初中数学复数的几何意义预习案
预习的意义是实现高效课堂最基本的保证,要想上好一堂课,必须让学生提前做好充分的预习,对该节课的基础内容,学生要熟悉,即使不能充分理解也要理清本课基本内容。以下是小编帮大家整理的初中数学复数的几何意义预习案,希望能够帮助到大家。
一、学习目标:
1. 理解复数与复平面的点之间的一一对应关系
2.掌握复数几何意义 及复数模的计算方法
3.理解共轭复数的概念,了解共轭复数的简单性质
二、学习重点:
复数与从原点出发的向量的对应关系.
三、自学过程:
1、复习回顾
(1)复数集是实数集与虚数集的
(2)实数集与纯虚数集的交集是
(3)纯虚数集是虚数集的
(4)设复数集C为全集,那么实数集的补集是
(5)a,b.c.d∈R,a+bi=c+di
(6)a=0是z=a+bi(a,b∈R)为纯虚数的 条件
2、预习 看课本60-61页,完成下面题目。
(1)复数z=a+bi(a、b∈R)与有序实数对(a,b)是 的
(2) 叫做复平面, x轴叫做 ,y轴叫做
实轴上的点都表示 虚轴上的点除原点外,虚轴上的点都表示
(3)复数集C和复平面内所有的`点所成的集合是一一对应关系,即
复数 复平面内的点 平面向量
(4)共轭复数
(5)复数z=a+bi(a、b∈R)的模
3、自主练习
(1)、在复平面内,分别用点和向量表示下列复数:
4,2+i,-1+3i,3-2i,-i
(2)、已知复数 =3+4i, = ,试比较它们模的大小。
(2)、若复数Z=3a-4ai(a<0),则其模长为
(3)满足z=5(z∈R)的z值有几个?满足z=5(z∈C)的z值有几个?这些复数对应的点在复平面内构成怎样的图形?其轨迹方程是什么?
(4)设Z∈C,满足2< 3的点Z的集合是什么图形?
已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点在直线x-2y+4=0上,实数m的值为_____________________.
例1.(2007年辽宁卷)若 ,则复数 在复平面内所对应的点在( )
A.第一象限B.第二象限C.第三象限D.第四象限
四:变式训练
1.已知复平面上正方形的三个顶点是A(1,2)、B(-2,1)、C(-1,-2),求它的第四个顶点D对应的复数.
五、小结
【初中数学复数的几何意义预习案】相关文章:
考研数学暑期复做题的误区有哪些12-22
初中优秀作文:生命的意义12-21
谈读书的意义优秀作文初中12-16
美丽的复圣公园作文01-08
初中数学复习指南05-12
初中数学复习策略05-11
初中数学暑假答案09-28
初中数学教学总结01-20
初中数学优秀教案11-30
数学复习课的重要意义是什么05-12