键。
3、在教学过程中,考虑到学生已有的生活经验,用元、角引入降低学生理解的难度。让学生感受生活中处处有数学,领会到数学源于生活、用于生活的思想。
4、在教学中,教师应该有感染力的教学语言,让课堂气氛充分活跃起来,这方面有待于今后教学中加强。
5、学生对小数意义的认识需要经过一个循序渐进的过程,在教学中,应该对教学内容可以进行适度的重组和补充。
小数的意义教学设计 篇6
教学目标
1.使学生经历认识小数的过程,初步了解小数的含义,会读、写一位小数,知道小数各部分的名称,知道自然数和整数。
2.使学生在解决实际问题的过程中,培养初步的自主探究、合作交流的意识,感受数学和生活的密切联系,增强学好数学的信心。
教学过程
一、复习导入,唤起经验
出示:1/2 58 5/12 0.5 1.2 5.8
提问:同学们,知道这些数分别是什么数吗?
谈话:后面的三个数,你平时在什么地方见到过?
学生可能会想到:铅笔芯的规格、眼睛的视力、商品的价格等。
揭题:是的,在日常生活中经常接触到这样的数。它们都是小数,今天我们一起来认识小数。(板书课题:认识小数)
二、联系实际,探究发现
1.提出问题。
提问:你想了解小数的哪些知识?
学生可能提出:小数是怎么来的?学了小数有什么用处?小数应该怎样读,怎样写?……
2.教学第一个例题。
谈话:同学们想知道小数是怎样产生的吗?其实小数就来自我们的生活。先让我们来做这样一个活动:小组合作测量课桌面的长和宽,并用不同的数、不同的单位把测量结果表示出来。比一比,哪个小组想到的表示方法最多。
学生在小组内测量课桌面的长和宽,交流不同的表示方式。教师巡视,并作适当指导。
反馈:你们小组的测量结果是多少?想到几种不同的表示方法?
学生量出课桌面的长是60厘米,宽是40厘米,并用600毫米、60厘米、6/10米等表示课桌面的长,用400毫米、40厘米、4/10米等表示课桌面的宽。(根据学生回答,板书:6分米=6/10米,4分米=4/10米)
提问:除了上面几种表示形式外,你还能用其他方法来表示吗?
如果学生主动想到分别用0.6米、0.4米表示课桌面的长和宽,则让学生说一说是怎样想到的,0.6米和0.4米分别表示什么意思。
如果学生不能主动地用小数来表示,则讲述:其实,6/10米还可以用小数0.6米来表示,0.6读作零点六。(板书:= 0.6米0.6读作零点六)也就是说把1米平均分成10份,其中的6份可以用0.6米表示。
提问:你能说一说0.6米表示的意思吗?
学生回答后,让同桌间互相说一说。
引导:那么4/10米还可以怎样用小数来表示呢?(板书:0.4米0.4读作零点四)
提问:0.4米表示什么意思?
再问:那么你知道1分米是几分之几米吗?用小数怎么来表示呢?2分米、5分米、8分米呢?
学生交流时,分别让学生在米尺上指出0.1米、0.5米、0.8米的实际长度。
小结:十分之几米可以写成零点几米。
3.做“想想做做”第1题。
先让学生弄懂题意,然后把答案填在书上。完成后,电脑出示答案,集体校对。
4.教学第二个例题。
谈话:昨天三(5)班的李萍同学在育才商店里买了这样一些文具用品。我们一起来看看吧。
出示文具的图片及标价:
铅笔圆珠笔笔记本
3角1元2角3元5角
提问:一枝铅笔是3角钱,如果用元作单位,是多少元呢?(分别用3/10元和0.3元表示,并读一读、写一写。)
讨论:一枝圆珠笔的价钱是1元2角,怎样用元作单位,用小数来表示圆珠笔的价钱呢?请先在小组里讨论讨论,再说一说你是怎样想的。
反馈时,着重引导学生体会:1元2角是1元多2角,2角可以用0.2元来表示,1元和0.2元合起来就写成1.2元,1元2角可以写成1.2元。(板书:1元2角= 1.2元1.2读作一点二)
提问:一本笔记本的价钱是3元5角,用元作单位的小数又怎么来表示呢?你是怎么想的?(板书:3元5角=3.5元3.5读作三点五)
小结:几元几角写成小数就是几点几元。
5.做“想想做做”第2题。
让学生在书上完成填空,并说一说是怎样想的。
6.介绍自然数和整数。
让学生自由阅读书本第100页的最后一段,提出不懂的问题。
7.游戏。
男同学代表整数,女同学代表小数,看到你所表示的数请你站起来。
8 0.2 3.8 0 59 95.4 1 1/4 1.6
三、竞赛激趣,拓展延伸
谈话:我们已经认识了小数。现在我们以小组为单位,一起来进行比赛好吗?
1.听录音,把听到的'小数记录下来。
一只青蛙跳过0.4米的田埂,来到宽16.8米的河面上,踏上了0.2平方米的荷叶,狂叫三声,扑通一声掉进了深3.9米的河里。
2.做“想想做做”第3题。
出示题目,让学生抢答,并说一说每道题中分数、小数的意义。
3.回答下面的问题。
一包上好佳,价钱在1元到2元之间,请你猜猜它的价钱是多少?
小组合作讨论后把价钱写在纸上,交流时引导学生用“几元几角”和“几点几元”两种方式表达,并在数轴上分别找出每种可能价钱所在的点。
四、全课总结
提问:今天你学得开心吗?你有什么收获?
五、拓展
课件介绍十进分数的发展史和古代数学家刘徽的杰出成就。
小数的意义教学设计 篇7
教学目标
(一)理解小数除法的意义,掌握除数是整数的小数除法的计算方法。
(二)通过对算理的理解,培养逻辑思维能力,提高计算能力。
教学重点和难点
重点:理解并掌握除数是整数的小数除法的计算方法。
难点:掌握整数除以整数不能整除时,在被除数的个位数的右边点上小数点,再在被除数的后面添上“0”继续除,直到除尽为止。
教学过程设计
(一)复习准备
1、填空:
(1)0.32里面含有32个( );
(2)1.2里面含有12个( );
(3)0.25里面含有( )个百分之一;
(4)2.4里面含有( )个十分之一;
(5)8里面含有( )个十分之一;
(6)0.15里面有( )个千分之一。
2、列竖式计算:
把2145平均分成15份,每份是多少?
2145÷15=143
3、复习整数除法的意义。
(1)一筒奶粉500克,3筒奶粉多少克?
(2)3筒奶粉1500克,1筒奶粉多少克?
(3)1筒奶粉500克,几筒奶粉1500克?
学生列式计算:
(1)500×3=1500(克);
(2)1500÷3=500(克);
(3)1500÷500=3(筒)。
比较两个除法算式与乘法算式的关系,说出整数除法的意义:
已知两个因数的积与其中的一个因数,求另一个因数的运算。
(二)学习新课
1、理解小数除法的意义。
将上面三题中的单位名称“克”改为“千克”:
(1)1筒奶粉0.5千克,3筒奶粉多少千克?
(2)3筒奶粉1.5千克,1筒奶粉多少千克?
(3)1筒奶粉0.5千克,几筒奶粉1.5千克?
学生列式计算:
(1)0.5×3=1.5(千克);
(2)1.5÷3=0.5(千克);
(3)1.5÷0.5=3(筒)。
观察思考:两个除法算式与乘法算式有什么关系?除法算式的意义是什么?
讨论后得出:小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算。
练习:P14“做一做”。
2、研究除数是整数的小数除法的计算方法。
(1)学习例1:
服装小组用21.45米布做了15件短袖衫,平均每件用布多少米?
①学生列式:21.45÷15=
②学生观察这个算式与以前学习的除法有什么不同?(被除数是小数。)
③引出问题:被除数是小数,其中的小数点应如何处理呢?
④学生试做。
⑤学生讲算理。
针对错例,讨论分析原因;针对正确的重点讲清以下几点:
21除15商1余6,余下的6除以15,不够除怎么办?(把6个一化成低一级单位表示的数,即60个十分之一,再和下一位上原有的4个十分之一合在一起,是64个十分之一,继续除。)
除到十分位余4怎么办?(把十分位上的4化成40个百分之一,并与被除数中原来百分位上的数5合在一起,是45个百分之一,继续除下去。)
商的小数点如何确定?为什么?(当除到十分位,用64个十分之一除以15,商的4表示4个十分之一,应写在十分位上,所以在个位1的右边点上小数点)
(2)练习:P15“做一做”。
68.8÷4= 85.44÷16=
学生独立完成后,同桌互相讲算理。
小结
思考:商的小数点与什么有关?
讨论得出:商的小数点要和被除数的小数点对齐。
(3)学习例2:
永丰乡原来有拖拉机36台,现在有117台。现在拖拉机的台数是原来的多少倍?
①学生列式:117÷36;
②学生试做:
③117除以36商3余9,能不能作为结果?
不能作为结果怎么办?(继续除。)
怎样做才能继续除?(把9个一看成90个十分之一。)
直接在个位的右边添上0行吗?应该怎样添?(直接在个位的右边添0不行,如果这样9个一就变成了90个一,数的大小发生了变化。为了使数的大小不变,应在个位的右边先点上小数点后,再添上0,使9个一变成了90个十分之一。)
④学生继续做完,讲出道理。
(36除90个十分之一,商2余18。因为商表示2个十分之一,因此在商里3的右边点上小数点。18个十分之一除以36,不够商1个十分之一,再添0,化成180个百分之一,继续除。商5个百分之一,把5写在百分位上。)
教师指出:像例2这样的小数除法除到最后没有余数就叫除尽了。
(4)练习:P15“做一做”。
25.5÷6 86÷16
学生独立完成后,订正,找出错题,分析原因。
(5)总结
思考:今天我们计算的除数是整数的小数除法与整数除法有哪些相同的地方,哪些不同的地方?
讨论得出除数是整数的小数除法的'计算法则:
除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0继续除。
(三)巩固反馈
1、写出下列竖式中商的小数点。
2、把下面的题做完。
3、课本:P17:1,2。
4、作业:P17:3,4。
课堂教学设计说明
小数除法的意义是以整数除法的意义为基础的。通过改变单位名称把整数乘除法算式改写成小数乘除法算式。引导学生观察比较,使学生顺利理解小数除法的意义与整数除法的意义相同。
除数是整数的小数除法,在引导学生充分感知的基础上明确算理,在与整数除法的比较中总结出除数是整数的小数除法的计算法则。
练习中针对重点、难点设计了专项练习,使新知识在学生原有的认知结构中“生根”,使原有的认知结构得到发展。练习过程中重视反馈,抓住学生出现的问题,及时分析、弥补,把问题消灭在课堂上。
板书设计
小数除法的意义和除数是整数的小数除法
例1 21.45÷15
=1.43(米)
答:平均每件用布1.43米。
例2 117÷36
=3.25(米)
答:现在拖拉机的台数是原来的3.25倍。
小数的意义教学设计 篇8
一、教学目标
(一)知识与技能
在学生初步认识分数和小数的基础上,使学生进一步理解小数的意义,认识小数的计数单位及相邻两个单位间的进率。
(二)过程与方法
在操作中使学生体会小数产生的必要性。通过观察、比较,以及自主探究建立小数与分数之间的联系。
(三)情感态度和价值观
在学生积极参与数学活动的过程中,渗透数形结合的数学思想,培养学生的抽象概括和迁移能力。
二、教学重难点
教学重点:理解小数的意义,理解小数的计数单位及它们间的进率。
教学难点:理解小数的计数单位及它们间的进率。
三、教学准备
米尺、彩带、磁条。
四、教学过程
(一)创设情境,导入新课
1、同学们在前面的学习过程中已经学习了长度单位,还会用工具测量物体的长度,估一估,课桌面的长度是多少?
2、你们估计得对不对呢?让我们一起用直尺来验证一下。
3、谁愿意把你测量的结果告诉大家?
学生汇报预设:
学生1:我测量课桌面的长度是120厘米。
学生2:我测量课桌面的长度是1米2分米。
教师:课桌的长度如果以米为单位就是1.2米。
(1)在生活中,人们进行测量和计算时,往往不能正好得到整数的结果。这时常用小数表示。
(2)认识小数吗?在哪儿见过小数?今天我们一起学习小数的意义。
【设计意图】联系生活实际提出问题,让学生通过动手操作,在实际测量和记录的过程中发现有时得不到整数结果,从而引发认知冲突,激发学生进一步探究的欲望,感受小数产生的必要性。
(二)尝试探究,理解意义
1、认识一位小数。
教师:出示1米长的彩条,如果把1米平均分成10份,每份是多长?把1分米改写成
用“米”做单位的分数怎么表示?说一说你是怎么想的?
学生交流想法。
教师总结:米用小数表示就是0.1米。
教师:3分米,7分米改写成用“米”作单位的分数应该怎样表示呢?小数呢?请同学们试着写一写。
学生独立完成,教师巡视。交流分享学生的思考过程。
教师:仔细观察黑板上的每组分数和小数,你发现了什么?
结合学生回答,教师小结:像这样,小数点的右面有1个数字,这样的小数,就称为一位小数。也就是说,分母是10的分数,可以用一位小数表示。
练习:用小数怎么表示?呢?0.5怎样用分数表示?
参考答案:0.9,0.6。
2、认识两位小数。
教师:我们都已经知道了一位小数表示十分之几,猜一猜:两位小数可能与什么样的分数有关?
1厘米写成用“米”作单位的分数应该怎么表示?小数呢?4厘米呢?8厘米呢?
学生先独立完成,再合作交流。
教师:观察每组中的分数和小数,说一说你发现了什么?
学生1:分数的分母都是100。
学生2:小数点的右面都有2个数字。
教师小结:同学们观察得都非常正确。类似刚刚学习的一位小数,像这样,小数点的右面有2个数字的小数就称为两位小数。也就是说,分母是100的分数,可以用两位小数表示。
【设计意图】让学生根据一位小数表示十分之几,猜想出两位小数和什么样的小数有关,有意识地促进迁移,让学生体验成功,培养学生的学习兴趣和信心。
3、小数的意义。
教师:结合我们刚才对一位小数和两位小数的认识,自选两位以上的小数进行研究,完成表格。
学生先独立研究,再汇报交流结果,教师根据学生回答适时板书。
教师:通过你的研究,你发现了什么?
学生1:我发现分母是1000的分数可以写成三位小数。比如:把1米平均分成1000份,这样的一份就是1毫米,也就是米,写成小数就是0.001米。
学生2:三位小数就表示千分之几。
教师:其他同学还有谁也研究了三位小数的.意义?谁愿意也来说一说?
学生预设:我选择的小数是0.023,也是一个三位小数,可用分数表示为千分之二十三。
教师:说得非常好!一位小数表示十分之几,两位小数表示百分之几,三位小数就表示千分之几。那么四位小数表示什么?五位小数呢?
学生:四位小数表示万分之几,五位小数表示十万分之几。
结合板书,请同学们仔细观察、回忆一下我们刚才的探讨过程,和同伴交流一下,你都发现了什么?
学生1:我认为分母是10、100、1000、10000等的分数可以用小数来表示。
学生2:我知道了十分之几可以写成一位小数,百分之几可以写成两位小数,千分之几可以写成三位小数……
学生3:也就是说,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
小结:分母是10、100、1000……这样的分数可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
4、认识小数的计数单位。
教师:大家都知道分数中,十分之几的计数单位是十分之一,百分之几的计数单位是百分之一,千分之几的计数单位是千分之一。请同学们想一想小数的计数单位分别是多少呢?
学生交流,教师根据学生汇报归纳整理:小数的计数单位是十分之一、百分之一、千分之一……
【设计意图】引导学生借助对“一位小数表示十分之几”“两位小数表示百分之几”的直观认识,独立探究三位小数、四位小数、五位小数……表示的意义,最后抽象概括出小数的意义,有效地锻炼了学生的多种能力,突破了重难点,同时也渗透了小数中相邻两个计数单位间的进率。
(三)巩固练习,强化认知
1、第33页做一做。
2、第36页练习九第1题。
3、填空:
0.6里面有6个();再增加()个0.1就等于1。
0.25里面有()个0.01。
32个0.001是();32个0.01是();32个0.1是()。
4、在括号里填上适当的小数。
学生先独立完成,教师再让学生汇报答案,集体评议。
【设计意图】通过不同层次的练习设计,让学生在对比练习的过程中不断加深对小数意义的理解,同时有意识地结合生活实际体现知识的应用价值,帮助学生根据小数意义理解生活中常见的小数所表示的含义。
(四)总结梳理,拓展延伸
1、今天这节课我们学习了哪些知识?你有什么收获?
2、介绍对小数发展具有杰出贡献的两位数学家。
【设计意图】通过问题帮助学生梳理本课所学的知识,最后通过课外延伸向学生介绍与小数发展相关的数学资料,让学生进一步感受数学文化,培养学生的数学素养。
小数的意义教学设计 篇9
教材分析
在一至四年级,“数与代数”领域主要教学整数的知识,学生已经初步掌握了十进制计数法。三年级(下册)曾经教学了一位小数,初步体会了一位小数与十分之几的分数间的联系,这些都是本课基础。本课教材中例1、例2借助常用的元、角、分和米、厘米、毫米单位之间的换算,通过这样的感性认识,初步抽象出小数的意义。本课又是进一步教学小数性质、比较小数大小、改写大数目的基础,因此小数的意义是本单元教学的重点。
学生分析:
这一部分内容学生在三年级初步认识小数时其实已经有了学习的'基础。学生有以元为单位的小数表示金额,以米为单位的小数表示长度的经验。如果本节课再把大量的时间放在这一方面,无异于原地转圈。对于五年的学生来讲,有了一定的学习能力,对数字语言、文字语言以及图形符号语言有了一定程度的认识和理解。所以,课前的预习,五年级孩子是可以胜任的。所以教师要充分发挥学生自主探索的能力,让学生自主运用已有的经验理解小数的意义,从而实现感性认识到理性认识的飞跃。
设计意图:
本节课是一次校级教研课,在第一次试教时按照例题教学,逐步去理解小数的意义。实施下来发现,学生思维就局限在这些单位换算中,而对小数意义的理解并不到位。于是备课组老师就讨论对于这样的概念课怎样才能达到高效呢?最后商量一致同意尝试学生先学后教,由学定教的教学方式,将本节课的设计分成三大板块。
(1)前置学习,初步感悟。课前通过引导题,让学生自学例1、例2,在常用的价钱和长度单位换算之间,初步感悟分数与小数的联系。同时通过检测题了解学生是否真正理解它们之间的换算,理解分母是10、100、1000……的分数可以用一位小数、两位小数、三位小数……表示。
(2)课中操作,沟通联系。小数的意义是在分数意义的基础上建立起来的。这符合认知建构的理论观点:学习者对新知识的理解程度与他们内在的认知结构息息相关。布鲁纳说得更清楚:“获得的知识如果没有完整的结构把它们连在一起,那是一种多半会遗忘的知识。”学习一个概念,需要在心理上组织起适当的认知结构,并使之成为个人内部知识网络的一部分。沟通小数与十进分数的内在联系,是引导学生理解小数意义的关键。怎样让学生主动建构小数与十进分数之间的联系?
【小数的意义教学设计】相关文章:
《小数的意义》教学设计03-17
小数的意义教学设计10-31
小数的意义教学设计07-20
小数的意义教学设计02-22
《小数的意义》教学设计05-18
小数的意义教学设计集锦11-01
(集合)《小数的意义》教学设计11-01
小数的意义教学设计【热】12-13
【精】小数的意义教学设计12-11
小数的意义教学设计【推荐】01-16