- 相关推荐
人教版小学五年级方程的意义教学设计
根据学生的已有知识,以及《方程的意义》的教学内容,我确立了如下的教学目标:
1、了解方程的意义,弄清方程与等式的联系与区别。
2、在自主探究的学习过程中,结合教学内容帮助学生建立分类思想,进一步感受数学与生活之间的密切联系。
3、培养学生的动手操作能力、抽象概括能力,以及在合作学习中的的合作探究能力。
教学重点是在实践中了解方程的意义,并能根据方程的意义判断出方程,根据数量关系列出正确的方程。
下面我就将本节课的教学过程及设计意图向大家做以汇报。
一、谈话导入:
同学们,你们小时候玩儿过跷跷板吗?(同时出示图片)
对于这个游戏的玩儿法与经验,谁能向大家介绍一下?
其实在生活中,还有一样物品与跷跷板长得很像,它可不是用来游戏的,而是用来测量的。你们认识它吗?(出示天平)
【跷跷板与天平有许多相似之处,它们都是在中间有一个支点,都靠力臂两端的重量来达到平衡,都是根据杠杆的工作原理。但是对于学生而言,天平比较陌生,而跷跷板与学生的生活密切相关,因此,以此导入,能引起同学们的兴趣,学生回顾玩儿跷跷板的经验,利用已有的生活经验去为认识新事物奠定基础,形成表象】
二、认识并使用天平
教师介绍天平:
这就是一台托盘天平,它是用来测量比较轻的物体的仪器。这两个是天平的托盘,一边放物品,另一边放测量物体的砝码,砝码上都有质量标志。我们通过不断调试砝码,直到中间的指针指向中间为两边平衡,物体的质量就是砝码质量之和。
教师示范:
下面我们就一起来进行实际应用天平来测量一下。
首先我们来应用一下,检查一下砝码的质量是否准确。
在天平的左边放置20克和30克的砝码各一个,右边我们应该放置一个50克的砝码。看一下,天平中间的指针正好指向刻度盘的中心,说明天平保持平衡了。
看到天平,你会用等式表示天平两边物体的质量关系吗?
20+30=50
这有一个空的水杯,我们先来测量一下它的重量。
请你估计一下它的重量。我们来试一试。
通过测量,我们得知,水杯的重量是100克。
现在我们缓缓向水杯里倒水,你发现天平怎么样了?
你知道我倒了多少水吗?水的质量是未知的,我们可以用字母x表示,那么现在天平的状态还能用等式来表示了吗?
100+X>100
我们继续测量水的质量,同理得出:
100+X>200
100+X<300
100+X=250
这几个算式都以板书形式呈现。
【在利用天平写出算式的过程中,我最开始设计的是给每个小组一台天平,让学生实际操作,测量物品的质量,但在实际教学中,发现天平中砝码过小,学生操作起来不方便,而且大部分时间都花费在调节砝码的过程中,而不是讨论方程的意义,与本节课的重难点相背离,因此在修改中,我们还是尊重了教材,以教师的示范为主,我们吸取了学生试验的教训,为了让学生看得真切,我们放弃了实物操作,选择了电脑课件的演示。】
三、认识方程
1、根据天平写算式并分类
刚才我们测量了水的质量,在测量过程中,我们出现了这几种情况,可以用不同的算式表示天平左右两边的位置关系,你明白了吗?下面老师这儿就有几组天平测量的过程,首先请你根据天平写出算式。然后把这些算式按一定的原则分分类,最后在小组内交流一下你们的结果。
【《xxxx年版数学课程标准》中将学生的“双基”增加为“四基”,其中“领悟数学基本思想”是新增加的内容。数学思想是数学知识和方法在更高层次上的抽象与概括,如抽象、分类、归纳、演绎、模型等。在传统教学中,我们比较提倡对概念的演绎,清楚地记得,十年前数学书对方程概念的呈现是这样的:通过天平保持平衡写出等式,然后得到结论。旧的数学课强调的是对概念的理解和应用,而新的课程标准中提倡要在数学学习中,使学生领悟数学的基本思想,积累数学的基本活动经验。因此,新的教材中增加了不等式,增加了不含未知数的算式,通过类比、分析、归纳,形成数学模型,在头脑中形成表象,再用严谨的语言来表述。
在本节课的设计中,我利用天平这一实物图,将数学知识置于情境之中,让学生参与到数学活动中,写出等式及不等式,含有未知数的和不含未知数的,。学生通过分类对比,形成表象,教师引出概念,使学生亲历知识的生成过程。】
2、交流汇报:
学生边说,教师边板书:
等式不等式
3x=18050+2x>180
100+x=50x80<2x
50x=100100+20<100+30
根据板书,教师讲解:像3x=180、100+x=50x3这样的含有未知数的等式叫做方程,这就是我们今天所要学习的内容。板书课题。
反问:什么样的算式叫方程呢?一个算式要成为方程有哪几个条件?
【通过对比,学生能在脑海中形成一个清晰的方程表象,建立方程的模型,因此在教师讲授概念时,学生很容易地就接受了。教师是学习的组织者、引导者和合作者,但并不意味着教师可以什么都不讲,对于方程这个新知识,如果老师不告诉学生,学生是不能凭借旧知自己总结出来的,因此在概念的呈现上,我选择了讲授法。】
三、应用概念
同学们,根据你对方程的理解,你能自己写出几个方程吗?
判断,他们写得都对吗?
黑板上刚才我们写得这些算式,有方程吗?
【通过前面学生的活动归纳出概念,还要对概念进行演绎。练习题中,我先让学生自主写方程,就是考查学生对方程概念的理解,然后再进行判断的基本练习。】
四、方程产生的文化背景
早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的资料。一直到三百年前,法国的数学家笛卡儿第一个提出用x、y、z等字母代表未知数,才形成了现在的方程。
【数学是人类文化的重要组成部分,任何一个数学知识的形成都凝聚着人类智慧与汗水。因此学生在学习前人给我们带来的经验同时,也要了解数学文化。通过这部分知识的讲解,学生对方程的产生有了初步的印象。】
五、拓展延伸
在拓展延伸中,我设计了这样几个题目:
1、根据线段图写方程
2、根据数量关系写方程
3、判断是否是方程
4、方程与等式的关系
六、作业:
利用课余小组时间用天平测量物体的重量。
再想,天平两边可以如何添加,能使天平继续保持平衡呢?
【小学五年级方程的意义教学设计】相关文章:
方程的意义教学设计04-05
方程意义教学设计04-18
方程的意义教学设计04-19
方程的意义教学设计范文12-12
方程的意义教学设计15篇04-19
方程的意义教学设计(精选17篇)10-28
关于方程的意义的教学设计(精选10篇)05-05
《方程的意义》教学设计(通用13篇)11-09
《方程的意义》的教学反思12-23
方程的意义的教学反思12-30