五年级数学分数的意义教案

时间:2023-08-15 12:30:36 松涛 意义 我要投稿
  • 相关推荐

五年级数学分数的意义教案(精选11篇)

  作为一位兢兢业业的人民教师,总不可避免地需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么优秀的教案是什么样的呢?以下是小编精心整理的五年级数学分数的意义教案,仅供参考,欢迎大家阅读。

五年级数学分数的意义教案(精选11篇)

  五年级数学分数的意义教案 1

  教学内容

  人教版五年级数学下册第45-46页内容。

  设计理念:

  分数的概念是一个原发性概念,学生头脑中没有与之对应的上位或下位的概念,因此在教学时遵循数学概念的形成规律,按照实例观察——分析共性——抽象属性——归纳概念的流程有针对性的建构问题串。让学生通过大量的操作实践、交流碰撞、比较归纳活动,在学生头脑中建立起比较丰富的表象,在此基础上抽象概括出分数的概念。

  教材分析:

  课程标准把“认识分数”知识体系融进两个学段进行:第一次在三年级上册,学生学习把一个物体、一个图形平均分成几份,用几分之一、几分之几表示其中的一份或几份;也初步感受了把若干个相同物体组成的一个整体平均分成几份,用几分之一或几分之几表示这样的一份或几份。本节课的学习是把“由许多物体组成的一个整体”抽象成单位“1”的概念,从而概括分数的意义,认识分数单位。本节知识为接下来学习分数的四则运算、运用分数的知识解决问题打下基础。

  教学目标:

  1. 理解分数的意义,认识分数单位。能用分数描述生活中的事情。

  2. 在认识分数意义的过程中,培养学生抽象、概括的能力。

  3.使学生在学习活动中感受数学与生活的密切联系,体验数学的价值,激发学习数学的兴趣。

  教学重点:理解单位“1”的含义。

  教学难点:分数意义的建构。

  教学准备:多媒体课件,助学单。

  教学过程

  一、习旧引新,启迪探索

  1.播放视频“分蛋糕”。

  2.提问:你能从画面中联想到哪些分数?你联想到的分数表达什么意义呢?

  3.学生交流。

  4.提问:关于分数,你们已经知道了什么?

  5.师介绍分数的历史文化。

  6.提问:关于分数,你还想知道什么?

  7.揭示课题。

  【设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教学中通过视频和一句“你已经知道了什么?”唤起学生已有的知识经验,找到了新知与旧知的链接点。】

  二、 联系生活,探索单位“1”的含义。

  1.出示一个汉堡、一个长方形、一把直尺。

  师:可以用哪一个自然数来表示呢?(板书:1)

  师:我们从数学的角度去思考,还可以把什么说成1呢?

  1个苹果、一盒牛奶……

  师:难道这个1只能代表一个物体,图形或计量单位吗?老师这里有一些卡片,现在放在一起,我们可以说成?(一堆,一摞)

  师:照此类推,这个1还可以表示什么呢?

  一箱苹果、一车苹果……

  2.归纳单位“1”的概念。

  看来,任意个相同实物、图形或计量单位以及由许多物体组成的一个整体,都可以用1来表示,我们给它一个特定的名字叫单位“1”,它已经不单纯是一个数字1了,所以我们给它加上一个双引号。

  3.找生活中的单位“1”。

  那么在生活中,我们还可以把什么看做单位“1”呢?

  一个地球、一个国家、一个宇宙……

  【设计意图:从一个物体引发学生进行拓展思考“一”还可以表示一类物体、一个整体,充分调取学生的生活经验,从而建构单位“1”的概念,这样的过渡对学生而言比较自然。】

  三、自学互助,探索分数意义。

  1.探索分数意义。

  (1)谈话导入:当单位“1”表示一个物体时,同学们会进行平均分,得出分数吗?

  如果单位“1”表示很多的物体,你可以平均分,得出分数吗?

  (2)小组合作,动手在助学单上“分一分”,创造出一个分数。

  (3)展示学生作品,交流分法。

  提问:你是怎么分的?得到了哪个分数?它表示什么意义呢?

  (4)归纳总结分数的意义。

  同学们创造出了这么多的分数,功劳不小。你们能根据自己获取分数的感受,谈谈什么叫分数吗?

  2.认识分数单位。

  自学课本46页,你还知道了分数的那些知识?(分数单位)。

  【设计意图:学生建立分数的概念必须先积累大量的感官经验、操作经验。在操作活动中突破把许多物体看做一个整体进行平均分的.新知识点,又通过交流使学生由对分数的感性认识上升到理性认识,这样,概念的建立就是有源之水了。】

  3.探究分数的相对性。

  活动:拿小棒。

  (1)同伴互助,请组内一位同学拿出本组小棒总数的二分之一,互相看一看,你发现了什么?

  (2)猜测:都是铅笔的二分之一,为什么拿出的支数不一样?

  (3)质疑:拿出铅笔的支数多少是由谁来决定?

  (4)验证:小组合作共同验证组内铅笔支数。

  (5)交流归纳:铅笔总数多,拿出的二分之一的具体数量也多;铅笔总数少,拿出的二分之一的具体数量也少。

  【设计意图:通过具体操作活动,直观探究一捆小棒的二分之一所对应“总数”和“具体数量”之间的关系。从而体会同一个分数对应的单位“1”不同,所表示的具体数量也不同。让学生经历体验——感受——猜测——验证——交流归纳”的认知过程,从而提高分析思考、抽象概括的初步逻辑思维能力。】

  四、巩固练习,拓展应用

  1、 基本练习:用分数表示各图中的涂色部分。

  2、 发展练习: 你会想到什么分数?

  3、 提高练习:根据分数想单位“1”。

  【设计意图:螺旋上升式逐层练习,让学生的思考化隐为显,从知识到思考——从表面到深刻——从部分到系统,拓展学生的知识面,掀起了探索知识的高潮,扩大了探索创新的思维之门。】

  五、全课总结。

  分享交流:谈谈你这节课的收获和感受吧!

  五年级数学分数的意义教案 2

  一、创设情境

  (1)展示主题图

  (2)让学生说出从图中获取的主要信息

  (3)揭示课题

  二、师生共同探究新知

  (一)再创情境,探案例1

  1、中秋期间,我们的传统习俗是合家分享一块大月饼,喻示合家和美,团圆之意。小华一家也不例外。(示图)

  他告诉我们什么?我分得这个月饼的1/4

  谁能告诉大家,这里的1/4是把()看作一个整体呢?

  2、小红家买的是盒装月饼,每盒8个,她说:我分得这盒月饼的1/4。谁知道小红所说的1/4是把什么看作一个整体呢?

  分析一下他俩得到的月饼,你们发现了什么现象?有什么问题吗? 小组交流,再全班反馈

  (二):教学单位“1”、分数意义和分数单位

  1、关于单位“1”

  学生小组交流“议一议”

  师让学生小组“议一议”的3个情境,全班反馈(师对应板书)

  归纳:一个物体或是由许多物体组成一个整体,通常把它叫做单位“1” 观察板书内容,体会这里单位1的量,及其所表示量的对应的分数的实际意义。(可以同桌交流)

  2、关于分数的意义

  理解了什么是单位1的量,我们进一步认识分数的意义

  学生活动:(小组合作)拿出一些小棒,把它看作单位1

  使它能平均分成5份,6份

  情况反馈

  归纳分数的意义:让学生用自己的话先说,再对照书上的概念进行巩固。同时板书:分数

  说一说,议一议,上面分数的实际意义

  课堂活动:说一说生活中的分数;画一画(书上的第2题)

  3、关于分数单位的'认识

  把单位“1”平均分成若干份,表示这样一份的数,又叫做这个分数的单位。 让学和举例说一说:

  再议一议:分数单位与分数什么有关系?(分母)

  三、全课总结

  1、反思与质疑

  本课我们研究了哪些方面的新内容,说说自己的理解。再针对主题图的情境试述其中各分数的实际意义。

  2、还有什么疑惑的,或者有什么不同的想法?

  师生共同梳理

  单位“1”——分数——分数单位

  四、布置作业

  课本第25~26页1、2、3题

  分数

  单位“1”:

  分数的意义:

  分数单位:

  单位“1”——分数——分数单位

  五年级数学分数的意义教案 3

  教学内容:

  五年级下册第85-87页。

  教学目标:

  1、引导学生经历探究分数意义的过程,理解分数表示“部分与整体的关系”及单位“1”的含义。

  2、认识分数各部分名称及分子、分母表示的意义。

  3、培养学生分析、综合、比较、抽象、概括等初步的逻辑思维能力。

  4、体验学习数学的成功和愉悦,培养学生学习数学的积极情感。

  教学重难点:

  充分理解分数是表示“部分与整体的关系”

  教(学)具准备:

  每个小组一个圆片、一条10厘米长的线段、6根彩笔、一张长方形纸、熊猫组图、苹果组图、玻璃球、多媒体课件一套。

  教学过程:

  一、创设情境,引入新知

  谈话导入:

  拿出4个苹果,提问平均分给4个人,每人分得多少?

  有2个苹果,平均分给2个人,每人分得多少?

  有1个苹果,平均分给1个人,每人分得多少?

  “半个”这个结果还能用整数表示吗?用分数1/2表示。

  师:实际生活中,人们在进行测量和计算时往往不能得到整数的结果,为了适应这种实际的需要,于是就产生了分数。从而揭示课题。

  二、探索交流,建构分数

  (一)教学分数的意义

  1、教学把一个物体、一个计量单位平均分

  找分子是1或几的分数:

  (1)师提出要求,生动手操作。(出示课件)

  (2)组织汇报交流

  交流中引导学生说出找分数的过程,体验分数的意义。

  2、教学把一个整体平均分

  (1)师提出要求,生动手操作。(出示课件)

  (2)组织汇报交流

  a交流苹果组图,引导学生说出找分数的.过程,把谁平均分

  b联系上一环节中的内容比较被平均分的东西有什么不同?

  C教学“整体”,教师点出像4个苹果这样的多个物体就称之为一个整体,8个苹果平均分,也叫把一个整体平均分。

  D利用“一个整体”概念这个新知来理解在“熊猫组图”中找到的分数。重点沟通相对量与具体量之间的联系。

  3、教学单位“1”

  师指出:像这样的一个物体、一个计量单位、许多物体组成的一个整体都用自然数1来表示,就叫做单位“1”。

  追问:谁可以做单位“1”?

  4、根据板书师生共同归纳分数的意义,补充完整分数的意义及课题。

  5、随机练:a说出黑板上的分数表示的意义。

  B联系生活,让学生在现实情境中把握分数的意义

  (二)自学课本,认识分数的各部分所表示的意义

  1、师提出自学要求,生自学课本

  2、生举例汇报自学所得

  3、随机练:拿出6支彩笔的()/()——1/2、分母是6、分子是1、2/3

  生说出理由

  三、分层练习,深化提高(见课件)

  1、快速动笔,课本中做一做

  2、轻松片刻。(游戏:摸一摸,说一说)

  一个器皿里装有8个玻璃球,生摸出后说出占整体的几分之几。

  四、总结

  五年级数学分数的意义教案 4

  教学目标

  1、使学生在已初步认识分数的基础上,进一步理解分数的意义。

  2、弄清分子、分母、分数单位的含义。

  3、掌握分数的读、写方法,培养学生的抽象、概括能力。

  教学重点

  理解和掌握分数的意义。

  教学难点

  抽象概括出分数的意义。

  教学过程

  一、讲授新课。

  (一)分数的产生。

  1、请一位同学用米尺测量黑板的长,说一说,用“米”作单位,其结果能不能用整数表示?

  2、把一个苹果平均分给两个小朋友,每个小朋友分得的苹果数是不是整数?

  (板书课题:分数的意义)

  (二)分数的意义。

  1、以前我们已学过分数的初步认识,现在请大家仔细观察:下面把一个物体或一个计量单位平均分成了几份?想一想:其中的一份或几份怎样用分数来表示?

  (依次出现糕点图、正方形图、1米长的线段图)

  2、我们也可以把许多物体看作一个整体,如一堆苹果、一批玩具、一班学生等。

  出示图片“苹果图”

  教师提问:这幅图把什么看作一个整体?

  把它平均分成了几份?

  每份是几个苹果?

  每份苹果是这个整体的几分之几?

  (边讨论边板书)

  出示图片“熊猫图”

  教师提问:这幅图把什么看作一个整体?

  把它平均分成了几份?

  每份是几只熊猫玩具?每份是这个整体的几分之几?

  4只熊猫玩具是其中的几份?是这个整体的`几分之几?

  (边讨论边板书)

  3、将下面的两幅图与上面的三幅图进行比较,它们有什么不同点与相同点?

  明确:一个物体、一个单位或是一些物体都可以看成整体1,都可以用自然数1来表示,通常我们把它叫做单位“1”,它们的相同点在于都是把各自的单位“1”平均分成若干份,取其中的一份或者几份。

  (板书:单位“1” 若干份 一份或者几份 分数)

  4、总结、归纳分数的意义。

  根据上面的例子,谁能说一说,什么样的数叫做分数?

  五年级数学分数的意义教案 5

  教学内容:五年级下册《分数的意义》

  教学目标

  1、使学生知道分数的产生过程。

  2、使学生感受到数学知识同样是在人类的生产和生活实践中产生的。

  教学重点难点

  理解分数的意义。

  教具准备

  米尺,长方形、正方形的纸。

  教学过程

  一、引入

  1、复习分数的知识。

  (1)师:同学们,我们在三年级时已经初步认识了分数,还记得我们都学了分数的哪些知识吗?

  ( )

  ( )

  ( )

  (学生通过回忆说出已学过的分数知识。可能会回答分数各部分的组成,也可能讲到分数的意义。)

  (2)点击出示:

  师:这个分数如何读?

  师:你能说出这个分数各部分的名称吗?(根据学生回答分子、分母、分数线点击出现结果。)

  2、复习分数的表示方法。

  (1)师:回忆一下,我们还可以用什么来表示分数?

  (学生可能回答:用图、线段或正方形来表示分数。)

  (2)点击出示:用分数表示图中的涂色部分。

  师:通过刚才的复习,我发现大家对于分数已经有了很多的了解,但分数究竟是如何产生的呢?分数与我们的生活又有些怎样的联系呢?今天我们就继续来了解分数。

  [设计意图说明:学生在三年级时曾经学习过分数的知识,通过复习,回忆所学知识,为下面的学习做好铺垫。]

  二、新授

  探究一:通过故事和动手实践,认识分数的产生过程以及与生活实际的联系。

  1、点击出示书60页第一幅图片。

  师:大家听说过埃及金字塔吗?我们知道埃及金字塔是人类文明发展史上一个伟大的工程,在当时没有精密的测量工具的时候,人们只能用绳子等固定长度的物体作为测量的参照,可是当石头比绳子短的时候,又该如何测量如何记录呢?

  (学生可能回答:用分数表示。)

  师:对,古埃及人将一根绳子平均分成了若干份,再去测量。这样就能具体记录石头的长度,古埃及人就是用自己的聪明才智,把不足一段绳子长度的石头或超过一段绳子长度的石头用分数的表示方法记录,才能在没有精密仪器的情况下将金字塔建造得非常坚固,石块的接缝也是非常紧密,这也是人类发展史上的一大奇迹。

  [设计意图说明:通过故事,激发学生的学习兴趣,同时又对分数的产生和运用有了一定的认识。]

  2、实践感知。师生合作测量黑板的长度。

  师:虽然我们现在已经用到了米尺、三角尺、直尺等常用的学习工具,但在具体测量物体的长度时,也不一定正好是整数的结果。下面就请一名同学上台 和老师一块来测量一下黑板的长度,看看能否用整米数表示。

  (师生合作测量黑板的长度。)

  师:大家看到,刚才我们用米尺量了几次后还剩下一段,不够一米,这时还能否用整米数表示?

  (学生可能回答:不能)

  师:在进行测量时,有时不能得到整数结果,这时常用分数来表示。(点击出示)

  [设计意图说明:通过故事抽象感知以后在让学生通过实践认知,进一步了解了分数产生的过程,也感知了分数与生活的紧密联系。]

  探究二:用分数计算。

  1、点击出示书60页第二幅图片。

  师:大家看图,小明和小丽在分东西,桌上有什么?

  (学生可能回答:一个西红柿、一块蛋糕、一包饼干)

  师:如果把西红柿平均分给两个人,可以怎样分?你可以用算式表示吗?

  (学生可能回答:1÷2,在三年级学习的基础上,有的学生能回答出 个。)

  师:1÷2的结果能用整数表示吗?(不能)

  师:我们知道1÷2就是将1平均分成两份,每一份是多少?( )

  师:那么将一个西红柿平均分成两份,每一份是多少呢?( 个)

  师:看看小明和小丽是如何分的?

  (点击出示: )

  [设计意图说明:这一环节需要引导学生将生活实际中的分东西用数学算式表示,同时以最简单和直观的方法将除法算式与分数联系起来,同时又引导学生进一步理解分数的意义。]

  2、小练习

  师:那么同样的,小明和小丽每个人平均分到几块蛋糕?几包饼干呢?你是怎样想的?

  (学生可能回答,并简单表述将一块蛋糕平均分成两份,每一份是 块。)

  [设计意图说明:在前面学习了分数的意义后,马上根据书本内容进行练习,使学生对于分数的意义更了解。]

  3、小结:

  在人们实际生产和生活中,人类在测量和计算的时候,往往不能得到整数的结果,这就需要用一种新的数来表示,这样就产生了新的数—分数。

  (点击媒体出示:在进行测量、分物或计算时,往往不能正好得到整数的结果,这是常用分数来表示。)

  4、资料介绍。

  师:最初,人们只认识一些简单的分数,如二分之一、三分之一等。而且也不是一开始就出现现在的表示方式。

  点击出现:

  师:从图中你了解到了哪些信息?

  (学生根据自己的观察回答,教师提醒,补充说明。)

  [设计意图说明:这一环节通过分数发展的'几个阶段,让学生了解分数发展过程中不同的表示方法,让学生对分数的产生和发展有更深入的认识,进一步激发学习分数的兴趣。]

  三、练习

  1、说出下面图形所表示的分数。

  88

  8

  ( ) ( ) ( )

  [设计意图说明:这个练习环节是为了激发学生的学习兴趣,同时进一步巩固学生对于分数产生过程的认识。]

  2、填空。

  (1)将1个苹果平均分给2个小朋友,每人可以分到 个苹果。

  (2)将1个苹果平均分给3个小朋友,每人可以分到 个苹果。

  (3)4个小朋友分一块蛋糕,如果每人分到的蛋糕相同,每人分到 块蛋糕。

  (4)将1堆糖平均分给5个小朋友,每人分到这堆糖的 。

  师:这里可不可以说每人分到 粒糖?(引导学生辨析将1粒糖平均分成5份与将1堆糖平均分成5份的区别。)

  [设计意图说明:这个练习环节的设计旨在让学生进一步理解分数的意义,题目用三种不同的方法表述平均分的意义,让学生能更好的理解分数的意义及不同的表述方式,同时也为后面学习分数的单位打下基础。]

  四、小结

  通过今天的学习,我们知道了在很早以前我们人类为了解决实际生产和生活中不能用整数表示结果的问题,就已经开始用分数来表示了,经过几千年的发展,我们对于分数的应用也变得更熟练更广泛。希望通过学习,我们每一位同学也能更多的了解分数,更好的学习分数知识。

  五、作业

  将一张长方形或正方形纸平均折成若干份,然后将其中的几份涂上颜色,用分数表示。

  五年级数学分数的意义教案 6

  教学内容:教科书第91~93页。

  授课时间:

  教学目标:

  1、使学生初步认识几分之一,会读会写几分之一,能比较分子是1分数大小。

  2、通过小组合作学习活动,培养学生合作意识,数学思考与语言表达能力。

  3、在动手操作、观察比较中,培养学生勇于探索和自主学习精神,使之获得运用知识解决问题成功体验。

  教具、学具准备:实物投影仪、苹果、圆片、正方形纸、纸条

  教学过程:

  (一)创设情境,引入课题。

  出示苹果

  1、把这4个苹果分给小强和小芳,可以怎样分?如果分得比较公平,每人分几个?

  学生说出想法后,教师板书:平均分。

  2、把2个苹果平均分给2个同学,每人分几个?

  板书:1

  3、把1个苹果平均分给2个同学,每人分几个?

  板书:一半

  提问:一半苹果还有别表示方法吗?

  引出并板书课题:分数。

  (二)动手操作、探索交流,获取新知

  1、认识

  1)、教师演示分苹果。指出:把一个苹果平均分成两份,每份是一半,也就是它二分之一。

  2)、指导学生读写

  3)、学生活动:用纸片折出它 ,并写上 。

  4)、实物投影出示判断题。

  下面哪些图形阴影部分是原图 ?哪些不是?说出理由。

  2、认识1/4

  (1)要得到一个苹果1/4应该怎样分,这个1/4怎么表示出来?怎么写?

  (2)组织学生活动。拿出纸片通过折、涂、看、说等活动感知1/4。

  (3)教师演示把一个苹果分成四块,每块是它四份之一。

  (4)小结:像1/2、1/4这样数都是分数。

  (三)认识其他分数

  1、你们还想认识其他分数(几分之一)吗?

  (1)组织学生活动。拿出纸片通过折、涂、看、说等活动认识其他分数。

  (2)全班集中汇报。学生自愿将成果展示,在实物投影仪上,说一说各自分数。

  2、完成教科书第93页“做一做”第1题。

  (四)比较分子是1分数大小

  1、出示第一组图1/2和1/4。

  (1)猜想:哪个分数大一些?

  (2)引导学生讨论并交流讨论信息。

  (3)演示1/2和1/4比较重叠过程,让学生直观感受。

  2、独立探究,完成第二组图片,1/4和1/3比较,再跟小组同学说一说是怎样比较?

  3、让学生小组讨论。通过上面两组数比较,你发现什么?师生共同小结几分之一分数比较大小基本方法。

  4、完成第93页“做一做”等2题。

  (五)作业

  完成第96页练习二十二第1~3题。

  教学反思:

  第二课时:几 分 之 几

  教学内容:

  教科书第94页~95页。

  教学目标:

  1、使学生认识几分之几,会读、写几分之几。知道分数各部分名称,能比较分母相同分数大小。

  2、通过小组合作学习活动,培养学生合作意识、数学思考与语言表达能力。

  3、在动手操作、观察比较中,培养学生勇于探索和自主学习精神,使之获得运用知识解决问题成功体验。

  教具、学具准备:正方形纸,彩纸条

  教学过程:

  我们已经认识几分之一分数,大家还想再认识其他分数吗?

  揭示课题板书:几分之几。

  (一)教学例4

  1、学生小组合作,每个学生将一张正方形纸平均分成4份,根据自己意愿涂出几份,写出涂色部分是正方形几分之几,再在小组内交流。

  2、全班交流

  让学生说出把一个正方形平均分成4份,每份是它1/4,2份是它2/4,3份是它3/4,4份是它4/4。

  3、引导学生讨论交流,理解:四分之几是由几个四分之一组成,它与四分之一比,只是取份数不同。

  (二)教学例5

  1、让学生把1分米长彩纸平均分成10份;

  2、把1条彩纸平均分成10份,每份是它几分之几?

  板书:1/10

  把1条彩纸平均分成10分,2份是它几分之几?

  板书:2/10

  3份是它几分之几?

  让学生类推出十份之几就是几个十分之一。

  3、小结:像2/4、3/4、2/10、7/10…这样数,也是分数。

  4、让学生再说出一些其他分数。

  5、认识分数各部分名称。

  6、完成教科书第94页“做一做”第1题。

  (三)教学例6

  1、出示例6第一组图2/5和3/5;

  1)猜想:哪个分数大一些?

  2)让学生同桌一级,分别在长方形纸上涂色表示出2/5和3/5,再把它们放在一起进行比较。

  3)演示2/5和3/5比较重叠过程,让学生直观感受。

  2、出示例6第二组图

  让学生独立探究、完成6/6和5/5比较,再跟小组同学说一说是怎样比较?

  3、小组讨论,通过上面两组数比较,你发现什么?师生共同小组同分母分数比较大小基本方法。

  4、完成教科书第95页“做一做”第2题。

  五年级数学分数的意义教案 7

  说课内容:

  九年义务教育六年制小学数学人教版第十册第65页。

  教学地位:

  分数与除法是在学生学习分数的产生和分数的意义基础上学习的。教材讲分数的产生时,学生认识到在整数计算中往往不能得到整数的结果,要用分数表示,初步涉及分数与除法的关系。学习分数的意义时,认识到把一个物体或一个整体平均分成若干份,蕴含着分数与除法的关系,但是没有明确点出分数与除法的关系。教材在学生理解了分数的意义之后,让学生学习分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数表示商,这样可以加深和扩展学生对分数意义的理解,同时也为学生进一步学习假分数以及假分数与整数、带分数的互化做好准备。

  教学目标:

  1、通过分数与除法的学习,渗透事物是互相联系的、变化的、发展的辩证的唯物主义的基本观点。

  2、使学生通过观察与操作,探索分数与除法的关系,会用分数表示两个数相除的商。

  3、使学生在自主探索、合作交流的过程中,进一步发展数感,培养观察、比较、分析、推理等能力。

  教材分析:

  首先,认真钻研教材正确把握教学内容,明确教学目标是正确选择教法的前提。把握教学内容一要全面、二要具体、三要恰当。所谓全面指从思想教育、能力、非智力的心理品质等全面考虑(见教学目标);所谓具体指在40分钟内实现知识领域,能力领域,情意领域的各项任务;所谓恰当,指教法的选择符合教材的内容要求,学生的知识水平,认识能力以及教学内容的阶段性,注意不随意拔高和降低教学要求。避免重点不突出,难点过分集中,以及贪多求快偏差,教师在选择教法前,要深刻地钻研教材,领会编者意图,合理组织教材内容。教师要从具体教材中选择本质的、区别于其他事物的特有属性,也就是了解概念的`本质特征和这一概念所反映的对象的全体。例如,分数与除法的概念教学,要明确其本质特征,一是计算整数除法不能整除的时候,可以用分数表示除法的商。以1/3个为例,按照分数的意义,把一个蛋糕平均分成3份,其中的一份是一个的1/3,就是1/3个,还可以这样理解1/3个,表示把一个平均分成3份,每份是1/3米。二是分数与除法的关系可以用用文字表示,即被除数÷除数=被除数/除数,在分数中分母不能是零;还可以用字母表示a÷b=a/b(b≠0)。三是分数与除法的关系,表述为除法与分数的比较:被除数相当于分子,除号相当于分数线,除数相当于分母,商相当于分数值。

  其次,选择教法必须符合小学生的年龄特点和认知规律。小学生形成概念必须经过思维的加工,逐步完成从具体形象到抽象化的过渡。由于学生知识和思维能力的局限,实现这一过渡需要有一定的阶段性和层次性。为此,要帮助学生形成分数与除法关系的概念拟分五个层次(一)复习旧知,引进新课;(二)启思讨论,探求新知;(三)实际操作,寻找规律;(四)比较分析,发现规律;(五)多层练评,反馈总结。

  第三,选择教学必须考虑结合教学内容侧重培养学生某一方面的能力和智力,受到思想品德教育。“分数与除法”这节概念课要侧重引导学生对教学内容进行分析、综合、比较、抽象、概况,并运用所学知识进行简单的推理和判断。例如,在寻找规律,这一层次安排4个步骤:(1)分析题意列出算式(2)实际操作:让学生拿出同样大小的三个圆形纸片,把3个月饼看作单位“1”,把它平均分成4份,求一份是多少,你们能分吗?(3)展示分法:出示3种,有一种是把3个饼叠在一起,平均分成4份,取出一份,这一份是3个饼的几分之几?把3个1/4拼在一起看看拼成了一个饼的几分之几?(4)初步抽象:从图中可以看出:一个饼的3/4就是3个饼的1/4,3/4个饼表示什么意思?把3个饼平均分成4份表示这样1份的数;把一个饼平均分成4份,表示这样3份的数。这样,通过教学使学生既增长知识又长智慧,同时,结合教学内容渗透事物是相联系的辩证唯物主义的基本观点。

  教学学法:

  教学是师生的双边活动,现代教育理论重视课堂教学以学生为主体,重视学生学习方法的指导。叶圣陶先生说过:“教是为了用不着教”,为了“不教”,教师要充分调动学生的积极性和主动性,让学生参与数学概念形成的过程。初步掌握概念教学的基本程序:通常是引入概念,理解概念,巩固概念,应用概念,遵循学生建立和形成数学概念的基本规律:感知表象——建立概念——巩固概念——应用概念等基本环节,通过数学内容的学习逐渐掌握上述的“程序”与“规律”,以提高数学概念的自学能力。

  在“分数与除法”的教学中,学法指导体现于(1)抓要点,促联系;(2)抓理解,促深化;(3)抓方法,寻策略;(4)抓整理,促记忆。在教学中,让学生参与概念的形成过程。在这个过程中,让学生对一组对象中的每个事物的个别属性进行了解,(例1、例2)对对象间的属性异同进行剖析,接着通过比较,采取异中求同的方法抽象出分数与除法的共同属性即分数与除法的关系式:a÷b=a/b(b≠0),同时引导学生探索分数与除法关系的外延,强调b≠0,弄清其道理;最后,引导学生将新概念与已有的相关的概念联系起来,并进行适当划分从中渗透比较、对应等数学思想,指导学生学习方法策略,进而构建新概念系统。如设计通过填表,让学生进一步了解分数与除法各部分间的联系与区别。

  这样,帮助学生将所学感念纳入知识系统,形成良好稳定的认知结构。

  五年级数学分数的意义教案 8

  一、教材简析

  1.教学内容

  《分数的意义》是在学生初步认识分数的基础上系统学习分数的开始,也是把分数的概念由感性上升到理性的开始。分数的意义是今后学习分数四则运算和分数应用题的重要前提,对发展学生的思维能力有着重要作用。学生已经知道把一个物体、一个计量单位平均分成若干份,取这样的一份或几份,可以用分数来表示;本节课学习的重点是让学生理解不仅一个物体,一个计量单位可用自然数1来表示,许多物体看作的一个整体也可用自然数1来表示,通常把它叫做单位“1”,进而总结概括出分数的意义。纵观学生的知识基础及对教材的剖析,我拟定了本节课的教学目标。

  2.教学目标

  知识目标:了解分数的产生,建立单位“1”的概念,理解分数的意义,知道分数各部分的名称及意义。

  能力目标:通过主动学习、探究,理解并形成分数的概念,在实践中领悟一定的科学探究的方式方法,培养学生的科学精神和实践能力。

  情感目标:借助为分数配图,发展学生对美的体验与欣赏;揭示分数的产生,丰富学生的数学文化;通过同学间的合作,促进学生的倾听、质疑等优秀学习习惯的养成。

  3.教学重难点

  教学重难点:建立单位“1”的概念,理解分数的意义。

  二、教学准备

  多媒体课件、学具盒。

  三、教法学法

  《数学课程标准》指出:数学教学要让学生亲身经历数学知识的形成过程,也就是经历一个丰富、生动的思维过程,使学生通过数学活动,掌握基本的数学知识和技能,激发学生对数学学习的兴趣。因此,在教学中我以学生发展为立足点,以自我探究为主线,以求异创新为宗旨,借助多媒体辅助教学,引导学生动手操作,观察辨析、自主探究,充分调动学生学习的积极性、主动性,让学生全面、全程、全心地参与到每一个教学环节中。在教与学的过程中,使学生的观察、操作、口头表达等能力得以培养,使学生的创新意识得以开发与增强。

  根据学生由“感知――表象――抽象”的认知规律,在教学中主要采用了创设情境、动手操作及自主探究的教学方法,即把问、说、讲、做的权利和时间交给学生,力图为学生营造一个宽松、民主的学习氛围,充分调动学生眼、口、脑、手等多种感官参与认识活动,让孩子们真正感受到学习的快乐。

  四、教学过程及设计意图

  1.展示资料,揭示产生。

  课伊始,我让学生结合自己的生活经验以及课前查阅资料了解到的分数产生的有关知识说给大家听,使学生真正感受和体验到分数就在我们身边,是实际生产和生活的需要才产生了分数,从而产生对学习分数的兴趣,感受数学文化。

  设计意图既体现了学生是学习的主人的新理念,又培养了学生良好的学习习惯和自我获取知识的能力,拓宽了学生的学习渠道,这种学习方法的渗透,把课堂教学向课前延伸,会使学生终25身受益,为学生的终身发展打下坚实基础。

  2.谈话引入,唤醒已知。

  此环节通过谈话自然引入:“在四年级的时候,我们已经初步认识了分数,你们知道哪些与分数有关的知识?”在唤醒学生已有知识的同时,学生可能会谈到(播放课件教师适时小结)一个苹果、一个饼都称之为一个物体,一米长的绳子把它叫做一个计量单位,一个物体、一个计量单位,我们可用自然数1来表示。

  当学生已经把相关的知识说完整了,教师适时走进去“老师知道它也和分数有关,你们看(课件)这是10个小朋友,当我们把它看作一个整体的时候,还可以说是一群小朋友,这一群小朋友也可以被分开,分得的结果用分数表示。

  此环节的设计意图是借助集合圈渗透一个整体的同时,让孩子们感知到当我们把很多物体看作一个整体的时候,我们也可用自然数1表示。它也可以被分,分得的结果也可用分数表示,从而为下一环节的动手操作指明了道路。

  3.动手操作,创造分数。

  (1)动手操作,感知意义。

  学生分四人一组为单位,每组有一套学具,包括一米长的绳子、一张纸、六块饼干、10粒豆子、12个小方块……(课件)然后让学生选一种或几种学具自己动手创造分数,并提出要求:在创造分数的过程中,你可以动手摆一摆、分一分、说一说,你把谁看作了一个整体,你是怎样分的,创造了一个怎样的分数。学生操作、汇报交流展示的是学生把不同物体看作一个整体所创造的分数(课件)。

  此环节的设计让学生直观地感知了一个物体、一个计量单位、及许多物体组成的一个整体平均分成若干份,表示其中的一份或几份的数,都可用分数来表示,也就初步感知分数的意义。

  (2)师生互动,理解意义。

  在学生初步感知意义的基础上,采用师生互动的形式,借助多媒体课件,帮助学生进一步理解意义。互动分为两次,第一次借助苹果图,(课件)以教师首创了一个分数2/1为例,激

  活学生的思维,“还是这幅图,你能创造出不同的分数吗?”激发他们创造的欲望,学生动手操作一定会创造出不同的分数(课件)。第二次出示熊猫图,教师引题“当我们把6只熊猫看作一个整体,把这个整体平均分成3份,每份是这个整体的几分之几?由于教师给出了三个答案,进而引发学生的思考,在学生辩解、交流中,直到把这个整体平均分成3份,每份就是这个整体的三分之一(课件)。

  此环节的设计直观的帮助学生感知份数与个数的不同,从而更加深入地理解分数的意义,为概念的建立奠定了基础。

  (3)深化整体,总结意义。

  在上一环节成功教学之后,教师小结“刚才我们把4个苹果,6只熊猫都看作了一个整体。”从而再一次揭示了一个整体,由此拓展“我们还可以把什么看作一个整体”,学生自由回答,有的可能会说:我把一张饼看作一个整体,把4个棋子看作一个整体,把全班50套桌椅看作一个整体,把全校师生看作一个整体等等,从而深刻体验了一个整体的含义,进而引出单位“1”。最后借助一组练习题,通过对1/2、3/5两个分数意义的理解,逐步总结出分数的意义,即把单位“1”平均分成若干份,表示这样一份或几份的数,叫做分数。进而揭示课题,完成板书。学生是在感知、理解中总结意义,掌握新知的。

  (4)巧妙练习,强化意义。

  《数学课程标准》指出:“引导学生把所学的数学知识应用到现实中去,以体会数学在现实生活中的应用价值。”为此,我设计如下练习:比如为“ 1/4”这一分数配图(课件),教师提出要求“大家看这里有一个分数,你能试着给它配几幅图吗?配出一幅的是达标,2幅以上的是良好,3幅以上的是优秀。”借助激励性的语言,学生们定会跃跃欲试,在优美的乐曲中大显身手。

  可能会出现这样的作品(课件)。那么同是分数1/4,为什么会出现这么多不同的作品呢?那是因为学生假设的整体不同,也就是单位“1”不同,因此所配出来的.图是不一样的。借助为分数配图这一环节,既强化了学生对分数意义的理解,又增强了学习的趣味性,符合小学生的心理特征,同时训练学生的思维,培养了学生思维的广阔性、灵活性。

  (5)合作交流,理解分数各部分名称及含义。

  由于分数的各部分名称学生在四年级时已经知晓,因此我让学生先自学课本,然后在小组内交流分数各部分的名称,以及分母、分子所表示的含义。我把学习的主动权交给了学生,充分体现了以学生为主体的新课程理念。

  4.回顾总结,发展提高。

  全课总结是整个课堂教学的有机组成部分。画龙点睛的总结,对于帮助学生理清脉络,巩固知识,加深记忆,活跃思维、发展兴趣具有重要作用。为此,我利用板书引导学生回忆、梳理本节课的知识,并激励学生积极地学习有关分数的其它知识,将学生的学习兴趣延伸到下节课(课件)。

  总之,在本节课的教学中,我遵循小学生的心理特点和认知规律,关注学生个性的发展,注意培养学生的数学素养,把学生创新意识的培养真正落到了实处。我把整个学习过程放给了学生,让学生小组合作,全员参与,共同探究。在概念的引入和形成的过程中充分发挥了学生的主体作用,通过演示操作、观察比较,由具体感知到形成表象,再逐步抽象概括出分数的意义,由感性认识上升到理性认识,让学生参与知识获得的全过程。既注重了新旧知识的联系,又注重了知识、能力、情感三方面相结合,充分体现了教育、教学发展相统一的原则。

  五年级数学分数的意义教案 9

  一、教学内容

  分数的意义

  教材第61页的内容。

  二、教学目标

  1.使学生进一步理解并掌握分数的意义。

  2.知道一个物体、一个计量单位、一个整体都可以用单位“1”表示。

  3.引导学生学会抽象概括,培养初步的逻辑思维能力。

  三、重点难点

  1.理解和掌握分数的意义。

  2.理解单位“1”。

  3.突破一个整体的教学。

  四、教具准备

  投影,练习投影片,长方形、圆形纸各一张。

  五、数学过程

  (一)导入

  请学生举出几个具体的分数。(老师板书)

  根据学生举例的分数,请同学们说出都知道这个分数的什么?如这个分数表示的意义,它的各部分名称,以及自己的课外知识等。

  老师举例并板书:

  请学生说出表示什么意思。

  学生甲:表示把一块月饼平均分成4份,吃了其中的1份,可以说吃了这块月饼的。

  学生乙:还可以表示把一根绳子平均剪成4份,其中的`1份,就是

  这根绳子的。

  (二)教学实施

  1.认识单位“1”。

  (1)动手操作。

  老师:如果用图表示,可能你们每人会有不同的表示方法,现在请你动手折一折或画一画来表示。

  学生展示成果。

  (2)老师投影出示图片。

  老师:投影片上的这些图,你能在每一幅图上表示出它的吗?学生先小组内交流,再集体反馈。

  学生甲:我把4根香蕉看作一个整体,一根香蕉是这个整体的。

  学生乙:把8个苹果看作一个整体,把这个整体平均分成4份,每份两个苹果是这个整体的。

  学生丙:我把12个△看作一个整体,把这个整体平均分成4份,每份3个△是这个整体的。

  学生丁:我把1米看作一个整体,把它平均分成4份,其中的1份,就是1米的。

  (3)概括总结。

  老师:刚才同学们在表示的过程中,有什么发现吗?

  学生甲:都是把物体平均分成4份,表示这样的一份。

  学生乙:我发现有的是把1个图形平均分,有的是把8个苹果、12个△平均分,还有的是把1米平均分。

  老师:一个图形,一个实物比较好理解,我们把它称为一个物体,那么8个苹果、12个△是由许多单个物体组成的,我们称作一个整体。一个物体,一些物体都可以看作一个整体,一个整体可以用自然数1来表示,通常把它叫做单位“1”。

  (4)举例。

  老师:对于这个整体,你还能想出其他的例子吗?

  学生:这个整体还可以是一筐茄子、一车煤、一个年级的人数、全中国人口等。

  2.概括分数。

  老师:通过上面的学习,同学们对于单位“1”有了一个全新的认识,可以表示一个物体、也可以表示一些物体。整体“1”可以很小,也可以很大......

  刚才同学们举了很多分数的例子,那到底什么是分数,你能尝试用文字描述一下吗?

  先引导学生交流:把“谁”平均分?它表示的是一个什么样的数呢?

  学生相互交流补充。

  明确:把单位“1”平均分成若干份,表示这样一份或几份的数,叫分数。(板书)

  老师强调必须是平均分。

  (四)思维训练

  说一说下图中的阴影部分占整个图的几分之几。

  (五)课堂小结

  这节课我们学习了什么?师生共同回忆总结。

  五年级数学分数的意义教案 10

  教学内容:九年义务教育六年制小学实验课本,第十册,分数意义。

  教学目标:

  进一步理解分数意义,通过两个分数比较大小,深化学生对分数单位的理解。

  培养学生判断推理的能力。

  培养学生用辩证的观点看待问题。

  教学重点、难点:

  重点:进一步理解分数单位。

  难点:(分数单位和分数单位的个数都不同的分数进行比较。)对分数单位的

  深化认识。

  教学过程:

  1.复检

  (1)前面我们对整数的小数有了一定的认识,我们研究整数和小数这部分知识,

  关键的一点是什么?(数位、计数单位、进率)整数从右边起的前三位及它们的计数单位分别是什么?

  (2)我们知道整数和小数都是十进制的数,谁能说说你是怎样理解“十进制”的?

  小结:今天我们就在这个基础上来研究分数。[板书:分数]

  2.新授

  第一层:理解分数意义,初步理解分数单位这个概念。

  出示 、

  (1)看到 你能想到什么?(以 为一份有这样的2份)[板书: ]

  (2)“ ”表示什么?[板书: ]这儿(指 后面)应该写什么?( 、 )

  (3)第二排的数都表示的是几份?(一份)

  (4)第二排的数与第一排的数之间有什么关系?

  (5)什么是分数单位呀?

  (6)分数单位与“1”之间有什么关系?

  小结:既然同学们对分数单位这么感兴趣,我们这节课就重点来研究一下分数单

  位。

  [评:紧扣重点,采用对比的方法,加深学生对“分数单位”的认识]

  第二层:分数单位相同,分数单位的个数进行比较

  出示

  (1)我们观察一下这两个分数有什么特点?(分母相同)不说分母相同,还可以怎样说?(分数单位相同)分数单位相同也就是什么相同?(每份相同)[学生回答时注意前提条件]

  (2)这两个分数的每份相同,也就是分数单位相同,我们看看这两个分数表示的大小相同吗?能不能比出大小?

  (3)我们除了对这两个分数进行比较,还可以怎么样?(加减)

  (4)进行加的结果是多少?( )12是怎么来的?什么没变?(分数单位)什么相加了?

  (5)减的结果是什么?( )谁减谁?“2”是怎么来的,同样是什么没变,跟加法的道理一样不一样?

  (6)在加减的过程中分母为什么没变?为什么分数单位相同可以直接相加减?

  出示

  问:这两个分数可以怎样?(比较、加减)

  [也可将这两个分数与1进行比较]

  小结:这两组数,分母都相同,也就是分数单位相同,在分数单位相同的情况下,比较两个分数的大小有什么规律?

  [评:1.分母相同是外在的表面现象,教师引导学生透过现象看到分母相同,就是单位“1”相同,分数单位相同(每份相同)这样,就在“同分母分数比较大小中抓住了实质。不仅使学生掌握了比较大小的方法,更进一步理解了分数的意义,又为学习分数的计算奠定了知识和思维的基础。

  2.让学生充分说理,每一个设问都给学生提供了运用概念解决实际问题的情境。如: 和 ,分母相同,说明单位“1”相同,分数单位相同。在分数单位相同的情况下,5个 比7个 小,所以 < 。这种严密的逻辑论述,体现出学生分析推理能力,对所学知识的认识又上升到了一个新的层次,培养学生逻辑思维能力,是培养创造思维的基础。]

  第三层:分数单位的个数相同,分数单位的大小进行比较

  出示

  (1)分母还相同吗?(不同)有没有相同的地方(单位“1”相同,取的份数也相同。)

  (2)谁大?( )5比7小,为什么 反而大呢?

  出示:

  问:观察这个分数有什么特点?请你判断一下这两个分数的大小。

  小结:当单位“1”相同的情况下,分的份越多,它的分数单位就越小,分的份

  越少,分数单位就越大。刚才我们研究了两组很有规律的分数,在这个基础上我们继续看。

  [评:在分数单位比较的过程中,深化的分数单位的理解,为后面的分析推理提供依据。]

  第四层:发散思维的训练,深化对分数单位的理解

  出示:

  问:我们观察一下这两个数,有什么特点?(分数单位与分数单位的个数都不同)有没有相同的?(“1”相同)“1”相同,分数单位不同,所取的份也不同。能不能进行比较呢?讨论一下。(可先将 与 进行比较,或 与 =1进行比较,再比较这两个分数的大小;或与“1”的一半进行比较)

  出示

  问:这组分数同样分子和分母都不相同,看能不能向刚才这种方法一样比较一下。(先将 与 进行比较)

  小结:我们刚才比较了两个分数的大小,而且当分母相同的情况下,还可以把两个分数直接相加减,无论是比较还是加减,我们研究的关键的一点都是什么?(分数单位)

  [评:发散思维的.活动方式是分散的、辐射的、昊散式的发散思维的训练,目的使学生灵活运用知识,使思维更活跃,在培养学生创造思维中起重要作用,教师设计的三组题,为学生创设了各显其能,施展才华的条件,学生大胆地冲破思维的局限性,从不同角度,沿着不同的方向进行思考、想象、分析、推理,使问题得到解决。如:①因为 > 所以 >

  ②因为 > 所以 >

  ③学生大胆设想,都转化成分母相同再比较,等等。

  学生方法的多样性,灵活性来源于对概念理解的深刻性,这种“一题多解”、“求异思维”的能力,是学生已具有创造性学习能力的体现。]

  第五层:通过假分数与带分数的互化,进一步认识分数单位,在这当中渗透分数单位与单位1之间的关系。

  出示

  (1)这个分数和我们前面研究的分数比较一下,有什么不同?(分子比分母大)分子比分母大,这样的分数叫假分数。(真假的假)那么我们前面研究的这些分数分子都比分母小,你们说,这些分数就应该叫什么呀?(真分数)

  (2)分子比分母大说明什么?(这个数比1大)

  (3) 我们就可以看作几部分?

  (4) 和1 的大小一样不一样?我们就可以用什么符号连接?

  小结:这两个分数所表示的意义一样吗?它们之间有什么联系?(讨论)

  [评:通过假分数与带分数的互化,进一步认识分数单位,渗透分数单位与单位“1”之间的关系。这里运用观察、比较、适时的讨论,学生对假分数和带分数的意义有了正确的认识。]

  3.质疑

  4.总结

  这节课我们研究了什么?分数单位在分数这部分知识中占有很重要的位置,这一知识我们研究得透,对于我们今后研究有关的知识会有很大的帮助。

  七.板书设计

  八.反思:

  本节课结构严谨,重点突出,始终给基本概念“分数单位”以中心地位,知识呈现过程清晰,过程设计符合儿童认知。

  以“比较分数大小”这一知识为载体,把“分数单位”这一核心概念挖掘来,在不断的深化和扩展中,学生既学了知识又为后叙知识做好铺垫,同时促进了学生思维质的发展。

  教师语言简练,设问有利于激发学生的思维,学生不仅学会了知识,增长了能力,在生生相互沟通中以科学的态度对待科学知识,在民主的氛围中学生身心和谐发展。

  五年级数学分数的意义教案 11

  创境激疑

  (一)导入

  1.复习:什么叫分数?

  2.用分数表示出下面各图的涂色部分。(出示教具)请学生分别说出每个分数的意义。

  合作探究

  (二)教学实施

  1.提问:比较上面三个分数的分子与分母的大小?

  这些分数比1大还是比1小?并说明理由。

  2.学生观察后,试着回答。

  学生:(第一个圆)平均分成了3份,这样的3份也

  是一个整圆,表示1,而涂色部分只有1份,所以比l小。再请学生分别说出另外两个分数。

  3.老师指出:像上面的3个分数都是真分数。我们过去接触过的分数,大都是真分数。那么,你能说说什么叫真分数吗?

  4.让学生独立思考后,与同桌交流一下,再指名回答。

  5.小结:分子比分母小的分数叫做真分数。真分数小于1。

  6.老师再出示例2中图形的`教具。

  7.请学生分别用分数表示每组图形中的阴影部分。

  提问:第一幅图中,把一个圆平均分成几份?表示有这样的几份?怎样用分数表示?

  老师强调:第二组图和第三组图中每个圆都表示“1”。

  拓展应用

  1.在分数a/b中,当a小于时,它是真分数;当a大于或等于时,它是假分数。

  2.在分数b/a中,当a小于或等于时,它是假分数;当a大于时,它是真分数。

  3.分数单位是的最小真分数是(),最小假分数是。

  4.写出两个大于的真分数和。

  总结

  通过本节课的学习,我们认识了真分数和假分数的特征,真分数的分子比分母小,真分数小于1;假分数的分子比分母大或分子和分母相等,假分数大于或等于1。通过学习,要会正确区分哪个分数是真分数,哪个分数是假分数,并会正确应用概念灵活解题。

  作业布置

  教材54页做一做

  板书设计

  教学札记

【五年级数学分数的意义教案】相关文章:

《分数的意义》数学教案08-26

《分数的意义》数学教案(精选15篇)08-27

《分数的意义》数学教案(15篇)08-26

分数的意义教案08-26

分数的意义的教案10-27

分数的意义教案03-10

《分数的意义》教案10-13

《分数的意义》教案06-20

《分数的意义》的教案09-09

五年级下册数学分数的意义教案12-19