意义

《小数的意义》教案

时间:2022-07-11 09:18:37 意义 我要投稿

《小数的意义》教案

  作为一位兢兢业业的人民教师,总不可避免地需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。怎样写教案才更能起到其作用呢?以下是小编帮大家整理的《小数的意义》教案,仅供参考,大家一起来看看吧。

《小数的意义》教案

《小数的意义》教案1

  教学内容:苏教版三年级下册P102103

  教学目标:

  1、结合具体情境使学生初步体会小数的含义,能认、读、写小数部分是一位的小数,知道小数各部分的名称。

  2、通过观察思考、比较分析、综合概括,经历小数含义的探索过程,让学生主动参与,学会讨论交流,与人合作。

  3、使学生进一步体会数学与生活的密切联系,培养学生自主探索与合作交流的习惯。通过了解小数的产生和发展过程,提高学生学习数学的兴趣,增强爱国情感。

  教具准备:多媒体课件

  教学过程:

  一、情境导入:

  小明搬新家了,家里需要一张新书桌,妈妈让小明自己到商店挑选,但是要记录下所选书桌的长和宽各是多少米。接到任务后,小明邀请好朋友晓红一起来到商店。我们看一看他们所选的书桌是什么样的?(课件演示)

  (评析:开课创设与学生生活和学习内容相适应的情境,促使学生在生动、具体的情境中主动学习数学,让学生感受到生活中处处有数学。)

  二、新知探索:

  1、认识整数部分是0的小数。

  ①从长5分米,宽4分米这两个信息中你们了解到什么?

  ②**的要求是用米作单位,5分米、4分米究竟是多少米呢?运用前面所学到的知识想一想。

  ③5分米是几分之几米?4分米是几分之几米?

  随着学生的回答,师指出:5分米是把1米平均分成10份,5分米是其中的5份,可以用分数5/10米表示。

  (评析:运用学生已有的知识作为新知识的切入点,符合学生的认知规律。同时教师引导学生通过阅读信息,学习分析信息获取知识,又巧妙实现了由生活问题到数学问题的转移。)

  随着学生的回答,师指出:5分米的长度,是把1米平均分成10份,5分米是其中的5份,可以用5/10米表示。

  除了用5/10米表示以外,还可以用0.5米来表示。

  请学生仔细看,0.5米是怎样写的?读作:零点五

  ④4分米是几分之几米?用小数怎样表示呢?(课件演示同上)

  ⑤7分米呢?学生回答后完成想想做做第一题,填完后小组内交流:为什么要这样填?

  ⑥学生汇报:课件演示

  1分米 3分米 7分米 9分米

  1/10米 3/10米 7/10米 9/10米

  0.1米 0.3米 0.7米 0.9米

  仔细观察:你发现分数十分之几可以写成小数什么?零点几就表示什么?

  ⑦动手操作:

  用一张长方形的纸折出2/10,再用小数表示出来。

  再用一张长方形的纸折出0.6。

  小结:十分之几可以写成小数零点几,零点几就表示十分之际。

  板书课题:小数的意义和读写

  小结:小数是在人们实际测量和计算的需要中产生的,在我们实际生活中有着非常广泛的应用。我国古代数学家刘徽在一千七百多年前就开始应用十进分数。(课件介绍古代数学家刘徽)

  (评析:教师适时的在数学教学中进行德育渗透,激发学生的民族自豪感,增强学生的爱国情感。)

  说一说你还在哪些地方见过小数。

  2、认识整数部分不是0的小数。

  小明和晓红选完书桌后又在商店里转了转,看到圆珠笔1元2角,笔记本3元5角,你们能用小数表示出圆珠笔和笔记本各是多少元吗?

  ①学生自主探究,再在小组中合作交流。

  ②学生汇报,并将板书补充完整。

  1元2角还可以写成 1.2元 读作: 一点二

  3元5角还可以写成 3.5元 读作: 三点五

  小结:几元几角分成两部分,几元和几角,先把几角表示成零点几元,再和几元合起来是几点几元。

  ③观察小数:这些小数有什么特点?

  小数中间的点叫做小数点,小数点把小数分成了两部分,小数点的左边是整数部分,右边是小数部分。

  我们以前学过的表示物体个数的1、2、3是自然数,0也是自然数,它们都是整数。今天学的0.5、0.4、1.2和3.5都是小数。

  ④任意写出几个小数,在小组中读一读。

  全班交流时指名说一说整数部分是几?分数部分是几?

  (评析:如何在课堂上开展探索性学习是当前数学教师所探索的问题。本段教学在这方面做了较好的展示,学生充分运用自主探究动手实践合作交流的学习方式,开展多角度、多层次的探究活动。学生的交流与教师的适时引导交相辉映,将探究活动不断推向深入。)

  三、应用反思:

  1、小明和晓红在商店里还看到很多食品。(课件演示想想做做第二题。)

  你能用元作单位表示出这些食品的价格吗?

  2、他们还看到有的商品是这样表示价格的。(课件演示想想做做第四题。)

  先读出这些商品的价钱,再说一说是几元几角。

  3、小明和晓红在商店里不仅选到了自己喜欢的书桌,而且还学会了一个数学知识,你们学会了吗?

  完成想想做做第五题。

  (评析:练习的设计始终使学生处在生活的情境中解决问题,不但提高了学生继续学习的兴趣,而且使学生切实体会到数学与生活的密切联系。)

  四、课后延伸:

  小数在我们生活、生产中处处可以用到,同学们要学会用数学的眼睛观察生活,用数学知识解决生活中的实际问题。

  [总评:本节课从学生的现实生活出发,极力选取学生身边的事例,使生活素材贯穿于整个教学的始终。注意将数学与学生生活紧密相连,遵循了数学源于生活,实现了数学的应用价值。具体地说有以下几个特点:

  1、创设生活情境,使数学问题生活化。

  本节课教师从课一开始就创设小明、晓红逛商店这一生活情境,而且这一情境始终贯穿整个教学过程中。使学生感到所学的内容不再是简单枯燥的数学,而是非常有趣、富有亲近感,感到生活中处处有数学,数学就在身边,他们被浓厚的生活气息所带动,兴致勃勃投入新课的学习中。

  2、自主探究、合作交流,让学生经历知识形成的过程。

  数学知识、思想、方法必须由学生在实践活动中理解、感悟、发展,而不是单纯依*教师的讲解去获得。根据这一理念,教师在教学中从学生的认知规律和知识结构的实际出发,让他们通过有目的的观察、操作、交流、讨论,从直观到抽象,主动构建自己的认知结构。

  3、有机渗透思想品德教育,培养学生的爱国情感。

  培养学生的情感态度和价值观是每一位教师教学的重要目标之一,本节课在充分发掘教学内容,发展学生能力的基础上,介绍了我国古代数学家刘徽,使学生了解我国悠久灿烂的文化,增强学生的爱国情感,树立建设祖国的信念。

  总之,本课教学注重体现以学生发展为本的理念,重视学生的自主探究、创新精神和实践能力的培养。通过创设情境,把数学知识与生活实际结合起来,让学生在操作、交流、探究中去思考、体验和感悟,在实践中学习数学,在学习中体会到学习数学的乐趣,让学生在获取知识形成技能的同时,情感、态度、价值观都得到发展。

《小数的意义》教案2

  【教学内容】

  教科书第50~51页。

  【教学目标】

  1.通过对生活中常见小数的探讨,体会小数产生的必要性,感悟小数表示的意义,同时理解、掌握小数的计数单位和进率。

  2.通过学习,培养学生应用数学知识解释新知的能力,培养合作交流与探索的能力,提高自主探究学习的能力。

  【教学过程】

  一、情境引入。

  1.出示信息:

  (1)一盒饼干12.8元。 (2)张叔叔身高1.73米。

  (3)一个苹果质量0.4千克。 (4)百米世界记录9.58秒。

  2.学生说一说这些小数的含义。(学生可能对0.4千克、9.58秒理解的不够清楚)

  3.引入:我们有必要对小数进行更深入的研究。

  二、新知探索。

  1.教师引导学生结合线段图研究“ 0.1米”、“0.3米”等一位小数的具体含义。

  2.师生结合线段图研究“0.01米”、“0.08米”等两位小数的具体含义。

  3.学生自主结合线段图研究“0.001米”、“0.012米”等三位小数的具体含义。

  4.教师引导学生总结:一位小数、两位小数、三位小数、……分别表示十分之几、百分之几、千分之几、……;它们的计数单位分别为十分之一、百分之一、千分之一、……。

  三、课堂练习。

  1.看图写分数和小数、把对应的分数和小数连一连、说一说每个小数所包含的计数单位的个数。

  2.学生说一说“0.4千克”、“9.58秒”的含义。

  3.学生说一说下面信息中小数的含义。(学生体会有了小数就可以表现出物体细微的特点)

  (5)一颗灰尘的质量大约0.0000007克。 (6)一种细菌的长度大约0.00003米。

  四、课堂总结。

《小数的意义》教案3

  一、设疑激趣

  师:今天我们学习的内容跟哪种数有关?你从哪里发现的信息?

  生:小数,从大屏幕上。

  师:小数的意义就是小数表示什么?那你知道吗?

  生:不知道。

  师:那我们先来回顾一下我们的“小数”朋友,你在生活中遇见过小数吗?

  生:遇见过。

  师:在哪遇见过?

  生1:在计算器上计算有余数的除法时出现了小数。

  生2:去超市买东西时会遇见小数。(师跟进说标价是小数)

  生3:卖菜时遇见小数,(一生补充说是称量重量时出现小数)

  【设计意图:让学生回顾和小数的“相遇”引出小数的生活意义,把数学和生活联系,让学生体会生活与数学的联系,以及数学的生活性,以此来激发学生的探究欲望。】

  二、探究新知

  1、小数的产生

  师:可见小数在生活中是很有用的,那今天我们就先来研究一下它是怎样产生的。刚才同学们说在标价、计量、测量时会用到小数,还有计算时会出现小数,看是这样的吗?(大屏幕出示,测量课桌的长的图片)测量结果课桌长是多少呢?

  生:(异口同声地回答)60厘米。

  师:怎样用米来作单位呢?(有几人举手)它有1米吗?(没有)那不到1米可以用什么数来表示?(生小数)用哪个小数来表示呢?

  生:一百分之六十。

  师:一百分之六十是小数吗?(不是)那是什么数?(分数)那你说可以用分数来表示,那还可以用谁来表示呢?

  生:0.60。

  师:(师提示要带上单位)0.60米。这样我们就得到了一个小数0.60。体育赛事里也有小数,(出示世界飞人的100米短跑的成绩)博尔特以多少的成绩夺冠?

  生:9.58秒。

  师:出示一次数学检测的成绩98.5分,也是检测,再来一组口算。

  出示口算:

  10÷10= 1÷10=

  100÷10= 1÷100=

  1000÷10= 1÷1000=

  【设计意图:兴趣是最活跃的心理成分,是一种带趋向性的心理特征。苏霍姆林斯基也说过:如果教师不设法使学生产生情绪高昂和智力振奋的状态就急于传授知识,不动情感的脑力劳动只会带来疲倦,没有欢欣鼓舞的心情,没有学习的兴趣,学习就会成为学生的负担。因此,在教学中,我创设了超市物品的价格、跑步成绩、身高、体重、体温等情境,让学生感到亲切,引起情感共鸣,体验身边处处有小数。同时,让学生体验测量课桌的长,使学生体会到在实际测量中有时会得不到整数值,必须用新的数来表示。进而又让学生进行口算,让学生动手操作、口算,亲身体验 小数是怎样产生的,激发学生的积极性和主动性。】

  生: 0,赶紧改成1。

  师:非常欣赏他知错就改的精神,但我更希望你能把问题完整的回答下来,语言叙述要准确,(再次完整的回答)。

  师:1÷10=?(没人举手)那先来想想这道算式表示的意义是什么?

  生:1里面有多少个十。

  师:还可以用那句话来说?

  生:把1平均分成10份,每份是几?都说是十分之一。

  师:计算结果出现不是整数时,我们可以用以前分数表示,还可以用小数来表示。谁知道十分之一等于多少呢?(学生都愣了)十分之一是多少呢?用小数多少呢?(一生说是0.1)对吗?先留着,不知道,画一个问号。下边1÷100=?(0.01)用分数怎样表示呢?(一百分之一)那1÷1000=? 就是把1平均分成1000分每份是多少?(一千分之一)那好我们一起来看一下(出示好几张图片)

  师:刚才在进行计算和测量时,往往得不到整数的结果。这时就可以用小数来表示,这就是小数的产生,存在的生活意义。

  【反思:教师太过着急了,没有耐心等待孩子的思维发展,没能和上学生的心弦。原本是等孩子们经历完三道计算后再引出小数的,但是一次就出来了。所以小数的产生没能顺理成章的出现。】

  2、教学小数的意义

  师:能不能把刚才得到的小数读出来呢?从左往右,要学生一起读。你能不能把这几个小数分成两类呢?

  0.85 9.58 38.2 0.6 39.4 98.5

  生:0.85 9.58是一类,其余是一类。

  师:能不能说说你的分类理由?

  生:后面是两位、一位。

  师:她说是后面,(一生即使补充是小数点后面)说得真好,来欣赏一下,(追问,指着0.85 9.58问)小数点后面是几位呀?(两位)那我们就把它称作两位小数,(指着38.2 0.6 39.4 98.5)小数点后面有几位?(一位)那就叫(学生根据直觉说)一位小数。那小数肯定还会有?

  生:三位小数,四位小数,五位小数……

  师:小数的位数是无尽的,研究小数也要从简单入手,咱们就先从研究一位小数入手。我们借助常用的一个长度单位来研究,(出示米尺图)请读出一句话。

  【设计意图:让学生通过观察思考及演示,层层设问,利用旧知逐步将学生引向新知。学生对小数的位数有一定的理解,渗透化难为易的数学研究思想。】

  【反思:本环节的分类有两种,一种是按小数的位数分类,另一种是按照整数部分是否0(是否纯小数)来分,一种是为本节的小数意义作铺垫,一种是为小数的后续研究做伏笔,但自己却把第一种分法板示后,把后者遗忘了。】

  教师出示:把 1米平均分成10份。

  师:把1米平均分成10份,每一份是多长?

  生:10厘米。

  1分米。

  师:1分米和10厘米相等吗?(相等)都可以,那你能不能用一个分数来表示呢?

  生:一百分之一。

  生:十分之一。

  师:把一米平均分成了十分,那分母就应该是几?(10)十分之一米可以用哪个小数来表示?(0.1米)观察1分米,1/10米,0.1米它们都是指把一米平均分成10份,其中的一份的长度,那你说这三个数是否相等?(等于,完成板书1分米=1/10米=0.1米,擦掉问号)1分米是其中的几份呢?

  师:这个数如何表示呢?(4/10米,0.4米)这两个长度一样吗?(一样)那就可以用等号连接。谁能说一下4/10米里面有多少个1/10米?(4个)

  师:你能表示这个数吗?(7分米,7/10米,0.7米)那你能说说0.7里面有多少个0.1吗?(异口同声,7个)

  擦掉单位发现:1/10 =0.1,那你以后看到0.1就要想到1/10,0.1就是谁了?(1/10)0.4里面有( )个1/10,0.4就是分数( )。0.7里面有( )个1/10,0.7就是分数( )。

  师:你发现分数与小数的联系了吗?

  分母是10的分数,可以写成一位小数。一位小数表示十分之几,它是的计数单位是十分之一,也就是0.1。

  师:0.2米表示什么?0.8米呢?你再说两个一位小数,并说出他们的意义。

  【设计意图:在后面的教学中实现知识的正向迁移,理解分数与小数之间的联系。进而理解小数的意义。】

  (2)认识两位小数

  师(引导学生观察米尺):把1米平均分成100份,每份是多少呢?

  生:是一百分之一米。

  师:还可以怎样表示呢?

  生:0.01米,1厘米。(补充板书)

  师:一百分之一米,它的分母是多少?(100)分母是100的分数写成了几位小数?(两位小数)你还能把几厘米表示成这样的数吗?你想表示几厘米就表示几厘米?(老师是涂色吗?)不是,是自己写一个几厘米把它用小数,分数表示。

  【反思:问题提出的较为模糊,所以自己不断地去补充、重复问题。就这还有孩子不知我说啥,还是自己的问题指向目标不明确造成的。】

  交流自己写的:

  师:你写的是多少?

  生1: 7厘米,是7/100米,0.07米。

  师:你能猜一猜两位小数与什么样的分数有关系吗?

  (指名回答并板书:1厘米=1/100米=0.01米;7厘米=7/100米=0.07米。)

  生(口答):0.01里面有( )个1/100,0.20里面有( )个1/100, 0.32里面有( )个1/100,并说出用哪个分数来表示。

  引导发现:两位小数表示百分之几,它的计数单位是百分之一,也就是0.01。

  师:0.32里面有多少个百分之一呢?(32个)这就是小数0.32表示的意义。

  (3)认识三位小数

  出示:一位小数表示十分之几,它的计数单位是十分之一,可以写作 0.1。

  两位小数表示百分之几,它的计数单位是百分之一,可以写作0.01。

  师:刚才我们认识了一位小数、两位小数的意义和计数单位,那以此类推,你知道

  三位小数表示什么?(千分之几)它的计数单位是(千分之一),可以写作(0.001)。

  四位小数表示什么呢?计数单位呢?可以写作?五位小数呢?小数的位数能说完吗?……(不能)是无穷的。

  师(借助米尺,使学生明确):把1米平均分成一千份,每份是多少?(1毫米)

  1毫米是千分之一米,还可以写成0.001米来表示。(板书:1毫米, 米,0.001米 )

  【设计意图:数学思想方法是高一级的知识,是对知识的一种本质揭示,是数学知识结构的灵魂。在教学中,既要注重学生知识的获取和能力的培养,更应注重数学思想方法的渗透。本节课中,在教学1分米=1/10米=0、1米时,先让学生初步感悟十进制分数与一位小数之间的联系,进而由此迁移类推得到许多一位小数,让学生比较这些小数的共同点,归纳出一位小数的意义。在此基础上又让学生迁移,类比认识二位小数、三位小数,从而归纳出小数的意义。后又通过观察、思考、类推出三位、四位小数的计数单位。】

  (4)抽象、概括小数的意义

  师:小数是什么?

  补充并概括:小数其实就是分母是10、100、1000……的分数的另一种书写形式。分母是10、100、1000、……的分数可以仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫做小数。

  师:0.85是几位小数?它就是哪个分数呢?它的意义是什么呢?0.85表示什么?

  生:85个0.01,还可以表示把一个整体平均分成100份,有这样的85份。

  师:这就是0.85这个小数表示的意义。0.1、0.01、0.001……这些是小数的计数单位,那整数的计数单位有哪些?

  生:个、十、百、千、万……

  师:每相邻两个计数单位之间的进率是多少?(10)接下来我们来研究小数的计数单位。

  3、小数单位间的进率

  师:这是一个正方形,可以用“1”来表示,(演示把它平均分成十份,其中一份涂红色问),这是怎样分的?(十分之一、平均分)怎样分?平均分成10份,涂色部分是其中的几份?(1份)可以用哪个数来表示?(十分之一)还可应用谁来表示?(0.1)1里面有多少个0.1呢?(10个)

  师:(把图继续分成100份)发生了怎样的变化?平均分成了多少分份?(100份)其中的一份用哪个数来表示?(0.01、一百分之一)那0.1里有几个0.01呢?(10个)那小数计数单位之间的进率也是10。把这个正方形平均分成1000份呢?每份是多少?0.01里面有多少个0.001?那我们就接着把小数的计数单位写在整数的计数单位后面,并用小数点隔开,这样就把整数和小数整合了。

  【反思:这个问题的抛出有点突然,显得计数单位更加抽象了,不如换成先让学生猜测它们之间的进率,在通过正方形平均分的动手操作、验证。借助正方形的十分之一、百分之一、千分之一来揭示小数的计数单位间的进率。】

  三、巩固练习

  师:9. 58的9在哪一位上?(个位)表示什么?(9个一)这个5表示什么?(5个0.1)8呢?(8个0.01)

  1、下面括号里能填几。

  0.1米里有( )个0.01米,0.01米里面有( )个0.001米。

  得出:相邻两个计数单位之间的进率是10。

  师:现在你知道为什么要借助长度来研究小数的意义吗?(知道)因为毫米、厘米、分米、米每相邻的单位之间的进率也是10。

  【设计意图:借助长度单位理解,再次得出每相邻两个计数单位之间的进率是10。重点理解“相邻”二字的含义,突破难点,巩固分数与小数之间的关系,加深对小数意义、小数计数单位及单位间进率的理解,并达到学以致用。】

  2、(1)用合适的数表示图中的涂色部分。

  (2)用合适的数表示图中的空白部分。

  3、先写出一个两位小数,再用阴影表示这个小数。(交流自己写的小数及其意义)

  4、找朋友。

  四、课堂总结

  师:以前学过整数、分数,今天又学习了小数,通过今天的联系我们知道它们之间有一定的联系?

  生:每相邻的计数单位之间的进率都是十。

  生:小数就是分数。

  生:小数的计数单位是0.1、0.01、0.001……也可以用分数十分之一、百分之一、千分之一……来表示。

  五、你知道吗

  了解小数的起源、发展史。

《小数的意义》教案4

  教学目标

  [知识与技能]

  通过数学活动,学会读、写小数,进一步加深对小数意义的理解。培养利用已有的知识和经验进行知识的迁移。

  [过程与方法]

  通过知识迁移,学会小数的读、写,学会综合运用所学的知识和技能解决新问题,发展应用意识。

  [情感态度与价值观]

  在感受、体验、探索的过程中,体会数学与生活的密切联系,增强探索的意识,提高合作交流的能力,获得成功的体验。

  教学重难点

  教学重点

  在小的数位较多的情况下,学会读、写小数。

  教学难点

  通过小数读、写法的学习,进一步加深对小数意义的理解。

  教学工具

  课件

  教学过程

  一、复习导入

  1、复习整数的写法 .

  2、复习整数的读法。复习整数数位顺序表。

  3、尝试改数

  你能不改变这三个数的数字,将这三个数改成小数吗?

  563 4007 12378

  二、 教学小数的数位的顺序表

  (1)复习整数的数位表

  指名学生讲已学过的计数单位有哪些,每相邻两个计数单位间的进率是多少

  (2)教学小数的数位顺序表

  ①说明什么叫做小数的数位?

  ②小数的计数单位哪最大,它和整数个位间进率是多少,那么表示十分之几的数要写在小数点右面第几位,这个数位叫做十分位。

  ③表示百分之几的数要写在小数点右面的第几位,这个数位叫什么,它所对应的计数单位是什么?

  ④表示千分之几的数要写在小数点右面的第几位,这个数位叫做什么,它所对应的计数单位是什么?

  ⑤再往下还可以有万分位、十万分位、百万分位等,因为数较多的不常用,我们在数位表上就用“……”表示。

  学生:分小组讨论完成上面的问题。

  小结:实际用时小数和整数常写在一起,这样的数也叫做小数,小数点左边的部分就称整数部分,小数点右边数就称小数部分。

  三、学习小数的读法

  (1)、读55.55

  教师:通过预习,小数55.55应该怎么读?谁来给大家读一读呢?

  学生(猜测):五十五点五十五;五十五点五五;五十五点五十分五百分。

  教师:哪个同学回答正确?正确读法是“五十五点五五”.小数的正确读法是什么?

  [小结] 小数的整数部分和小数部分读法不同,整数部分按照原来的读法读,小数部分按从左到右依次读出每一个数字。

  (2)、读5050.005

  (课件出示5050.005读作)

  教师:按照我们刚才的小结,大家一起读出这个小数。

  学生:五千零五十点零零五。

  教师:在这里老师要强调,小数点后面的每一个数字都要读,这一点大家必须记住。

  (3)、整理小数的读法

  读小数时,整数部分按照整数的读法来读,整数部分是“0”的就读成“零”,小数部分要依次读出每个数字。读小数部分,小数部分要依次读出每个数字,而且有几个0就读几个0.

  四、学习小数的写法

  (1)、感悟写的方法

  教师:根据小数的读法,你能写出小数吗?

  (幻灯片出示:写出下面的 小数三点三零、六十四点零五、零点零零四、一点零零一)

  教师:请同学们快速写出白版上的小数,彼此检查看看正确与否。

  学生:交流自己的成果,总结小数的写法。

  教师在学生书写过程中进行检查,对有问题的学生及时点拨指导,使每个学生都会写出相应的小数。

  [小结]在小数时,整数部分按照整数的写法写,小数部分要依次写出每个数字,而且有几个0就写几个0.

  五、探究提升

  (1)、多少个百分之一是十分之一?十分位右边应该是哪一位?百分位右边应该是哪一位呢?

  (2)、指出345.679整数部分中的每一位分别是什么位?

  (3)、再指出小数部分的十分位、百分位、千分位上分别是多少?

  六、达标测评

  (1)、写出下面的小数。

  零点零七 五点零六 十点零零二

  三百点七一 零点零一四 十五点五零三

  (2)、填空

  0.9里面有( )个 0.1,0.07里面( )个0.01,

  4个( )是0.04,小数点右边第二位是( )位,第四位是( )位,第一位是(),第三位是( )。

  (3)、读出下面各数

  南江长江大桥全长6.772千米。

  课后习题

  完成课后练习题。

《小数的意义》教案5

  教材位置

  人教版九义教材六年制小学第八册教科书第111——112页的例1及相应“做一做”和练习二十六第1题。

  教学目的

  1、使学生理解小数加法的意义,初步掌握计算法则,能够较熟练地笔算小数加法。

  2、培养学生的迁移、类推能力。

  3、渗透数学“来源于生活,又运用于生活”。

  教具准备

  多媒体课件。

  学具准备

  草稿纸若干

  教学重点

  相同数位对齐

  教学难点

  小数点对齐

  教学方法

  探究式学习法

  学情分析

  学生已对多位数笔算方法有较深的认识及熟练准确的计算,对小数的数位也在上一章节有明确的认识,只是在“怎样才能尽快地使小数的相同数位对齐”这一观念上需要摸索、比较,得到明确的认识,形成计算小数加法的能力。

  学生在整数加法的计算法则中已有相当的了解,并对其重要性已有较深的认识。

  整数加法笔算时是先将个位对齐以达到相同数位对齐的目的,小数则应抓住小数的特征,将小数点对齐来达到相同数位对齐的要求。

  学生在整数加法的基础上,通过类比推理,将知识迁移,很容易理解。

  教学过程

  一、复习。

  1、谁的竖式最漂亮,计算更准确。

  4235+5478 3251+438

  7621+37543 4320+317

  小组内完成后,讨论下列问题。

  1列竖式时要注意什么?怎样列竖式更快捷?

  2计算时要注意什么?

  2、整数加法的意义是什么?它的计算法则是什么?

  二、激趣导入。

  1、提问:夏天到了,你最喜欢吃什么水果?

  2、听故事,做数学。

  明明和妈妈到自选商场买西瓜。妈妈选了一个小一点的瓜,在电子称上一称,是3735克。明明选了一个大一点,有4075克。你能算出他们一共买了多少西瓜吗?

  3、抽一生列式板演,全班齐练。

  4、继续听,继续算。

  后来,他们到收银台,可收银台阿姨的称量数据却发生了变化,上面全是以“千克”为单位的,你能说出他们西瓜的重量吗?

  你还会求出他们一共重多少千克吗?

  5、揭示课题:

  小数加法的意义和计算法则

  三、新授。

  1、小数加法的意义。

  同整数加法一样,都是把两个数合并成一个数的运算。

  2、小数加法的计算法则。

  刚才有的同学说会,现在各小组一齐完成竖式计算并讨论以下问题:

  (1)小数与整数比较,有什么特征?

  复习整数加法的计算,让学生进一步巩固相同数位对齐的认识。

  为小数加法的意义和法则的类推作理论铺垫。

  设问起疑,引起学生的兴趣,提高学生的注意力。

  体现数学来源于生活,生活中到处存在数学问题。

  进一步复习巩固单位换算的知识,为引出课题作准备。

  类比推理的运用,训练学生知识迁移能力。

  (2)列竖式时注意:整数先将个位对齐,小数应先将什么对齐,以达到相同数位对齐的

  目的?

  (3)小数计算后,结果末尾是“0”应怎么办?它的理论依据是什么?

  3、指导看书P111。

  4、试练。

  完成P111做一做并回答问题。

  四、延伸拓展。

  1、你会用两种方法计算吗?

  1元8角7分+3角2分

  7角6分+3元4角4分

  2、听故事,列算式:

  小玲到商场买来3米2分米绳子,付了1元9角2分钱,后来发现不够,小丽又去买了2.8米,付了1元6角8分。一共买了多少绳子?付了多少钱?

  五、巩固训练。

  4235+5748 37251+438

  4.235+5.748 3.7251+4.38

  42.35+5.748 37.251+4.38

  4.235+57.48 372.51+4.38

  六、板书设计。

  小数加法的意义和计算法则

  3 7 3 5克 3. 7 3 5千克

  + 4 0 7 5克 + 4. 0 7 5千克

  7 8 1 07. 8 1 0千克

  7810克=7.81千克 3.735+4.075=7.81(千克)

  在完成小数的意义的推理以后,让学生思考小数加法法则向整数加法法则的类推。

  初步学会对加法法则的运用。

  加深学生对整数加法和小数加法法则的理解及综合运用知识的能力。

  训练学生分类整理知识的能力,体现出运用知识解决生活中实际问题的观念。

  加深对计算法则的理解,能运用法则准确计算。

《小数的意义》教案6

  【教学内容】

  人教版教材第32~33页例1和“做一做”,第36页练习九第1~3题。

  【教学目标】

  1.使学生知道小数是在实际生活中产生的,并有着广泛的应用,认识整数、分数与小数之间的内在联系。

  2.理解小数的意义,掌握小数的计数单位及相邻两个单位间的进率。体会到小数与我们的日常生活是密切联系的。

  3、培养学生探究发现、类推迁移的数学学习能力。

  【教学重点】

  在学生初步认识分数和小数的基础上,进一步理解小数的意义。

  【教学难点】

  理解小数与分数之间的联系,掌握小数的计数单位及单位间的进率。

  【教学准备】

  米尺、多媒体课件、立方体教具。

  【教学过程】

  一、【课前铺垫、创设情景】

  教师通过展示自己的个人资料,既满足了学生想进一步地了解老师的好奇心,又达到了复习铺垫的学习目标。通过学生自主创造小数的环节,极大地调动了学生对小数世界的求知欲望。

  二、【新课讲授】

  1、认识一位小数

  今天的学习,我们借助一样学具~米尺,大家认识它吗?现在我们把它搬到大屏幕上!

  (出示米尺课件)学生仔细观察,回答问题。

  教学例1。

  教师提问:一起来数数,把1米平均分成了多少份?

  学生一起数,得出结论(10份)。

  提问:因为1米=10分米,所以这一份是多长?

  学生观察后回答:1分米

  小结:我们把1米平均分成了10份,每一份是1分米。

  提问:1分米是1米的几分之几?()

  (1)如果用“米”做单位,每一份用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.1米。)

  教师强调0.1米表示的意思:(0.1米表示把1米平均分成10份,取其中的1份就是0.1米)

  想一想:0.1米的长度和米的长度它们之间是一种什么关系?(相等的关系)

  由此得出:米=0.1米

  (2)这样的3份是几分米?(这样的3份是3分米。)用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.3米。)

  提问:谁能说说0.3米表示什么意思?

  同样,可以得出:米=0.3米

  (3)这样的7份又是多长呢?(这样的7份是7分米。)用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.7米。)

  提问:谁能再来解释一下0.7米表示什么意思?

  同理,可以写成:米=0.7米

  (4)进一步强化训练:这样的9份就是(9分米),写成分数是(米)、写成小数是(0.9米)(学生口答完成)

  教师旨在引导,学生观察发现

  师:课件显示我们刚才得到的一组分数,观察这些分数的分母,你发现它们有什么共同特点?(分母都是10)

  师:分母都是10的,也就是十分之几的数,我们用几位小数来表示?(一位小数)

  师:结合我们得出的这几组等式,谁能把你刚才的发现再来完整地说一说?

  学生通过观察,自行总结发现。(分母是10的分数,可以用一位小数来表示)点击出示第一个发现!你的发现太棒了!

  出示课件(我们一起来回顾一下,这一段是几米?)(0.3米)

  一起数数0.3米是由几个米组成的?(3个)

  提问:那0.3里面有()个0.1?

  这一段又是多长?(0.7米)

  再来数数几个米组成0.7米?(7个)

  提问:那0.7里面有()个0.1?

  进一步强化训练:0.9里面有()个0.1?(9个)

  请大家想一想:9个0.1如果再加上1个0.1是多少呢?(是1)

  提问:1里面有()个?(10个)

  也就是说:1里面有10个0.1

  提问:谁能告诉我1.2里面有()个0.1?(12个)

  师:你是怎么想的?

  教师小结:像0.3、0.7、0.9、1.2……都是一位小数,一位小数表示里面有()个,我们就说,是一位小数的计数单位,写作:0.1

  师:这句话太重要了,谁能把它再说一遍!

  点击出示第二个发现!(一位小数的计数单位是十分之一,写作:0.1)

  反馈小训练:谁能告诉老师:0.8的计数单位是什么?它有几个这样的计数单位?

  2、认识两位小数

  小小的米尺,大大的学问。

  师:同学们,猜一猜,如果老师再想继续分的话,会把1米平均分成多少份呢?(100份)现在的每一份是几厘米?(每一份是1厘米)

  1厘米是1米的几分之几米呢?(米)

  出示课件:同学们请看,老师把之前分得的1分米,通过放大,再次平均分成10份,这时,就把1米平均分成了100份。

  小结:这样的一份就是1厘米,用分数表示是米,写成小数是(0.01米)

  提问:这样的4份和8份用分数和小数表示,分别又是多少米呢?

  请大家翻开课本32面,把你的答案写在书上。

  教师根据学生的回答,课件逐一出示答案。

  师:根据你们的回答,我们可以得到这样几组等式(显示等式课件)

  师:请大家仔细观察,这次写出的都是几位小数?(两位小数)

  师:表示这些小数的分数,它们的分母又有什么共同特点?(分母都是100)

  师:那你发现了什么?

  学生通过观察,自行总结发现。(分母是100的分数,可以用两位小数来表示)点击出示第一个发现!你的发现真了不起!

  师:分母是100的分数,可以写成两位小数。两位小数表示百分之几的数,百分之几也可以看作是几个百分之一,这里的就是两位小数的计数单位,写作:0.01

  师:谁能把这句非常重要的话像老师这样说一说!

  点击出示第二个发现!(两位小数的计数单位是百分之一,写作:0.01)

  反馈小训练:想一想0.25的计数单位是什么?它有几个这样的计数单位?并说说你是怎么想的?(对学生的回答及时作出评价)

  3、认识三位小数

  师:刚才我们认识了一位小数、两位小数的意义和计数单位,那三位小数呢?下面请同学们按照老师给出的自学提示和自学要求,有步骤地进行自学探究,并完成手中的活动报告单。提问:根据前面的学习规律,说说1毫米、6毫米、13毫米用分数和小数该怎样表示?

  学生分组讨论交流,小组选派代表发言。

  发言总结:1毫米用分数表示是米,写成小数是0.001米;6毫米用分数表示是米,写成小数是0.006米。13毫米用分数表示是13/1000米,写成小数是0.013米

  提问:经过你们的自学探究,谁愿意把你们小组的发现和大家分享一下?

  学生总结发现:

  分母是1000的分数,可以用三位小数来表示。

  三位小数的计数单位是千分之一,写作:0.001

  点击出示发现!你们个个都是自学小能手!老师为你们点赞!

  4、概括:小数的意义

  师:通过刚才的学习,我们知道了:

  分母是10的分数,可以用一位小数来表示

  分母是100的分数,可以用两位小数来表示

  分母是1000的分数,可以用三位小数来表示

  谁能尝试着把它们用一句话来概括一下?(教师可适当提示一位小数、两位小数、三位小数都属于小数范畴)

  学生小结:分母是10、100、1000的分数,可以用小数来表示。(师板书)

  师:依此类推,分母是10000的分数,可以用(四)位小数来表示、分母是100000的分数,可以用(五)位小数来表示……说的完吗?(说不完)就可以用省略号来表示……

  这就是小数的意义,请大家齐读一遍。

  学生齐读意义,教师板书课题~小数的意义

  师:同学们可真棒!自己总结出了小数的意义!

  5、总结:小数的计数单位

  师:通过刚才的学习,我们也知道了:

  一位小数的计数单位是十分之一,写作:0.1

  两位小数的计数单位是百分之一,写作:0.01

  三位小数的计数单位是千分之一,写作:0.001

  师:谁能尝试着把它们用一句话来总结一下?

  学生小结:小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……(师板书)

  师:你是个非常善于总结的孩子!这就是小数的计数单位,请大家齐读一遍。

  师:这里的省略号表示什么意思?(说不完)看来同学们理解了!

  6、小数相邻单位间的进率

  (过渡)学习的过程就是不断地克服困难,战胜自我的过程。

  师:同学们请看大屏幕,老师带来了一个用整数1来表示的正方体,我真诚的邀请同学们一起来感受这个正方体变形的过程,你们愿意吗?

  教师出示正方体变形课件,逐步引导学生观察分析:

  1里面()个0.1

  0.1里面()个0.01

  0.01里面有()个0.001

  提问:括号里能填几,你是怎么想的,先独立思考,再小组讨论,汇报结果。

  学生讨论发言。

  小结:通过演示操作,交流讨论发现:1里面有10个0.1;0.1里面有10个0.01;也就是0.1是0.01的10倍,我们就说0.1和0.01之间的进率是10,0.01里面有10个0.001,也就可以说0.01和0.001之间的进率是10。

  师:什么情况下它们的计数单位之间的进率是10呢?举例说说你是怎么想的?

  学生小结:小数和整数一样,每相邻两个计数单位之间的进率是10。(师板书)

  请大家齐读一遍。

  三、【巩固提升、练习反馈】

  1.完成教材第33页“做一做”。(可以一题两问)

  2.判断:争当合格小裁判(说出判断理由)

  四、【课堂小结】

  提问:同学们,这节课学的高兴吗?谁能向同学们分享一下你这节课的收获?

  小结:是的,很多数学知识都是相互联系、相互贯通的。今天我们主要研究分母是10、100、1000……的这类特殊分数与小数的转化,在以后的学习中,我们还会继续探究由特殊到一般研究和转化。只要你善于思考和发现,你就能从中得到无穷无尽的乐趣!最后,老师把自己最喜欢的一句人生格言送给大家,希望与你们共勉!(天才是百分之一的灵感加上百分之九十九的汗水)

  五、拓展延伸

  板书设计

  小数的意义:分母是10、100、1000……的分数,可以用小数来表示。

  小数的计数单位:小数的计数单位是十分之一、百分之一、千分之一……分别写作:0.1、0.01、0.001……

  小数的进率:每相邻两个计数单位之间的进率是10。

《小数的意义》教案7

  [教学目标]

  1.理解小数乘以整数的意义,掌握它的计算方法。

  2.通过运用迁移的方法学会新知识,培养类推的能力。

  3.培养学生认真观察、善于思考的学习习惯。

  [教学过程]

  本节课分四个环节进行。

  课前谈话:同学们已学习了小数加法和减法的意义及计算方法,这学期要在这个基础上,继续学习小数乘法和除法的意义及计算方法等知识。今天,我们先学习小数乘以整数的意义和计算方法。出示课题:小数乘以整数

  (一)复习旧知,引入新知

  1.指名板演。(用竖式计算)65×5=976×14=订正时,可让学生说说整数乘法的意义及计算方法。

  2.口答。(出示投影片)

  (1)填空。5.6扩大()倍是56。9.76扩大()倍是976。

  (2)去掉下面各数的小数点后,分别扩大多少倍?3.24.780.0370.06

  (3)下面各数分别缩小10倍、100倍、1000倍后各是多少?485853450

  3.填表,并说一说你发现了什么规律。(出示投影片)

  订正时要注意引导学生先从左向右观察:一个因数不变,另一个因数扩大10倍、100倍、1000倍,积也随着扩大10倍、100倍、1000倍。

  再引导学生从右向左观察发现:一个因数不变,另一个因数缩小10倍、100倍、1000倍,积也随着缩小10倍、100倍、1000倍。

  最后归纳出:一个因数不变,另一个因数扩大(或缩小)10倍、100倍、1000倍……,积也随着扩大(或缩小)10倍、100倍、1000倍……。

  教师谈话:刚才我们复习了整数乘法的意义和计算方法,小数点位置的移动引起小数大小的变化规律,及因数的变化引起积的变化规律,这些知识都是为今天学习新知识做准备。下面我们运用这些知识一起研究小数乘以整数的意义和计算方法。

  教学意图:让学生充分回忆旧知识,为学习新知识进行迁移做好准备。教师要注意让全体学生参与,动口、动手、动脑。

  (二)运用迁移,学习新知

  1.理解小数乘以整数的意义。

  出示例1:花布每米6.5元,买5米要用多少元?

  读题后,请学生列出加法算式并板书:

  6.5+6.5+6.5+6.5+6.5

  提问:这个加法算式中的加数有什么特点?这样的加法算式怎样计算比较简便?

  (几个加数相同,都是小数。求n个相同加数的和可以用乘法计算比较简便。)

  提问:你能列出乘法算式吗?想一想它的意义是什么呢?

  (6.5×5,表示5个6.5相加是多少,或6.5的5倍是多少)

  板书:6.5×5

  教师:6.5×5是小数乘以整数,小数乘以整数的意义是什么呢?

  出示思考题,并组织学生讨论。

  (1)小数乘以整数的意义与整数乘法的意义相同吗?(相同)

  (2)它们有什么不同?(小数乘以整数中的几个相同加数是小数,而整数乘法中的几个相同加数仅限于整数)

  (3)小数乘以整数的意义是什么呢?

  讨论后概括出:小数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

  练一练,说出下列各题的意义。0.9×463×68.4×15(4个0.9相加的和是多少?6个63相加的和是多少?15个8.4相加的和是多少?)

  2.理解法则。

  教师:我们学习了小数乘以整数的意义,下面继续研究它的计算方法。同学们可联系前面复习的知识,认真思考,积极发言。

  出示思考题,组织学生讨论,并试做。

  (1)怎样把6.5×5转化为整数乘法进行计算?

  (2)把6.5×5转化为整数乘法后,积发生了什么变化?

  (3)要想使积不变,应该怎么办?

  讨论后,教师指名回答,并板书学生的思考过程。

  答:买5米要用32.5元。

  教学意图:让学生初步理解小数乘以整数的意义和计算方法。采用的方法是让学生在旧有知识的基础上运用迁移的方法,通过讨论、尝试,自己探索新知。

  (三)反馈调节,归纳方法

  1.反馈调节。

  (1)完成“做一做”。(指名板演,其他同学在练习本上完成)14个9.76是多少?练习时,要注意行间巡视;订正时,根据学生的问题及时调节。

  (2)计算。0.86×70.375×124(指名板演,其他同学在练习本上完成)订正时,要让学生说一说计算时是怎样想的。

  2.归纳方法。观察并讨论:例题和练习题每题的积的小数位数与被乘数小数位数有什么关系?小数乘以整数的计算方法是什么?(积的小数位数和被乘数小数位数相同)

  总结计算方法:小数乘以整数,先按整数乘法法则算出积,再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。

  总结后,组织看课本,让学生提问题。

  教学意图:在练习的基础上,进一步理解算理,并通过学生观察、讨论,自己发现规律,总结计算方法。

  (四)巩固练习,孕伏发展

  1.说出下面各式的意义。0.8×43.5×719.6×12

  2.下面各题的积有几位小数?看谁说得又对又快。4.3×80.72×63.726×80.54×7

  3.根据282×12=3384,不用计算直接说出各式的积。28.2×12=2.82×12=0.282×12=

  4.列出乘法算式,并计算。(全班动笔)(1)5个2.05是多少?(2)4.95的7倍是多少?

  5.计算。0.45×1081.056×25(可分组进行)

  订正:0.45×108=48.6,1.056×25=26.4,这两题的积的末尾是0,应先数好积的小数位数,点上小数点,再消去“0”。

  6.小明看到远处打闪以后,经过4秒钟听到雷声,已知雷声在空气中每秒传播0.33千米,打闪的地方离小明多远?(从打闪起到看到闪电的时间略去不算)解题前,要向学生说明看见的闪电是光,光在空气中的速度是每秒传播30万千米,远远大于声音在空气中的速度。因此从打闪起到看到闪电的时间可略去不记。订正:0.33×4=1.32(千米)

  7.课堂小结。小结前,可先让学生提出问题,解疑后,再总结。

  8.孕伏发展。

  计算6.5×0.56.5×0.82

  教师:你们知道这两个算式的意义吗?应该怎样计算呢?这是下节课要研究的内容。同学们如有兴趣,课后可以想一想。

  小数乘以整数的意义和计算方法由收集及整理,转载请说明出处

《小数的意义》教案8

  设计说明

  《数学课程标准》指出:数学教学必须激发学生的兴趣,调动学生的积极性,引发学生的思考,同时要注重培养学生良好的学习习惯,掌握有效的学习方法。针对这一点,本节课的教学设计如下:

  1.重视学生的实践操作。

  在教学中通过估一估、量一量、想一想、说一说等实践活动,探究怎样把用“厘米”作单位的数改写成用“米”作单位的数和把用“克”作单位的数改写成用“千克”作单位的数,培养学生的估测意识、空间观念和动手操作能力,使学生体会到成功的喜悦。

  2.渗透转化思想,积累数学活动经验。

  数学思想蕴涵在数学知识形成、发展和应用的过程中,是数学知识和方法在更高层次上的抽象与概括。在把低级单位的数转化成高级单位的数时,先用分数的`形式表示,再转化成小数的形式,渗透了转化思想。转化思想有助于学生学习新的数学知识,分析和解决新的数学问题及积累数学活动经验。

  课前准备

  教师准备 PPT课件

  学生准备 直尺

  教学过程

  ⊙激趣导入

  1.导入:同学们,你们还记得1米有多长吗?用手势表示一下(学生用手势表示1米的长度),再看看我们使用的黑板有多长(学生估测黑板的长度)。要想准确地表示它的长度,需要进行测量。

  2.量一量。

  (1)以小组为单位测量黑板的长度。

  (2)汇报结果。

  组1:黑板长2米多。

  组2:量出2米后还多出36厘米。

  组3:量出是2.36米。

  3.交代学习目标,引出新课。

  师:小数在我们的生活中随处可见,它可以帮助我们解决生活中的问题,有着重要的作用,这节课我们继续学习小数的意义。

  设计意图:通过让学生测量黑板的长度,激发学生的学习兴趣,使学生进一步体会小数的意义。

  ⊙探究新知

  (一)探究把低级单位的数转化成高级单位的数的方法。

  1.引导学生观察上面的结果,你有什么发现或疑问?

  (学生讨论、交流并汇报)

  2.小组合作学习:剩余的36厘米怎样用“米”作单位来表示呢?

  3.交流汇报,说一说自己是怎么考虑的,在探究中运用了什么思想方法。

  4.归纳学生的方法。

  (1)多出36厘米,把1米平均分成100份,1份就是1厘米,即1米=100厘米,1厘米=米。36厘米=米,也就是0.36米。

  (2)在把36厘米转化成0.36米的过程中,先用分数的形式表示,再转化成小数的形式。

  5.师生共同总结把低级单位的数转化成高级单位的数的方法:根据两个单位间的进率,先把低级单位前的数改写成分母是10,100,1000,…的分数,再把分数改写成小数的形式,并在后面加上所要化成的高级单位的名称。

  6.尝试练习。

  12克=千克=( )千克

  500克=千克=( )千克

  (学生在小组内讨论,并汇报结果)

  设计意图:通过估一估、量一量、想一想、说一说等实践活动,既能使学生获取新知,又能培养学生的分析、推理和概括能力,还使学生感受到合作的快乐,从而使学生学习数学的兴趣更加浓厚。

《小数的意义》教案9

  教学目标:

  1、使学生结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。

  2、利用直观的图片,建构小数和分数的联系,经历小数意义的归纳过程,学会小数之间的转换。

  3、培养学生的迁移、类推能力,以及良好的数学学习品质。

  教学重点:

  理解小数的意义,知道小数的计数单位及每相邻的两个计数单位之间的进率是10。

  教学难点:

  理解一位、两位、三位小数的意义。

  教学过程:

  一、情境导入:

  1、(展示一根绳子)猜猜它有多长?

  生猜:1米……

  师:要想知道准确的结果,怎么办?

  生:量一量。

  师:谁愿意来测量一下它的长度?

  两名学生合作测量。

  师:把你们测量的结果汇报一下。

  生:一米。

  师:刚才谁猜对了?大家的眼力真不错,很会观察,下面加大难度,你能猜一猜课桌面的宽吗?

  生猜并测量验证。

  师:通过测量我们发现,绳子的长度是1米,课桌面的宽度是41厘米,那么课桌面的宽度仍用“米”做单位,还能用整数表示吗?

  生:不能。

  师:为什么不能用整数了?

  生汇报

  师:也就是说,在进行测量时,如果不能得到整数的结果,我们就要用其他的数来表示,也就是我们今天要学习的小数。(板书:小数)

  师:那你们说说在哪些地方还见过小数。

  生汇报

  师:看来小数在生活中的用处真是不小,今天我们就来研究“小数的意义”。(补充板书)

  二、探索交流,建构新识:

  (一)理解一位小数的意义。

  1.师:请同学们任意说一个小数。

  生汇报师板书

  师:那老师也来写几个。

  0.1 0.01

  师:猜一猜老师接下来会写什么?

  生:0.001

  师:同学们真的是很会推理。

  2.今天我们要学习的是--小数的意义,那我们就从0.1开始研究好不好,那0.1的意义你知道吗?它表示什么?

  生汇报

  师:对于0.1同学们都有不同的认识。老师带来了一个正方形,如果我们用一张正方形表示1的话,请你估计一下,0.1该有多大,用手比划一下。

  师:请同学们在这张纸上分一分并用阴影涂色表示出0.1。老师看哪些同学的速度最快。

  3.生展示、汇报

  展示若干组学生的画法。

  (编号,让学生说出自己的想法。)

  师:你认为哪位同学表示出了0.1那么大小。

  生:1号;3号;2号;4号。

  师:到底哪位同学的表示出了0.1呢?我们一起来看一下。(出示课件)这个纸杯的售价为0.1元,如果你是顾客,你应该付给售货员多少钱?(1角)。明明是0.1元,为什么你要付1角钱呢?(生汇报:0.1元就是1角)师出示课件。那一角钱还可以用()/()元(生汇报)

  师:1角=元,1角=0.1元,那元和0.1元是什么关系?看来,0.1=。

  师:现在我们再来回头看刚才几位同学的作品,哪位同学的涂色部分表示出了0.1?(生汇报:3号和4号。)

  师:现在我们再一起来理顺一下。(出示课件)一个正方形用1表示,要想表示0.1我们先把这个正方形平均分成10份,其中的一份涂出来就是0.1。

  师:那现在谁来说说0.1到底表示什么?

  生汇报师小结:说简单点0.1就表示。(板书)

  师:涂色部分为0.1那空白部分用哪个小数表示呢?

  生汇报:0.9。

  师:怎么看出0.9的?

  生汇报

  师:那0.9表示什么?()0.9里面有几个0.1?(9个)我们一起来数一数。把0.1和0.9合在一起是多少?

  生:1

  师:现在我们明白了1里面有(10)个0.1。(板书)

  4.再涂1块能看到哪两个小数?

  生:0.2、0.8。

  师:他们的分数朋友分别是谁?(生汇报师板书),把它们合在一起是多少?(1)

  师:(指板书)仔细观察,这些小数有什么特点?(小数点后有一位数的小数叫做一位小数。)(板书:一位小数)这些分数有什么相同的地方?

  生:分母都是10、都是十分之几……

  师:那我们就可以说一位小数表示的就是十分之几。(板书)

  (出示课件)其中的一份,就是一位小数的计数单位。也就是说一位小数的计数单位是(十分之一),写作(0.1)。这就是我们认识的一位小数。

  (二)理解两位小数的意义。

  1.师手指0.01,0.01表示什么呢?如果还是把这张纸看做1,要找出0.01你会怎么做?

  同桌交流讨论。

  生汇报:把它平均分成100份,取其中的一份。

  预设:如果学生有分歧,可用一元和一分的关系来验证帮助学生理解。

  师:同学们的想法非常正确,我们要想在正方形中找到0.01,就要先把这个正方形(出示平均分成100份的正方形)

  师:0.01就表示。还看到了哪个小数?

  生:0.99。

  师:0.99里面有几个0.01。

  生:99个。

  师:把他们合起来是多少?那1里面有多少个0.01?(100个)师板书

  2.如何表示0.25呢?

  生汇报

  师:还能想到哪个小数?他们的分数朋友分别是谁?

  生:0.75,分数朋友:

  3.(拿出平均分成100份的正方形纸)请你在方格纸上创造一个新的小数,再同桌间说一说这个小数表示什么意思,看到这个小数,你又想到了那个小数?

  4.师提问:

  (1)你涂了哪个小数?

  生汇报。

  师:猜一猜他涂了几格,还能找到另外一个小数吗?

  (2)你涂了几格?谁能知道他写的是哪个小数?

  5.师:(指板书)刚才我们研究的小数都有什么特点?他们都表示什么?

  生汇报师小结板书:两位小数表示的就是百分之几。(出示课件)其中的一份,就是一位小数的计数单位。也就是说两位小数的计数单位是(百分之一),写作(0.01)。

  (三)理解三位小数的意义。

  1.师:我们已经知道了一位小数表示十分之几,两位小数表示百分之几,那0.001是几位小数?(三位小数)。那三位小数又表示什么呢?生:它表示千分之几。(师板书)

  师:那它的分数朋友是多少?()

  师:那0.237表示什么?它的分数朋友是谁?

  生:

  师:小数是多少?

  生汇报

  2.师:谁能找一个大一点的三位小数?

  生:0.999 =

  师:要在正方形纸上涂上0.999会有什么感觉?

  生汇报

  如果再涂多少就涂满了?(0.001)

  师:那也就是说(1000)个0.001是1。

  师小结:三位小数表示的就是千分之几。(出示课件)其中的一份,就是三位小数的计数单位。也就是说三位小数的计数单位是(千分之一),写作(0.001)。

  3.延伸:师:那如果把1平均分成10000份,这样的一份或几份用几位小数表示?(四位小数)。把1平均分成100000份,这样的一份或几份用几位小数表示?(五位小数)

  ……

  师:看来同学们的类推能力都很强,能够根据前面所学的知识来回答老师的问题了。

  (四)提炼小数意义

  1.请同学们回想刚才的学习过程,说一说小数的意义到底是什么?

  生汇报

  小结:分母是10、100、1000……的分数都可以用小数表示(课件出示)。其实这就是小数的意义。

  2.思考:(课件出示)通过刚才的学习我们知道小数的计数单位是十分之一、百分之一、千分之一‥‥‥分别写作0.1、0.01、0.001 ‥‥‥那这几个相邻的计数单位之间有什么关系呢?如果老师把正方体看做1的话,你能用分数和小数表示出涂色部分吗?

  0.1里面有多少个0.01?0.01里面有多少个0.001?也就是说小数每相邻两个计数单位之间的进率是(10)。

  3.师:大家回答的都不错,其实今天我们学习的小数在产生的过程中经历了一段较长的历史。同学们,请看(出示课件)

  三、巩固内化:

  师:今天有关小数的知识大家都学会了吗?那接下来咱们做几道题检验一下同学们的学习成果,好不好?

  出示课件练习题。

  1、填一填。

  2、填上合适的数。

  四、回顾反思:

  1.师:一节课就快要结束了,下面我们一起来回顾一下我们刚才的学习过程。(出示课件)

  2.自我评价:如果最好的表现是1,最不好的表现用0表示,你打算用什么数来表示自己的表现?

  3.最后老师想送给同学们一段话--小知识:人类对自己大脑的利用水平却极低,普通人只利用了大脑的百分之二(0.02)到百分之五(0.05)左右,就连世界上最伟大的科学家爱因斯坦也只利用了大脑的十分之一(0.1)。

  师:老师希望同学们能够尽可能的发挥自己的潜能,去畅游我们的数学王国。

《小数的意义》教案10

  教学目标:

  1.结合具体的生活情境,使学生体会到生活中存在着大量的小数。

  2.通过直观模型和实际操作,体会十进制分数与小数的关系,并能进行互化。

  3.通过练习,使学生进一步体会数学与生活的密切联系,提高学习数学的兴趣。

  教学重点:

  体会十进制分数与小数的关系,初步理解小数的意义。

  教学难点:

  能够正确进行十进制分数与小数的互化。

  教学教具:

  课件、米尺、正方形纸。

  教学过程:

  1.课件播放进入超市购物的情景。

  铅笔:0.1元/个

  圆珠笔:1.11元/个

  西红柿:4.5元/千克

  红豆:5.7元/千克

  教师:上面这些物品的价钱有什么特点?

  学生1:都不是整元数。

  学生2:都是小数。

  教师:还记得小数的读法吗?谁能读出上面的小数?读小数的时候要注意什么呢?

  学生1:0.1读作零点一。

  学生2:1.11读作一点一一。

  学生3:4.5读作四点五。

  学生4:5.7读作五点七。

  学生5:小数点前面的部分按照整数的读法来读,小数点后面的部分要依次读出每一个数。

  【设计意图:这样的设计,旨在把枯燥的数学知识与学生的生活实际相联系,引起学生的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力】

  2.教师:上面的物品,你喜欢哪个,又该怎样付钱呢?

  学生1:喜欢铅笔, 0.1元是1角。

  学生2:喜欢圆珠笔,1.11元是1元1角1分。

  学生3:喜欢西红柿,4.5元是4元5角。

  学生4:喜欢红豆, 5.7元是5元7角。

  3.教师:1.11元为什么是1元1角1分呢?以小组形式讨论,把你的想法先在小组内分享。

  4.多种方法尝试解决。

  (小组活动:学生有的是用元、角、分知识解决,有的是用小数的组成解决,有的完毕,汇报小组结果)

  教师:你们知道原因了吗?哪个小组的同学把你们的方法和全班同学交流一下。

《小数的意义》教案11

  教学目标:

  1.经历小数的认识过程,初步了解小数的含义,会读,写一位小数,知道小数各部分的名称。知道自然数和整数。

  2.进一步认识数的发展,感受数学与现实生活的联系,增强学习数学的兴趣。

  教学资源:

  投影

  教学过程:

  一.创设情境,唤起经验

  谈话:星期天,小兰跟着妈妈去逛超市。超市里东西可真多啊,请大家注意这几种商品的标价:

  圆珠笔笔记本橡皮小刀

  1.2元3.5元0.5元0.8元

  这些数你们见过吗?谁来试着读一读。

  让会读的学生试读。

  谈话:这就是我们要认识的小数。(板书课题)

  二.联系实际,探究发现

  1.认识米做单位的一位小数。

  观察情境图,桌面长5分米,宽4分米。

  谈话:(出示米尺图)5分米,如果用米做单位是几分之几米?4分米呢?

  学生回答。

  讲解:5/10米还可以写成0.5米。0.5读作零点五。

  提问:4/10米可以怎样写?怎样读?(学生回答)

  1分米.2分米.3分米******是几分之几米?用小数表示呢?

  同桌互说,全班交流。

  :十分之几米可以写成零点几米。

  2.做“想想做做”第1题。

  学生各自在书上填写。投影出示答案,共同校对,指导做错的学生纠正错误。

  3.认识元作单位的一位小数。

  (1)电脑出示:小兰在超市买了一些文具。

  铅笔学生尺圆珠笔笔记本

  3角7角1元2角3元5角

  提问:3角以元作单位用分数表示多少元?3/10元如果用小数表示你能写出来吗?你会读吗?7角改写成用元作单位的小数你会写.读吗?

  :十分之几元可以写成零点几元。

  (2)谈话:那么1元2角怎样改写成小数呢?2角写成小数是多少?1元和0.2元合起来就写成1.2元,1.2读作一点二。

  提问:3元5角用小数表示怎样写?怎样读?

  :几元几角写成小数就是几点几元。

  (3)做“想想做做”第2题。

  在书上填写,把答案读给同桌听。

  (4)完成“想想做做”第3题。

  看图先写出分数,在写出小数,在小组里互相校正。

  :十分之几可以写成零点几。

  4.认识整数和小数。

  (1)讲述:我们以前学过的表示物体个数的1.2.3.*******是自然数,0也是自然数,它都是整数。像上面`的0.5,0.4,1.2和3.5都是小数。小数中间的点叫做小数点,小数点的左边是整数部分,右边是小数部分。

  (2)让学生自己阅读课本第100页最后一段。

  (3)练习。

  A、说一说下列各数中哪些是整数,哪些是小数?

  70..84.2391

  指名口答。

  B、用----画出下面小数的整数部分,用~~~~画出小数的小数部分。

  0.745.2

  学生齐做,指名扮演。

  三.巩固练习

  1.做”想想做做“第4题。

  说给同桌听。

  2.做”想想做做“第5题。

  提问:为什么0右边第一个点上填0.1?1右边第2个点上填1.2?

  各自完成填空,在小组里互相检查。

《小数的意义》教案12

  教学目标

  知识与技能:①使学生了解小数的产生。②理解小数的意义。③掌握小数的计算单位及单位间的进率。

  过程与方法:①培养学生的动手操作能力及观察力。②培养学生的抽象概括能力。

  情感态度与价值观:①体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。②渗透事物之间普遍联系的观点、实践第一的观点。

  教学重点:理解小数的意义及每相邻两个单位时间的进率是十。

  教学难点:概括和理解小数的意义。

  教法:启发引导法

  学法:合作交流

  教具学具准备:直尺。

  教学过程

  一、定向导学(5分)

  1、判断下面哪些数是整数?

  4、12、38、3.01、105、0.007、20xx、100.06。

  整数每相邻的两个计数单位之间的进率都是( )。

  板书课题

  2、揭示目标:

  理解小数的意义及每相邻两个单位时间的进率是十。

  二、自主学习(10分)

  自学内容:课本p32-33上半页

  方法:边看书边完成下面的要求。时间:5分钟

  要求:

  1、把1米平均分成10份,每份是( )米,写成小数是( )米;

  把1米平均分成10份,3份是( )米,写成小数是( )米。

  2、把1米平均分成100份,每份是( )米,写成小数是( )米;

  把1米平均分成100份,15份是( )米,写成小数是( )米。

  3、把1米平均分成1000份,每份是( )米,写成小数是( )米;

  把1米平均分成1000份,27是()米,写成小数是( )米。

  (1--6组的4号发言,1号评价)

  三、合作交流:5分钟

  1、什么是小数?

  2、小数的计数单位是多少?

  (7组的4号发言,1号评价)

  四、质疑探究(5分)

  每相邻两个计数单位之间的进率是多少?

  五、小结检测(15分)

  1、小结:

  谈谈你有什么收获?有什么感受?还有问题吗?(学生总结不完整的地方,教师要适当补充总结)

  2、检测:

  a、填空。

  (1)0.1是( )分之一,0.7里有( )个0.1。

  (2)10个0.1是( ),10个0.01是( )。

  (3) 写成小数是( ), 写成小数是( )。

  b、判断:

  (1)0.40里面有4个0.01。 ( )

  (2)35克=0.35千克( )

  元=0.7 元 ( )

  =0.01 ( )

  米 =0.3米 ( )

  =0.03 ( )

  =0.030 ( )

  c、把小数改写成分数。

  0.9 0.09 0.0359

  3、堂清作业:教材p33页,p36、1.2

  板书设计:

  小数的意义

  十分之一--------- 0.1

  百分之一---------0.01

  千分之一---------0.001

  分母是10、100、1000……的分数可以写成小数,像这样用来表示十分之几、百分之几、千分之几……的数叫做小数。

《小数的意义》教案13

  [教学内容] 小数的意义(第2-5页)

  [教学目标]

  1、结合具体情境,体会生活中存在着大量的小数。

  2、通过实际操作,体会小数与十进分数的关系,理解小数的意义,知道小数部分各数位名称及意义,会正确读写小数。

  [教学重、难点] 通过实际操作,体会小数与十进分数的关系,理解小数的意义,知道小数部分各数位名称及意义。

  [教学准备] 学生、老师准备计数器。

  [教学过程]

  一、生活中的小数

  (事先布置学生找一找生活中的小数)让学生说说生活中除了某些商品的价格用到小数外,还在哪些地方见到过小数。

  结合树上的例子让学生尝试用自己的语言说明在每个情境中消失表示的是什么,由此激发学生进一步学习小数意义的兴趣。

  二、小数的意义

  1、自学小数的意义(看书第3页)

  2、小组交流

  3、汇报:出示正方形,把这个正方形平均分为10份取其中1份,用分数表示是十分之一,用小数表示是0.1;把这个正方形平均分为100份取其中1份,用分数表示是百分之一,用小数表示是0.01。

  4、以1米为例结合具体的数量理解小数

  把一米长的线段平均分为10份取其中1份,用分数表示是十分之一米,用小数表示是0.1米;把这条线段平均分为100份取其中1份,用分数表示是百分之一米,用小数表示是0.01米。

  5、归纳小数的意义

  通过学生的讨论归纳出小数的意义。

  三、小数部分的数位及读写:

  1、小数部分的数位及数位间的进率

  先复习整数部分的数位,再介绍小数部分的数位,一位小数是十分之几,小数点右边的第一位是十分位;两位小数是百分之几,小数点右边的第二位是百分位;三位小数是千分之几,小数点右边的第三位是千分位。

  在计数器的各位上拨3个珠子,说一说各表示多少,体会数位间的进率。

  2、小数的读写

  让学生试读,注意提醒学生小数部分的读法与整数部分不同。

  3、写一写、读一读、说一说。

  对照计数器写出小数,并读一读,说出各数位上的数表示什么。让学生先独立完成,再小组交流。

  四、数学游戏:

  通过数和形的对应,加深对各数位间关系的理解。

  五、作业:

  第5页1-4

  [板书设计]

  小数的意义

  千 百 十 个 十 百 千

  位 位 位 位 ?分 分 分 数位

  位 位 位

  整数部分 小数点小数部分

《小数的意义》教案14

  教学内容

  小数的意义

  教学目标

  1.知识与技能:结合具体的生活情景,使学生体会到生活中存在着大量的小数。

  2.过程与方法:通过直观模型和实际操作,体会十进制分数与小数的关系,并能进行互化。

  3.情感态度与价值观:通过练习,使学生进一步体会数学与生活的密切联系,提高学数学的兴趣。

  重点难点

  重点:体会十进制分数与小数的关系,初步理解小数的意义。

  难点:能够正确进行十进制分数与小数的互化。

  教具准备

  课件、正方形纸2张。

  教学过程

  一、情境导入。

  1.师:老师昨天去逛了下超市,买了些东西,但是在付款的时候遇到了问题,我今天把遇到的问题带来了,希望你们能够帮我解决,好吗?

  生:好。

  2.我们先来看看老师都买了什么?(课件播放常见物品的价格。)

  铅笔:0.1元一支圆珠笔:1.11元一支

  猪肉:9.5元一斤黄瓜:5.96元一千克

  教师:上面这些物品的价格有什么特点?

  学生:都不是整元数。(都是小数。)

  教师:还记得小数的读法吗?谁能读出上面的小数?读小数时需要注意什么?

  学生依次读出:零点一、一点一一、九点五、五点九六。

  师:大家知道这些小数是几位小数吗?

  生:......

  2.一些商品的标价用元做单位时可以用小数表示,那除了商品的标价可以用小数表示外,你们还在哪些地方见过小数?

  生:身高体重跳高跳远

  小数在我们的生活中应用非常广泛,三年级我们已经学过小数的认识,那么这节课我们一起探究小数的意义。

  板书:小数的意义

  二、自主探究。

  1.一位小数的意义

  a.那么多的小数,我们今天就从0.1开始入手研究。

  b.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说0.1表示什么意思?

  学习单元角米分米网格图

  c.生反馈0.1表示什么意思。

  d.思考:我们选用的图都不一样,为什么都可以表示0.1?

  你还能在图中找到其他小数吗?他们表示什么意思?

  学生交流反馈。

  学生:1元=10角,0.1元就是把1元平均分成10份,它表示其中的一份,所以1元的也可以写成0.1元。

  生2:1米=10分米,0.1米就是把1元平均分成10份,它表示其中的一份,所以1米的也可以写成0.1米。

  生:......

  2.两位小数的意义

  师:同学们真了不起,都善于思考问题,勇于探究,你们0.01又是什么意思呢?

  a.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说0.01表示什么意思?

  学习单元分米厘米网格图

  b.生反馈0.01表示什么意思。

  c.思考:你还能在图中找到其他小数吗?他们表示什么意思?

  学生交流反馈。

  学生:1元=10分,0.01元就是把1元平均分成100份,它表示其中的一份,所以1元的也可以写成0.01元。

  生2:1米=100米,0.01米就是把1米平均分成100份,它表示其中的一份,所以1米的也可以写成0.01元。

  生:......

  3.三位小数的意义

  我们还可以把“1”平均分成1000份,其中的一份是(),也可以表示为();其中的59份是();也可以表示为()

  小数我们写的完吗?其实呀,小数的位数越多就分的越细。

  大家刚刚还记得老师去超市买了什么吗?你能说说他们表示什么意思吗?

  三、巩固练习

  教师:0.8可以表示成分数吗?可以表示成小数吗?

  学生:分别是和0.7。

  教师:下面我们以小组为单位,来进行分数小数互化游戏。(出示课件)

  同学们在小组内进行游戏交流,教师巡视指导。

  四、探究结果报告。

  教师:通过刚才游戏,你们发现了什么?(出示课件)

  师生共同归纳:分母是10、100、1000……的分数都可以用小数表示,小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……

  1.像0.1、9.5这些小数叫一位小数。(分母是10的分数,可以写成一位小数,表示十分之几。)

  2.像1.11、5.96这些小数叫两位小数。(分母是100的分数,可以写成两位小数,表示百分之几。)

  3.像0.001、0.125这些小数叫三位小数。(分母是1000的分数,可以写成三位小数,表示千分之几。)

  四、教师小结。

  小数中,每相邻两个计数单位间的进率都是10。

  五、课外拓展。

  分享最美数字0.618

《小数的意义》教案15

  教学内容:

  义务教育课程标准实验教科书(西南师大版)四年级(下)第69~72页例1、例2和课堂活动第1,3,4题。

  教学目标:

  让学生结合现实情境,进一步认识小数及小数的计数单位,理解相邻两个计数单位的十进关系。

  实验目标:

  1、利用多媒体课件,激发学生认识小数学习小数的欲望。

  2、通过直观、操作、推理等活动,让学生清楚、明确地归纳小数的意义,感受数学与生活的紧密联系,体会小数在日常生活中的作用。

  教学准备:

  课件、米尺、直尺等。

  教学过程:

  一、引入新知

  课件演示:学生测量黑板的长,课桌长、高的过程

  1、学生自己动手量一量黑板的长,课桌长、高这些数是不是都是整米数?

  教师:在测量和计算中,有时得不到整数的结果,通常可以用小数表示。

  2、回忆、练习1角=()10元=()元5角=()10元=()元1dm=()10m=()m3dm=()10m=()m

  教师:关于小数,同学们还想知道什么?板书课题:小数的意义

  二、探索新知

  1、教学例1

  (1)填一填,说一说。(课件出示例1第1个图)①此图用分数、小数该怎样表示?你是怎样想的?说一说:0?7表示把一个正方形平均分成()份,取其中()份。 0?7里面有()个0?1。②像0?1,0?3,0?5,0?7这些一位小数,都表示把一个整体平均分成10份,分别取其中的1份、3份、5份、7份,也就是:一位小数表示十分之几。

  (2)同理说一说。(课件出示后面两幅图)①第1个涂一个小格,第2个涂45个小格,用分数、小数来表示并说说是怎样想的?②讨论并归纳:百分之几写成几位小数?两位小数表示几分之几?

  2、教学例2(认识三位小数)

  (1)看一看,填一填。

  课件出示①把1m平均分成10份,其中1份是1dm;平均分成100份,其中1份是1cm;平均分成1000份,其中1份是1mm。

  (出示图)学生填分数和用小数表示。

【《小数的意义》教案】相关文章:

小数的意义教案11-25

小数的意义教案09-25

《小数的意义》优秀教案11-20

有关《小数的意义》的教案04-11

小数的意义教案3篇07-06

小数的意义和性质教案11-25

《小数的产生和意义》教案11-25

小数的意义教案九篇07-09

小数的意义教案三篇07-23

小数的意义教案9篇07-24