《小数的意义和性质》教学设计

时间:2024-11-23 10:56:03 秀雯 意义 我要投稿
  • 相关推荐

《小数的意义和性质》教学设计(通用12篇)

  在教学工作者开展教学活动前,很有必要精心设计一份教学设计,教学设计是实现教学目标的计划性和决策性活动。那要怎么写好教学设计呢?以下是小编精心整理的《小数的意义和性质》教学设计,仅供参考,欢迎大家阅读。

《小数的意义和性质》教学设计(通用12篇)

  《小数的意义和性质》教学设计 1

  教学目标:

  1.让学生将一张正纸方形平均分成十份、一百份…的基础上,通过涂一涂、想一想、说一说的过程中理解小数的意义。

  2.使学生理解和掌握小数的计数单位及相邻两个单位间的进率。

  3.培养学生操作、观察、分析、推理的能力。

  教学重点和难点:

  小数意义的理解。

  教学准备:

  每个学生空白正方形纸一张、信封(内放平均分成了十份和平均分成了一百份的正方形纸各一张),课件。

  教学过程:

  一、 导入课题

  师:同学们,你们熟悉《三字经》吗?我们来一起背几句好吗?(生背)

  师:《三字经》中有这样一句话“一而十,十而百,百而千,千而万”你知道是什么意思吗?

  生1:这句话的意思是十个一是十,十个十是一百,十个一百是一千,十个一千是一万。

  (师从右往左板书:10000 1000 100 10 1)

  师:看来,《三字经》中也藏着有趣的数学问题,观察刚才的一组数,从右往左看,从1开始,10个1是10,10个10是(100),10个100是(1000),10个(1000)是(10000),按这样的规律,接下去应该是哪些数呢?

  生1:接下去是100000、1000000…。

  师:无穷无尽。(板书:100000…)

  师:从左往右看,10000、1000、100、10、1,接下去又是哪些数呢?

  生2:0.1、0.01、0.001…

  师:也是(无穷无尽)。(板书:0.1,0.01,0.001…)

  师:这里的0.1、0.01、0.001…表示什么意思,它们之间的进率又是多少呢?就是今天我们要学习的“小数的意义”。

  [评析:《三字经》是我国不可多得的儿童启蒙读物,可谓家喻户晓,脍炙人口,深受儿童所喜爱,从《三字经》中的数学问题入手,很吸引儿童的眼球。在学生还没有接触“扩大到、缩小到”这些数学术语之前,教师通过让学生观察10000、1000、100、10、1这一数组,引导学生根据一组数的规律进行推理,自然地引出了课题。更妙的是,从“大数学”中去看小数,建立了整数和小数间的联系,并在无形中渗透了进率关系,为学生进一步学习小数的意义打下伏笔。]

  二、 小数意义的探究

  1.探究一位小数的意义。

  师(出示正方形纸):如果我们用一张正方形纸表示“1”话,请你估计一下,0.1该有多大?

  师:请将你心目中的0.1用彩色笔在这张纸上涂出来。

  (展示:师根据学生所涂,取三份有代表性的作品进行投影展示)

  师:对于这三个同学心目中0.1的大小,你有什么想说的?

  生1:第一张涂得太多了,我觉得有0.5啦,第三张涂得又太少,没有0.1,第二张和0.1差不多。

  师:你们觉得怎样能准确地在这张纸中表示出0.1呢?

  生2:把这张正方形纸看作“1,平均分成十份,涂出其中的一份,就是0.1。

  师:这里的一份还可以用什么数来表示?

  生3:十分之一。

  师:老师给每位同学们都准备了一张平均分成十分的正方形纸,请你从信封里拿出来,并在这张纸上涂出其中的3份,想一想,涂色部分可以用一个怎样的小数来表示?它里面有多少个0.1?

  师(展示):0.3表示什么意思呢?

  生4:0.3就是表示把一张纸看作“1”,平均分成十份,取其中的三份,用小数表示就是0.3,还可以用分数十分之三来表示,0.3里面有3个0.1。

  师:涂色的部份用0.3表示,哪么空白部份呢?

  生5:空白部份用0.7表示。

  师:0.7表示什么意思?还可以用什么数来表示?它里面有多少个0.1?

  师(投影):阴影部份用小数怎样表示?

  生7:阴影部份可以用小数0.8表示。

  师:0.8里面有多少个0.1呢?

  生7:0.8里面有8个0.1。

  师:看到这个图,你还能想到哪个数?

  生8:十分之八。

  生9:0.2,十分之二。

  师:想一想,1里面有多少个0.1呢?

  生10:1里面有10个0.1。

  师:思考一下,刚才这些小数我们都是怎么得到的?

  生11:刚才我们都是把一张正方形纸看作“1”。平均分成十份,取其中的几份就是零点几。

  师:如果用分数表示,也就是(十分之几)。

  师:看来,这些小数,都是用来表示(十分之几)的。(板书:十分之几)

  [评析:以往的教学,教师习惯通过将米尺平均分成十份,每份是1分米,也就是十分之一米,用小数表示就是0.1米,学生在接受这一知识上,没有任何理由,就是一种规定。本课从学生的生活经验出发,将 1平均分成十份,每份就是0.1,来,再结合分数的意义,0.1也等于十分之一,通过意义上的联系,借助十进分数来进一步帮助学生理解小数,这一招可谓精妙至极。让学生在一张正方形纸上表示出0.1的大小,这一设计很有新意,在让学生动手操作的过程中,感悟一位小数和分母是十的分数之间的关系。通过用小数表示涂色部分和空白部分,让学生说说它们里面各有多少个0.1,深刻体会1里面有10个0.1。]

  2.探究二位小数的意义

  师: 0.01你觉得有多大呢?请同学们在头脑里想像一下,很快地涂在刚才这张纸的反面。

  师(作品展示):你是怎么思考的?

  生1:我是将0.1再平均分成十份,每份就是0.01。

  生2:我是将一张正方形纸平均分成一百份,每份就是0.01。

  师:从这里我们可以看出,1里面有(100)个0.01。

  师:看到0.01,你还会想到了哪些数?

  生:

  生:

  师:请同学们在信封里取出平均分成了一百份的正方形纸,现在请你在这张方格纸上创造一个小数,先在方格纸上任意涂上一些格字,再想一想,你涂色的部分可以用一个怎样的小数来表示?再同桌间说一说这个小数表示什么意思?看到这个小数,你还会想到哪些数呢?

  生5:…

  生6:我涂了20个格字,用小数表示是0.20。

  师:你们知道这里的涂色部分除了可以用0.20表示外,还可以用哪个小数来表示吗?你是怎么想的?

  生7:也可以用0.2来表示。…

  师:刚才的这些小数我们又是怎么得到的呢?

  生8:把一张正方形纸看作“1”。平均分成一百份,取其中的几份就是零点零几或零点几几。

  师:这些小数,又都是用来表示什么的呢?

  生9:这些小数都是用来表示百分之几的数。(板书:百分之几)

  [评析:在学生学习了一位小数意义的知识基础上,进一步探究两位小数的意义,就变得水到渠成。学生在将0.1平均分成十份和将1平均分成一百份来表示0.01的过程中,创新思维得到了充分发展。在创造小数的过程中,学生的个性得到了充分的张扬,当学生涂出20份来0.20 来表示的时候,教师不失时机地引导学生,这个涂色部份可以用哪个小数来表示,巧妙地渗透小数性质这一知识点。]

  3.探究三位小数的意义

  师:对于0.001,你有什么想说的?

  生1:把一张纸平均分成1000份,每份就是0.001。

  生2:也可以把0.01平均分成十份,每份也是0.001。

  生3:还可以把0.1平均分成一百份,每份也是0.001。

  生4:0.001很小很小。

  师:看到0.001,你会想到哪些小数?

  生5:我想到了0.365,就是涂365个0.001。

  …

  师:这些小数又是用来表示什么呢?(板书:千分之几)

  师:除了有表示千分之几的小数外,还会有表示(万分之几、十万分之几…

  的小数,无穷无尽。

  [评析:在学习三位小数所表示的意义上,教师完全放手,让学生通过已有的知识展开推理,自己去体验、感悟,学生获得的不仅是“鱼”,更是“渔”。]

  三、 小数意义的提炼

  师:刚才我们认识了这么多的小数,想一想,什么是小数?

  生1:这些小数都是用来表示十分之几、百分之几、千分之…的。

  师:用来表示十分之几、百分之几、千分之几……的`数,叫做小数。(板书)观察这些十分之几的小数、百分之几的小数、千分之几的小数,他们又有什么不同呢

  生2:表示十分之几的小数的小数点后面有一个数字。

  师:像这样小数点后面只有一个数字的小数我们叫它为一位小数。

  生2:表示百分之几的小数,它的小数点后面有二个数字…

  …

  师:你知道一位小数的计数单位是多少吗?

  生:一位小数的计数单位是0.1。

  师:0.3里有几个0.1?两位小数的计数单位呢?三位小数呢?

  …

  师:你能用一句话来概括这些计数单位之间的进率关系吗?

  生:每相邻两个计数单位间的进率是10。

  师:如果不相邻,它们的进率又是怎样的呢?

  [评析:学生在课堂中,通过多次折一折、涂一涂、想一想、说一说的实践,为学生小数意义的理解和归纳扫平了障碍。在计数单位之间进率的掌握上,由于有前期通过多种方法得到0.01和0.001的基础,为每相邻两个计数单位间的进率和不相邻两个计数单位间进率的掌握变的轻而易举。]

  四、 解决问题

  你能用一个数来表示下图阴影部分的面积吗?

  分数:

  小数: 小数: 小数:

  [评析:作业的设计独具匠心,第一题通过用一个带小数来表示阴影部分,消除学生错误地将小数理解成就是小于1的数。第二题通过用0.50元、0.5元来表示5角人民币和用0.200千克、0.20千克和0.2千克来表示200克鸡精,既和前面的教学产生呼应,又为下一节小数性质的学习埋下伏笔。]

  五、 总结。

  《小数的意义和性质》教学设计 2

  教学内容:

  义务教育课程标准实验教科书(西南师大版)四年级(下)第76页例3,第77页课堂活动第1,2题,练习十五第5~10题以及思考题。

  教学目标:

  1通过对整数比较大小方法的复习让学生自主探索比较小数大小的方法。

  2进一步体会小数在生活中的作用。

  3通过比较小数的大小,培养学生的比较能力和判断能力。

  教学重点:

  探索比较小数大小的方法。

  教学过程:

  一、复习旧知

  教师:同学们会比较整数的大小吗?请说说整数大小比较的方法。

  二、教学新课

  1揭示课题。

  教师:小数的大小又是怎样比较的呢?今天我们就一起来探讨这个问题。

  23.15○2.87

  教师:你怎样比较这两个小数的大小?3讨论并说说两个小数是怎样比较的。

  得出结论:两个小数比大小,整数部分大的那个数大。

  4独立完成例3(2)、(3)小题。

  小结比较方法,强调位数不同时的比较方法。

  5学生总结小数比较方法,并和同桌相互说一说。

  6第77页试一试:比较每组中两个数的大小。

  3.7○2.8530809○0.8932○3.200全班齐练,再集体订正。

  三、巩固运用强化小数大小比较方法。

  1第77页课堂活动第1,2题。

  第2题同桌各写一个小数,再比较大小。

  2比较超市商品的单价。

  3老师收集了运动会上我班几个同学跳高和60m短跑的情况,请大家帮老师把跳高成绩按从高到低排一排,把60m短跑的成绩按从快到慢排一排。

  完成第79页第8题。

  组织学生讨论:跳高的高度与赛跑的时间在评定时有什么区别?

  4独立完成练习十五第5,6,7,9题。

  引导学生理解:“最接近的整数”的含义。

  四、拓展提高

  1在○里填>,<或=。

  (练习十五第10题)学生先独立完成,再抽学生说明理由。

  2思考题。

  用0,1,2三个数字及小数点,写出小数部分是两位数的小数,并按从小到大的顺序排列。

  引导学生进行有序的思考,有序的`排列,有序的比较。

  五、课堂小结

  今天学习了什么?你有什么收获?抽学生说一说。

  板书设计:

  小数大小的比较

  3.15○2.87整数部分大的那个数大。

  0.31○0.5整数部分相同,十分位上的数大的那个数大。

  0.58○0.52整数部分相同,十分位也相同,比较百分位。

  《小数的意义和性质》教学设计 3

  教学内容:

  义务教育课程标准实验教科书(西南师大版)四年级(下)练习十六第3~11题。

  教学目标:

  1进一步掌握小数点位置的移动引起小数大小的变化。

  2能根据要求正确移动小数点的位置。

  3感受数学知识的严谨,养成认真、仔细的习惯。

  教学重点:

  进一步掌握小数点位置的移动引起小数大小的变化。

  教学难点:

  根据要求正确移动小数点的'位置。

  教学过程:

  一、基本练习

  1小数点位置移动引起小数大小变化的规律是什么?

  2练习十六第3题。

  学生独立看懂表格,注意找准整数的小数点位置,并指名让学生说说他们的方法。

  二、指导练习

  1第8题

  老师针对不同的学生进行指导。

  第9题请同学们先汇报收集的资料,再算一算。

  3第10题

  注意两种情况:一是宽边相接,按长边计算;二是长边相接,按宽边计算。

  三、独立练习

  1练习十六第4,5题教师强调:写得数时注意位数不够用"0"补足。

  2学生独立完成第6,7题

  四、拓展练习

  练习第11题。

  引导学生思考:两个因数同时缩小10倍、100倍、1000倍,由此引起的积的变化。

  五、小结

  哪些同学愿意谈谈今天的收获?

  《小数的意义和性质》教学设计 4

  教材分析:

  本单元是在掌握了整数的概念和计数方法后,以及初步认识了分数与一位小数的关系的基础上进行教学的,主要内容是小数的意义和性质,这是系统教学小数知识的开始,结合小数的意义和性质,教学小数点的移动引起小数大小的变化、比较小数的大小、小数与单位换算、求小数的近似数等内容。

  一、本单元教学内容:

  1、小数的意义和读写法。

  2、小数的性质和大小比较。

  3、小数点移动引起小数大小的变化。

  4、小数与单位换算。

  5、小数的近似数。

  二、重难点设置:

  1、正确理解小数的意义和性质、小数点的位置移动引起小数大小变化的规律。

  2、小数与单位换算。

  3、小数的近似数。

  学情分析:

  1、小数在日常生活中有着广泛的应用,为学生的学习过程提供了现实基础,也为教学提供了方便。因此,让学生通过小组讨论等,逐步培养数感,促进学生对知识的理解。

  2、教学中,应注重发现知识间的联系和区别,提高学生的知识迁移能力,通过类比和推理加强理解。

  3、认识事物的过程是呈螺旋上升的,教学中,应注重几时巩固练习,促进理解。

  教学要求:

  1、了解小数的产生,理解并掌握小数的意义,会正确读写小数。

  2、理解和掌握小数的性质,会正确比较小数的大小。

  3、理解和掌握小数点位置移动引起小数大小变化的规律,会对一个数进行不同单位的改写。

  4、掌握求一个小数的近似数的方法,会按要求正确求一个小数的近似数。

  教学建议:

  1、重视基本概念、基础知识的教学。

  本单元的一些概念、法则、性质非常重要,是进一步学习的重要基础一定要让学生掌握好。如小数的性质,不仅可以加深学生对小数意义的理解,而且还是小数四则计算的基础。再如小数点位置移动引起小数大小的变化,既是小数乘、除法计算的基础,同时也是学习小数单位换算的基础。这些知识逻辑性比较强,学生学习起来有一定的困难,教学时,要注意根据学生的认知特点,采用适宜的方法帮助学生理解这些知识。

  2、注意调动学生已有的知识和经验,促进知识的迁移。

  学生在前面所学的小数的初步认识以及整数的有关知识和经验,都可能在本单元的学习中发挥积极的迁移作用。如小数大小的比较就可以将整数大小的比较方法迁移过来。教师应充分利用这些有利条件,激活学生的相关知识基础,促进学习的正迁移,放手让学生自主探索,使学生在学会的同时,学习能力也得到提高。

  1、小数的意义和读写法

  第一课时小数的意义

  教学内容教材第32、第33页的内容及第36页练习九的第1—3题。课型新课

  教学目标1了解小数是如何产生的,理解和掌握小数的意义。

  2、明确小数与分数之间的联系,掌握小数的计数单位以及它们之间的进率。

  3、经历小数的发现、认识过程,感知知识与生活之间的密切联系,体验探究发现和迁移推理的学习方法,激发学生的学习兴趣,培养学生动手实践、合作探究的学习习惯。

  教学重点理解和掌握小数的意义、小数计数单位以及它们之间的进率。

  教学难点理解小数的计数单位以及它们之间的进率。

  一、情境导入

  老师课前布置了收集生活中的小数的作业,现在谁能给大家说说你都在哪里见过小数?

  (学生汇报交流:从商店的价签上、出租车的计价表上、时间上、数学书后面的价格上……)

  师:其实生活中还有很多地方需要用到小数。请同学们估算一下,我们教室讲桌的高大约有几米呢?

  (学生可能会回答出:1米、1米多等等)

  师:下面就请两位同学合作来测量一下讲桌的高(用米作单位)。看看你猜测的.对吗?

  学生汇报测量结果。

  师:在日常生活中,有时测量结果不能用整数来表示,像这样得不到整数结果的例子在生活中还有很多,于是人们想到了用分数或者小数来表示,这样就产生了小数,今天我们就研究“小数的意义”。(板书:小数的意义)

  二、自主探究

  1、认识一位小数。(课件出示例1)

  师:同学们仔细观察这把1米长的尺子被分成了多少份?

  生:10份。

  师:请同学们想一想,每一份是多长呢?如果用米作单位写成分数是多少米?写成小数又怎样表示呢?

  小组合作探究:

  (1)学生拿出米尺观察,先比画一下“1分米”的长度。

  (2)结合米尺讨论1分米用米作单位,用分数、小数的表示方法。

  (3)学生汇报时可能会说出:1分米=米=0.1米

  让学生继续观察米尺,思考这样的3份、7份写成分数、小数各是多少米?

  (指名汇报,教师板书)

  生:3分米=米=0.3米7分米=米=0.7米

  师:仔细观察,你们发现分数与小数的联系了吗?

  生1:我发现分数和小数的关系非常密切,可以把分数写成小数。

  生2:我发现分母是10的分数可以写成一位小数。

  师:请同学们试着说一说,一位小数表示什么呢?

  师生共同总结:分母是10的分数可以写成一位小数,一位小数表示十分之几。

  2、认识两位小数。

  如果把1米长的尺子平均分成100份,那么每份长又是多少米呢?

  师:如果用米作单位,写成分数是多少米?写成小数又是多少米?

  生:把1米平均分成100份,其中的1份是1厘米,也就是米,用小数表示为0.01米。

  教师根据学生回答板书:1厘米=米=0.01米

  师:引导学生观察米尺,这样的3份、6份写成分数、小数各是多少米?

  生:3厘米=米=0.03米6厘米=米=0.06米

  师:仔细观察,你们又发现分数与小数有什么联系?

  师生共同总结:发现分母是100的分数可以写成两位小数,两位小数表示百分之几。

  3、认识三位小数。

  师:刚才我们认识了一位小数和两位小数,相信同学们能推想出,如果再把1米长的线段平均分成1000份,每份在尺子上长是多少米?写成分数、小数各是多少米?

  生:把1米长的线段平均分成1000份,每份是1毫米,在尺子上长是米,如果用小数表示为0.001米。

  师:如果把6毫米、13毫米用米作单位写成分数、小数各是多少?

  生:1毫米=米=0.001米6毫米=米=0.006米13毫米=米=0.013米

  师:说一说,0.006米、0.013米各自表示的意义。

  师生共同小结:分母是1000的分数,可写成三位小数,三位小数表示千分之几。

  师:如果把1米继续按上面的方法平均分下去,这样的1份就是米,写成四位小数就是0.0001米,我们再继续分下去就可以得出五位、六位小数。

  三、探究结果汇报

  师:上面的例子各是把1米平均分成多少份?

  生:10份、100份、1000份……

  师:这样的一份或几份用什么样的分数来表示?

  生:十分之几、百分之几、千分之几……

  师:这些分数写成小数分别是多少?

  生:0.1、0.01、0.001……

  师:你能用一句话说说什么是小数吗?

  师生小结:分母是10、100、1000……的分数可以用小数表示。

  师:十分之几、百分之几、千分之几这些分数的计数单位分别是什么?这些计数单位用小数表示分别是多少?

  生:十分之一、百分之一、千分之一都是分数单位,而分数与小数又有密切的关系,所以小数的计数单位也是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……(板书)

  师:观察米尺回答,可以小组讨论,议一议。

  (1)0.1里面有( )个0.01米。0.01里面有( )个0.001米。

  (2)小数每相邻两个计数单位间的进率是( )。

  师:刚才我们已经看到了0.1米里面有10个0.01米,也就是0.1的10倍,我们就说0.1和0.01之间的进率是10,,0.01里面有10个0.001米,也就可以说0.01和0.001之间的进率是10,用一句话可以怎么概括?

  生:每相邻两个计数单位之间的进率是10.(板书)

  四、师生总结收获

  师:通过本课的学习,同学们有哪些收获?

  生1:我知道了分母是10、100、1000的分数可以用小数表示。

  生2:小数每相邻的两个计数单位之间的进率是10.

  师:除了数学知识方面的收获外,在数学思想和方法方面呢?

  生1:分数和小数可以互化,这是数学的转化思想。

  生2:认识小数时,借助了米尺,这是数学的“数形结合”思想。

  生3:我知道了数学可以类比推理。

  五、板书设计

  《小数的意义和性质》教学设计 5

  教学内容

  教材第34、第35页的内容及第36页练习九的第4—10题。课型新课

  教学目标

  1、认识小数的小数部分的数位、计数单位和数位顺序表。

  2、掌握小数的读写方法会正确读写小数。

  3、经历小数的读写过程,体验迁移、比较的学习方法。

  4、感受正活中处处有数学,培养学生自主学习的意识和创新精神。

  教学重点

  会读、写小数。

  教学难点

  理解小数部分的数位顺序表。

  教具学具

  多媒体课件

  教学过程

  一、情境导入

  师:同学们,你们知道陆地上最高的动物是什么吗?

  课件出示教材情境图。

  师:请仔细观察,从这幅图中你得到什么信息?

  (老师相继吸入出数字1.8、5.63和12.378)

  师:请大家仔细观察这些小数有什么共同特征?它们都是由哪几部分组成的?

  生:这些数都多了一个点。

  师:对,这个圆圆的点就是小数点,它把小数分成了整数部分和小数部分。这就是我们今天要学习的内容—小数的读法和写法。(板书课题:小数的读法和写法)

  二、自主探究

  1认识小数的组成和数位顺序表。

  师:在小数12.378中,2在哪位上?它表示什么意义?你还记得吗?

  生:2在个位上,它的计数单位是一,表示2个一。

  师:3、7、8分别表示什么意义呢?

  生:3在12.378中的十分位上,表示3个十分之一。

  师:对,3在十分位上,表示3个十分之一。

  师:谁能说出7、8表示的'意义?

  学生小组讨论,教师组织汇报。

  生1:7在百分位上,表示7个百分之一。

  生2:8在千分位上,表示8个千分之一。

  师:现在你能把下面的数位顺序表补充完整吗?

  (学生单独补充,全班交流)

  师生共同总结:小数是由整数部分,小数点,小数部分组成的。在小数里,小圆点叫小数点,它的左边是整数部分,从右往左数一次是个位、百位、千位……小数点的右边是小数部分,从左往右依次是十分位、百分位、千分位……这两边都有省略号,表示后面还有很多数位。

  师:你能说出这些数里面“4”所表示的意义吗?

  课件出示:40.38、3.4、0.24、1.004)

  2、小数的读法。

  师:今天,老师还给同学们带来了世界上最大的古钱币。

  出示古钱币图

  师:哪位同学可以尝试着读出它的高、厚、重。(0.58、3.5、41.47随即板书)

  生:0.58读作零点五十八。

  师:同学们,他读的对吗?

  生:不对吧,和58的读法一样了。

  师:是的,读小数时,小数部分从左往右是依次读出每一个数字。谁还想尝试着读出每一个数。

  生:零点五八、三点五、四十一点四七。

  师:对,读小数时,小数点就读作“点”,小数部分从左往右依次读出每个数字。

  师:谁能用自己的语言说说小数该怎样读?然后读出教材第35页“做一做”的第一题。

  (学生尝试读出,全班交流汇报)

  师:读数时,如果小数部分有“0”,你是怎样处理的?

  生:小数部分的0也是依次读出,和整数部分的0的读法有些不同,有几个0就读几个0.

  3、小数的写法。

  师:同学们,累了吗?现在咱们一起听一段广播吧。

  课件出示并播放下面内容。

  据国外专家试验研究预测:到2100年与1900年相比,全球平均气温将上升一点四至五点八摄氏度,平均海平面将上升零点零九至零点八八米。

  师:听了上面的广播,你能写出广播里的小数吗?

  (学生尝试写,然后板演或者汇报)

  生:一点四写作:1.4,五点八写作:5.8.

  师:上面两个小数的写法正确吗?你能说说怎样写小数吗?

  生:写小数时,整数部分按照整数部分的写法去写,小数点写作“.”,小数部分读几就写几。

  师:谁还想尝试写出后面的两个小数?

  生:零点零九写作:0.09零点八八写作:0.88

  师:写小数时,如果小数部分有零,该怎么办呢?

  生:写小数时,小数部分读了几个零,就写几个零。

  师生共同总结:写小数时,整数部分按照整数部分的写法来写(整数部分是零的写作“0“),小数点写在个位的右下角,小数部分顺次写出每一个数位上的数字。

  三、探究结果汇报

  师:有关小数读写知识,通过上面的探究,你知道了哪些?

  生1:一个小数由整数部分、小数点和小数部分三部分组成。

  生2:小数部分从小数点向右数分别是十分位、百分位、千分位……计数单位分别是0.1、0.01、0.001……

  生3:读小数时,小数部分从左向右依次读出每一个数字,有几个0,就读几个零。

  生4:写小数时,整数部分按照整数部分的写法来写(整数部分是零的写作“0”),小数点写在个位的右下角,小数部分顺次写出每一个数位上的数字。

  四、师生总结收获

  师:通过本课时的学习,同学们有哪些收获?

  生:小数的读法和写法与整数的读法和写法类似,可以参照整数的读写法来读写小数。

  师:对,在数学上这叫知识的迁移,它们完全相同吗?

  生:不是完全相同,有0的时候就不一样。

  师:对,同学们学习新知识时要学会从相同中寻找不同。

  《小数的意义和性质》教学设计 6

  小数的意义

  第一课时

  教学内容:

  义务教育课程标准实验教科书(西南师大版)四年级(下)第69~72页例1、例2和课堂活动第1,3,4题。

  教学目标:

  1让学生结合现实情境,进一步认识小数及小数的计数单位,理解相邻两个计数单位的十进关系。

  2通过直观、操作、推理等活动,让学生清楚、明确地归纳小数的意义。

  4感受数学与生活的紧密联系,体会小数在日常生活中的作用。

  教学重点:

  结合现实情境,认识小数及小数的计数单位。

  教学难点:

  理解小数的意义及十进关系。

  教学准备:

  米尺、直尺等。

  教学过程:

  一、引入新知

  1量一量黑板的长,课桌长、高

  这些数是不是都是整米数?

  教师:在测量和计算中,有时得不到整数的结果,通常可以用小数表示。

  2回忆、练习

  1角=( )10元=( )元5角=( )10元=( )元1dm=( )10m=( )m3dm=( )10m=( )m

  教师:关于小数,同学们还想知道什么?

  板书课题:小数的意义

  二、探索新知

  1教学例1

  (1)填一填,说一说。

  (出示例1第1个图)

  ①此图用分数、小数该怎样表示?你是怎样想的?

  说一说:07表示把一个正方形平均分成( )份,取其中( )份。

  07里面有( )个0.1。

  ②像0.1,0.3,0.5,0.7这些一位小数,都表示把一个整体平均分成10份,分别取其中的1份、3份、5份、7份,也就是:一位小数表示十分之几。

  (2)同理说一说。(后面两幅图)

  ①第1个涂一个小格,第2个涂45个小格,用分数、小数来表示并说说是怎样想的?

  ②讨论并归纳:百分之几写成几位小数?两位小数表示几分之几?

  2教学例2

  (认识三位小数)

  (1)看一看,填一填。

  ①把1m平均分成10份,其中1份是1dm;平均分成100份,其中1份是1cm;平均分成1000份,其中1份是1mm。

  (出示图)学生填分数和用小数表示。

  1mm=( )1000m=( )m;146mm=( )1000m=( )m②把一个正方体平均分成1000份。

  (第70页例2图)其中1份、25份,107份用分数和小数怎样表示?

  (2)说一说0.025,0.107分别表示什么以及它们的组成。

  (3)归纳:表示千分之几写成几位小数?三位小数表示几分之几?

  3讨论、归纳小数的意义

  学生讨论:什么是小数?小数的计数单位有哪些?

  归纳:像0.7,0.45,0.025,0.25,0.107……这样表示十分之几、百分之几、千分之几……的数叫小数。0.1,0.01,0.001……就是小数的计数单位。每相邻两个计数单位间的'进率是“10”。

  学生自学数位顺序表。

  三、课堂活动

  完成课堂活动第1,3,4题。

  先学生独立完成,集体评议,让学生说说是怎样想的?

  四、课堂小结

  本节课学会了什么?还有什么困难?

  板书设计:

  小数的意义

  一位小数表示十分之几。

  两位小数表示百分之几。

  三位小数表示千分之几。

  每相邻两个计数单位间的进率是“10”。

  0.1,0.01,0.001……就是小数的计数单位。

  《小数的意义和性质》教学设计 7

  教学目标:

  1、使学生在现实的情境中,理解小数的意义,掌握小数的读写方法。

  2、使学生经历小数意义的探索过程,积累数学活动的经验,进一步发展数感,培养观察、比较、抽象、概括以及合情推理的能力。

  3、使学生能体会到小数与日常生活的密切联系,增强自主探索与合作交流的意识,树立学好数学的自信心。

  教学重点、难点:

  理解小数的意义,会正确读写小数。

  教学过程:

  课前活动:播放视频《小数歌》。

  一、课前激趣,自然引入

  课前,我们听了一首儿歌,你知道儿歌里唱的是什么内容吗?三年级的时候我们就认识了这样的一些小数,今天这节课我们将进一步学习有关小数的知识,让我们一起来认识小数的意义和读写法。(板书课题)

  二、做好铺垫,温故知新

  1、(1)生活中,许多地方都能看到小数,你在那些地方看到过的?

  (2)这些商品的价格你想了解一下吗?注意小数部分的读法,从左往右依次读出各个位上的数。

  你能用角或分做单位说出下面物品的价钱吗?

  2、旧知铺垫

  以“元”为单位,3角用分数表示是几分之几元?你是怎么想的?

  (1元是10角,1角是1元的十分之一,3角是1元的十分之三,所以3角就是十分之三元。)

  用小数表示就是元。

  2、初步认识两位小数。

  (1)5分和48分都是以什么为单位的'?

  如果以“元”为单位,1分用分数表示是几分之几元,用小数表示呢?你是怎么想的?(1元=100分,1分是1元的,就是元,也就是元。)

  (2)5分用分数表示是多少元呢?48分呢?先同桌讨论,然后完成智慧卡。

  智慧卡

  1元=分,1分是1元的( ),还可以写成元。

  5分是1元的( ),还可以写成元;

  48分是1元的( ),还可以写成元。

  (3)学生汇报,教师根据学生回答完成板书。

  (4)5分是元,你是怎么想的?(把1元平均分成100份,1分是1元的百分之一,5分就是1元的百分之五。)

  百分之五元可以写成小数元。

  (5)48分是元,你是怎么想的?(把1元平均分成100份,1分是1元的百分之一,48分就是1元的百分之四十八。)

  百分之四十八元可以写成小数元。

  三、深层探究,再获新知

  1、进一步理解两位小数的意义。

  下面,我们请尺子来帮助我们认识小数。

  (1)1厘米用分数表示是几分之几米?你是怎么想的?

  (2)百分之一米用小数表示是多少?

  (3)把4厘米和9厘米改写成以“米”作单位的分数和小数。

  (4)观察一下,这三个小数都是把1米平均分成几份?表示其中的1份就是米,表示其中的4份就是多少米?表示其中的9份呢?

  如果是表示其中的13份呢?你是怎么想的?

  2、自主探究三位小数的意义。

  (1)拿出你的尺子,看一看1毫米有多长,(教师拿出一把米尺),我这里有一把米尺,想一想,1米等于多少毫米?1毫米用分数表示是几分之几米,用小数表示是多少米?你是怎么想的?

  (2)自学时间:请同学们自学课本第29页上例题2,并完成填空,再和同桌说说你的理由。(课件出示)学生汇报。

  (3)5米小数点和1之间为什么要多写一个0?(因为1毫米是1米的千分之1,15毫米就是1米的千分之十五,少一个0,就是百分之十五了。)

  (4)这几个小数跟前面的不太一样,你们能读准吗?学生齐读三位小数。

  (5)观察一下,这三个小数都是把1米平均分成几份?表示其中的1份就是米,表示其中的7份就是多少米?表示其中的15份呢?你还能想到什么?

  3、数形结合(试一试)。

  请同学们看下面这些图,每个图形都表示整数“1”,第一个图是把什么看做整数“1”?将这个整数“1”平均分成了多少份?第二个图呢?第三个图呢?

  学生自己填,再汇报。说说每题你是怎么想的?

  观察这些图形,你还能想到哪些分数和小数?

  判断这些小数各是几位小数?为什么?(小数部分有几位就是几位小数。)

  4、总结归纳小数的意义。

  (1)看黑板,哪些是一位小数?哪些是两位小数?哪些是三位小数?

  (2)从分数往小数看,什么样的分数可以用小数表示?(分母是10、100、1000……的分数都可以用小数表示。)

  从小数往分数看,一位小数可以表示怎样的分数?两位小数?三位小数呢?谁能连起来说说。

  总结:分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几,你还能想到什么?能说得完吗?这就是小数的意义。

  (3)同桌互相说一说。

  四、学而时习,深化认知

  1、练一练1

  学生独立完成,并交流汇报。

  提示:6角5分可以看作多少分,这样改写就比较容易了。

  2、练一练2

  你能说出下面各小数的意义吗?

  学生独立完成,指名汇报。

  把整数“1”平均分成10份表示这样的几份,可以用几位小数表示?

  把整数“1”平均分成100份表示这样的几份,可以用几位小数表示?

  把整数“1”平均分成1000份表示这样的几份,可以用几位小数表示?

  3、练习五1

  我们把整数“1”用一个正方形来表示,你能根据要求涂色,并填出相应的小数吗?

  第2幅图,你是怎样涂的,还有别的涂法吗?

  第3幅图,怎样涂,可以又快又准,让人一眼就看出是52格?

  5、练习五2

  读出这些小数,各表示几分之几?

  6、练习五3

  谁来读一读你写的小数,并说出各是几位小数。

  7、练习五4

  在括号里填上合适的小数。

  补充:

  8、淘宝

  老师有位好朋友在淘宝网开了一家小店,有些商品信息还没有标出来,你能帮助她填好吗?

  9、练习五5

  学生独立完成或作为家庭作业。

  五课堂小结

  今天这节课,我们学习了什么内容?你有什么收获?

  《小数的意义和性质》教学设计 8

  教学目标:

  1.结合具体情境,掌握用“四舍五入法”求小数的近似数,会把较大的数改写成用“万”或“亿”作单位的数。

  2.在学习小数意义和性质的过程中,培养探求知识的兴趣。

  3.提高合作探索知识的'能力。

  重点难点:

  用“四舍五入法”求小数的近似数。

  教学方法:

  启发引导、自主探究

  教学过程:

  一、复习导入新课

  教师出示复习题,让学生板演。

  372800 19000 725000000 844000000

  师生共同订正,点拨“四舍五入法”求近似数。

  教师引导学生观察信息窗。

  二、讲授新课

  1、教师提出问题:“测量同一个蛋的长度,为什么两个人的读数不一样呢?”给学生二分钟时间考虑。

  一些学生可能看不出来,教师引导

  教师引导学生按照整数求近似数的方法——四舍五入,解决求小数近似数的问题。

  2、 教师出示数值“3.9423”让学生解决。

  学生有的可能写出“3.94”。

  有的可能写出“3.9”。

  有的可能写出“4”。

  3、教师引导学生比较探究结果的不同,分组讨论,然后让学生回答。

  4、教师和学生共同归纳总结:用“四舍五入”法求小数的近似数

  保留一位小数时,只看它的百分位上的数是大于5,还是小于5。如果大于或等于5,就向前一位进一,同时将百分位及百分位后面的数舍去;如果是小于5,就直接将百分位及百分位后面的数全部舍去。

  5、教师引导学生分析总结:用“四舍五入法”求小数近似数应注意什么?

  有的学生可能回答注意小数点;

  有的学生可能回答注意别忘进位;

  有的学生可能回答注意四舍五入……

  教师引导学生一起总结。

  三、巩固运用

  教师让学生做自主练习第1—3题,用多种形式巩固求小数近似数的基本练习。(学生独立完成)

  四、点拨归纳

  教师归纳本课的所学的数学知识,点拨疑难点。(学生小组中充分交流)

  五、布置作业

  自主练习题4、5、题。

  板书设计:

  蛋的世界——小数的意义和性质

  3.9423≈3.94

  ≈3.9 四舍五入≈4

  1754000=175.4万 1754000≈175万

  《小数的意义和性质》教学设计 9

  一、教学过程

  (一)引入新课

  1.同学们已经初步认识了小数,小数是怎样产生的?小数的意义是什么呢?这节课我们就来学习小数的产生和意义。

  2.揭示课题:小数的意义与读写 (板书:小数的意义与读写)

  (二)展示目标(见教学目标1)

  二、自主学习

  (一)出示自学提纲

  自学提纲(自学教材P50页例1,并完成自学提纲问题,将不会的问题做标注)

  1.把1米平均分成10份,每份是多少米?3份呢?

  2.分母是10的分数可以写成几位小数?

  3.把1米平均分成1000份,每份长多少?分母是1000的分数可以写成几位小数?

  4.思考什么是分数?什么是小数?

  (二)学生自学(学生对照自学提纲,自学教材P49页例1,并完成自学提纲问题,将不会的问题做标注)

  (学生自学,教师在不干扰学生的前提下巡回指导,发现共性问题,以掌握学生学情)

  三、合作探究

  (一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解)。

  (二)师生互探

  1.解答各小组自学中遇到不会的问题。

  (1)让学生提出不会的问题并解决。

  (2)教师引导学生解决学生还遗留的问题。

  2.交流小数的意义。

  (1)这是把1米平均分成了多少份?根据以上学习你能知道什么?学生以小组为单位进行讨论。

  (2)抽象。概括小数的.意义。

  把1米看成一个整体,如把一个整体平均分成10份。100份。1000份……这样的一份或几份可以用分母是多少的分数表示?引导学生答出可以用十分之几。百分之几。千分之几这样的分数表示。

  (3)什么叫小数?引导学生讨论。

  (4)师生共同概括:

  分母是10.100.1000……的分数可以写成小数,像这样用来表示十分之几。百分之几。千分之几……的数叫做小数。(投影出示)。小数是分数的另一种表现形式。

  3.交流小数的计数单位。

  四、达标训练

  1.填空。

  (1)0.1是( )分之一,0.7里有( )个0.1。

  (2)10个0.1是( ),10个0.01是( )。

  (3) 写成小数是( ), 写成小数是( )。

  2.课本做一做。

  3.判断:

  (1)0.40里面有4个0.01。( )

  (2)35克=0.35千克 ( )

  4.把小数改写成分数。

  0.9 0.09 0.0359

  课堂小结:谈谈你有什么收获?有什么感受?还有问题吗?(学生总结不完整的地方,教师要适当补充总结)

  五、堂清检测

  (一)出示堂清检测题。

  1.填空题。

  (1)小数点把小数分成两部分,小数点左边的数是小数的( )部分,小数点右边的数是它的( )部分。

  (2)小数点右边第二位是( ),计数单位是( )。

  (3)一个小数,它整数部分的最低位是( )位,小数部分的最高位是( )位。它们之间的进率是( )。

  (4)千分位在小数点( )边第( )位,它的计数单位是( )。小数点右边第一位是( )位,它的计数单位是( )。

  (5)有一个数,百位和百分位上都是5,十位个位和十分位上都是0,这个数写作( ),读作( )。

  2.读出下面各数。

  0.78 5.7 0.307 8.005 6600.506 88.188

  3.写出下面各数。

  零点一二 七点七零七 二十点零零零九

  四千点六五 零点九一八 五十三点三五三

  (二)堂清反馈:

  布置作业

  教材P55页 1.2.3题。

  板书设计

  小数的意义与读写

  十分之一---------------- 0.1

  百分之一----------------0.01

  千分之一----------------0.001

  分母是10.100.1000……的分数可以写成小数,

  像这样用来表示十分之几。百分之几。千分之几……的

  数叫做小数。

  《小数的意义和性质》教学设计 10

  教材简析:

  这部分内容包括小数的读写和意义。它是在学生对小数和分数有了初步认识的基础上进行学习的,是学生系统学习小数知识的开始,同时又是学习小数四则运算的基础。教材呈现了四种不同的鸟及鸟蛋的质量,通过引导学生提出与鸟蛋质量有关的问题引入对小数的意义和读写法的学习。小数的意义是进一步教学小数性质、比较小数大小的规则、小数点移动引起小数大小变化的规律、名数改写的方法的基础,因此是本信息窗教学的重点,也是难点。

  教学目标:

  1.结合具体情境,通过观察、操作等活动掌握小数的读写法,理解小数的意义;

  2.在合作探索中,掌握小数各部分的名称和小数的数位顺序、小数的计数单位。

  3.培养学生的观察能力、分析能力、抽象概括能力和迁移能力,使学生在合作与交流过程中,获得积极的情感体验。

  教学过程:

  一、创设情境,复习引入

  1.谈话:同学们,在我们的数学王国里,除了整数外,你还知道哪些数?你能举一个我们学过的小数的例子,并说出它表示的意义吗?

  (学生举例回答,师订正。)

  (根据学生的回答,教师板书一组一位小数:0.1 1/10;0.4 4/10)

  教师引导学生观察这组数据,这些小数有哪些共同特征?(小组内交流)

  学生小组交流后,再集体交流。教师引导归纳:一位小数表示十分之几。

  2.谈话:看来同学们前面的知识掌握的不错,作为奖励,老师带来一组美丽的图片,请同学们看大屏幕。(伴随音乐,出示情境图。)

  [设计意图]本课是在学习了一位小数和初步认识分数的基础上进行的`,所以,先带领学生回顾一下前面所学的有关知识,为学习新知做铺垫。再带领学生欣赏信息窗1,引入新知,培养情感,激发兴趣。

  二、结合情境,探究新知

  1.学习小数的读写。

  谈话:从图中你都看到了什么?了解到哪些数学信息?(学生交流。)

  (1)根据以前的知识,请你从中任选两种蛋的数据试着把它们读或写在练习本上。

  (2)全班交流订正。

  (3)教师根据学生的读、写情况引导学生概括小数读、写的基本方法。

  谈话:对于这些小数,你还想了解它们哪些知识?(学生自由提问。)

  下面我们先来研究一下0.25千克中的0.25表示什么意思?

  2.学习两位小数的意义。

  谈话:0.25千克中的0.25表示什么,首先要弄清0.01表示什么。(板书:0.25 0.01)

  (1)出示一张正方形纸片。

  谈话:如果正方形纸片用1表示,那么把它平均分成10份,每份可以怎样表示?如果把它平均分成100份。每份可以怎样表示?(学生发言。)

  (师板书:0.11/10 0.011/100)

  (2)在正方形纸片上表示出0.25。

  谈话:我们知道了0.01就是1/100,那么你能在这张正方形纸片上表示出0.25吗?它表示什么?

  (小组合作完成,全班交流,师引导学生明确0.25就是25/100,也就是25个1/100。)

  板书:0.25 25/100

  (3)教师多媒体出示0.05、0.10的方格图,阴影部分表示什么?

  板书:0.05 5/100

  0.10 10/100

  (4)小组讨论:这些小数有什么共同特点?

  (全班交流。教师引导学生概括出两位小数表示的意义)

  3.学习三位小数的意义。

  (1)谈话:我们已经知道了两位小数表示的意义,猜想:那么0.001表示什么?0.365表示什么?(学生口答。学生在两位小数的启发下,可以自然迁移)

  (2)教师多媒体出示大正方体塑料块动态平均分产生0.365的过程(教材51的图),引导学生理解0.365就是365个1/1000,也就是365/1000。)

  (3)多媒体出示0.305、0.360的阴影方块图,阴影部分表示什么?

  (4)引导学生概括出三位小数表示的意义

  4.总结小数的意义和计数单位。

  (1)谈话:今天我们认识了0.25和0.365这样的小数,你在生活中见过这样的小数吗?

  (学生寻找生活中的小数,并结合实际说出它们的意义。)

  (2)小组讨论:你认为小数是用来表示什么的数?它的计数单位是什么?

  (集体交流,师引导学生总结出小数的意义。)

  [设计意图]通过对正方形纸片和正方体塑料块的观察、涂色、操作等活动,以及学生对日常生活中存在的小数的寻找和理解,使学生积累了丰富的感性认识,为学生顺利抽象概括小数的意义奠定了坚实的基础,同时感受小数应用于生活的广泛性。

  三、情境练习,巩固提高

  1.课件出示自主练习第一题。

  学生分别用分数和小数表示图中的阴影部分。

  2.自主练习第3题。

  学生独立读题,再说一说小数和分数之间的联系。

  [设计意图]练习重点是小数和分数的联系,注重培养学生系统归纳知识的能力,也让学生在练习中进一步理解小数的意义。

  四、课堂总结

  谈话:今天我们进一步认识了小数,你有什么收获,能和大家分享吗?

  [设计意图]让学生分享学习成功的喜悦,激发学生的积极性和求知欲,同时也为学生的后续学习总结了经验和方法。

  《小数的意义和性质》教学设计 11

  教学目标:

  使学生通过整理和复习,弄清本单元学习了哪些知识,更牢固地掌握小数的意义和性质。

  教学重点:

  理解小数的意义,掌握小数的性质和小数点位置移动引起小难点、数大小变化的规律。

  教学难点:

  用“四舍五入”法按要求求出小数近似数。

  教学过程:

  一、揭示课题

  这节课我们来复习小数的意义和性质。通过复习进一步理解小数的意义,掌握小数的性质以及小数点位置移动引起小数大小变化的规律,能把较大数改写成“万”或“亿”作单位的.数,并能按要求求出小数的近似数。

  二、复习小数的意义

  1、做整理和复习第1题(

  (1)学生在书上填写,集体订正。说一说这些小数的意义。

  (2)说一说小数的意义是什么?

  问:一位小数、两位小数、三位小数……各表示几分之几的数?

  2、(1)在小数里,小数部分最高位是哪一位?从小数点起,向右依次有哪些数位?每个数位上计数单位是什么?

  (2)填空。

  0.1里面有( )个0.01。 10个0.001是( )。

  10个0.1是( )。 0.1里有( )个0.01。

  三、复习小数的性质和小数的大小比较

  1、练习。

  (1)把下面小数化简。

  4.700 16.0100 8.7100 14.00

  (2)不改变数的大小,把下面的数写成两位小数。

  4.2 13.1 21

  ①学生做,指名板演,集体订正。

  ②问:做题时是根据什么来做的?什么

  (3)、做整理和复习第2题。

  0.1 0.012 0.102 0.12 0.021

  (2)按要求从小到大排列。

  四、复习小数点位置移动引起小数大小变化的规律

  1、做整理和复习第3题。

  (1)小数点向右移动,原来的数就扩大,向右移动一位、两位、三位……,原数有什么变化?小数点向左移动,原来的数就缩小,向左移动一位、两位、三位……原数有什么变化?

  问:要把一个数扩大(或缩小)10倍、100倍、1000倍……小数点应怎样移动?

  (2)学生练习,指名回答。

  2、练习。

  (1)把1.8扩大100倍是( )。( )扩大1000倍是6.21。

  (2)把( )缩小100倍是0.021。( )缩小1000倍是6.21。

  五、复习求小数的近似数和整数的改写

  1、把下面小数精确到百分位。

  0.834 2.786 3.895

  (1)学生做,指名板演。

  (2)让学生说一说怎样求一个小数的近似数。

  2、(1)把下面各数改写成“万”作单位的数。

  486700 521000

  (2)把下面各数改写成“亿”作单位的数。

  460000000 7189600000

  学生在练习本上做,指名板演,说一说怎样把一个较大数改写

  成“万”或“亿”作单位的数。

  3、把下面各数改写成“万”作单位的数,并保留一位小数。

  67100 209500

  (1)学生在练习本上做,指名板演。

  (2)比较改写成“万”或“亿”作单位的数和求一个小数的近似数时要注意什么?

  (3)比较25万和0.25亿大小,可以把25扩大10000倍,0.25扩大1亿倍。得到两个整数再比较大小。

  (4学生练习,集体订正。

  (5)小结:把一个数改写成“万”或“亿”作单位的数,只要在“万”位或“亿”位后面点上小数点,去掉小数点后面的0,再在后面添上“万”字或“亿”字,反过来,一个以“万”或“亿”作单位的数,要改写成原来的整数,只要把它扩大1万倍或1亿倍就可以

  了。

  六、全课总结

  这节课复习了什么内容?

  怎样的数可以用小数表示?小数的性质是什么?小数点位置移动引起小数大小变化有什么规律?我们可以怎样比较小数的大小?

  【作业设计】

  1、0.45表示( )。

  2、把6.956 6.965 6.659 9.665 5.669 按从小到大排列是( )。

  3、把6712098600改写成“万”作单位的数是( )万,保留一位小数是(

  )万;改写成“亿”作单位的数是( )亿,保留一位小数是( )亿。

  4、在○里填“>”、“<”或“=”。

  16.36○16.63 0.36万○3600

  0.97○1.01 0.23亿○2100万

  5、100千克稻谷可出大米76千克,平均每千克稻谷出大米多少千克?

  10000千克稻谷可出大米多少千克?

  《小数的意义和性质》教学设计 12

  教材分析:

  人教版四年级下册“小数的意义和性质”这一单元共有“五个板块”的内容:小数的意义和读写法、小数的性质和大小比较、小数点移动引起小数大小的变化、小数与单位换算和小数的近似数,其中小数的意义的理解是本单元的关键。这一单元涉及到的内容比较多,而且知识点比较散,所以这一单元的复习有一定的难度。

  学情分析:

  根据学生平时的作业情况,笔者出了相应的前测卷,了解了学生对本单元知识的掌握情况。通过前测分析,发现:本单元知识学生的错误主要集中在小数的意义、小数的近似数和小数与单位换算这三块内容,其中学生对小数的意义的理解和掌握很不乐观,情况如下:

  图1第一幅图的错误率居然达到了25、53%,第二幅图的错误率是36、17%,图2的错误率也是25、53%。图1第一幅图和图2的错误率是我没有预想到的,测试前我以为这样的基本的题、常见的题,学生的掌握情况会比较好,但是前测的结果让我吃了一惊。图1第一幅图错误的学生大部分填了1、4,第二幅图大部分填了0、3。细细分析图1这么高的错误率,我们会发现:学生只是关注到了涂色部分的份数而没有关注到分成的总份数,实质上学生对小数的意义没有真正地理解。至于图2,我发现学生说不出1到2这一大段表示多少,也就是说学生对这样的题学生没有真正地理解后去做,有些无从下手。

  教学目标:

  1、通过对本单元知识系统地整理和复习,让学生进一步理解和掌握本单元知识,沟通小数和分数、小数和整数之间的联系,形成新的认知结构。

  2、通过介绍0.3、分析错例、猜数等方式,让学生感受复习与整理的方法,提高学生的学习能力。

  3、在学习中,让每一位学生享受到表达的乐趣和成功的喜悦,让学生产生学习数学的信心。

  教学重点:

  通过整理和练习,巩固本单元知识。

  教学难点:

  通过整理和练习,对知识的进一步领悟。

  教学预设:

  一、梳理知识

  1、回顾知识。

  (1)揭题:同学们,今天这节课我们一起对小数的意义和性质这一单元进行整理和复习。(出示课题:小数的意义和性质整理和复习)

  (2)引导回顾:回忆一下,这一单元我们学了哪些知识?

  根据生说师相机板贴知识点。

  2、整理知识。

  (1)提出问题:那现在我写一个小数(板书:0.3),你能用学过的知识来介绍它吗?

  (2)明确要求:在你的介绍中不出现这个数,但让别人一听就明白你在介绍它。(出示课件)

  (3)回答一生,理解要求

  评价:这样的介绍符合要求吗?

  (4)知识归类:他用到了这儿的什么知识?

  3、独立思考

  (5)思考:他是从意义的角度来介绍的,那还有不一样的介绍吗?

  (6)记录:看来已经有很多同学想到了,别急,把你想到的记录在学习单第1题的框里。

  学生记录。

  师巡视并引导:想到一种的再想想还有没有不同的介绍方法,比一比谁想到的方法最多。

  (7)汇报,根据生说师相机板书内容。

  预设:

  ①意义:3个0.1;画图;十分位上是3,个位是0等。

  ②大小比较:比0.2大比0.4小的一位小数。

  ③小数点的移动规律:如3的小数点左移一位是几。

  ④近似数:如0.29保留一位小数。

  ⑤单位换算:如300千克等于几吨。

  (8)总结:一个0.3大家居然想到了这么多,这是我们全班同学的智慧,把掌声送给自己。

  【设计意图:通过“介绍0.3”,让学生自主地对本单元知识进行梳理。这样的学习任务,对学生来说是具有挑战性的,可以很好地激发学生的学习主动性;这样的学习任务,可以在较短的时间内完成教学目标,提高教学效率。在“思考介绍方法”和“汇报介绍方法”的过程中,让每一位学生都享受到表达的乐趣和成功的喜悦,感受到“如果你有一种思想,我有一种思想,彼此交换,我们每个人就有了两种思想,甚至多于两种思想”。】

  二、查漏补缺

  1、过渡:刚才我们用一个0、3对这单元的知识进行了梳理,这节课除了梳理,我们还需要查漏补缺,我对你们的作业和练习情况进行了整理。猜一猜,我们班哪块知识错误最多?(出示课件)

  2、根据生说,课件相机出示相应内容并分析。

  预设:

  (1)小数与单位换算。

  ①出示错例。

  ②说妙招:的确,这块内容错误比较多。那做这类题目谁有妙招?

  学生总结方法,师板书。

  ③做一做:那让我们用这个妙招一起来做一做这几题。在学习单第2题的框里写一写过程。

  ④汇报,师相机书写过程。

  (2)小数的近似数。

  ①出示错例。

  ②分析错误:这题错误稍微有点多,主要有两种错误,(出示错例)你能帮忙分析一下错误原因吗?

  生分析原因。

  ③引导总结:对于做这样的题你有什么要提醒大家的?

  (3)小数的性质与大小比较。

  ①课件:恭喜你们,你们做得很棒!

  ②沟通联系:同学们做得这么棒,这个问题肯定难不倒大家,那小数的大小比较跟整数的大小比较有什么相同的'地方?

  ③同桌交流:想好的跟同桌说一说。

  ④汇报。

  (4)小数点的移动规律。

  ①课件:恭喜你们,你们做得很棒!

  ②沟通联系:小数点的移动规律其实我们早就用到过了,一起来看。

  出示题,做题,问:仔细观察,你有什么发现?

  (5)小数的意义和读写法。

  ①课件出示:找0、4题

  ②学生判断:图2、

  ③激疑:图1为什么不可以?(0.04)图3呢?(0.8)

  ④总结:都涂了4格,为什么表示的小数却不一样?

  图1得出4/100,图2得出4/10,图3:通过再分得到了8/10,所以这个4格其实表示的是0.8。所以我们不仅要看涂的份数,还要看分的总份数。

  ⑤沟通联系:那问题又来了,出示问题:小数和分数有着怎样的联系?

  ⑥做错题:相信现在大家不会犯这样的错误了吧!这题应该是(1.04)这题呢?总份数不是10份的要先平均分成10份,是0.6。

  【设计意图:这个环节根据学生错误情况,让学生对本单元易混淆和出错的知识进行有针对性的练习,查漏补缺。在练习过程中,让学生说出自己解题的思考过程,总结解题的方法,分析错误的原因,有助于加深学生对本单元知识的理解和掌握,提升思维能力;让学生沟通小数与整数、小数与分数之间的联系,有助于学生从整体上理解和掌握知识之间的内在联系,促进学生认知结构的优化。而且本环节让学生自主选择研究内容,可以很好地激发学生学习的积极性。】

  三、巩固提升

  1、猜数。

  (1)大家学得这么棒,奖励大家玩一个猜数的游戏,(出示课件:猜猜我心中想着几)它就装在这个信封里。

  (2)第一猜:给大家第一条信息:它在1与2之间(课件出示直线),会是几呢?

  生猜。

  师:有多少种可能?(无数种)

  (3)第二猜:那再给你第二条信息:它保留一位小数约是1、7,可能是几?

  生猜,师相机板书。

  师:那这个数最小是几?

  最大是几?(1、74,1、749……)(师板书)

  师:这些数都有可能吗?为什么?(只要看百分位,跟后面的数没关系。)

  师:那找得到这个最大的数吗?(找不到)

  师:那有多少种可能?(无数种)

  (4)第三猜:那再给你一个信息:它是一个两位小数。

  生猜,师判断:大了,小了。

  (5)揭晓答案:1.66

  2、找位置。

  (1)那你能在这条线上找到1、66的位置吗?

  (2)那要准确地找到它,谁有好方法?

  3、说关系。

  (1)出示1、0、1、0、01。

  (2)问:1、0、1、0、01之间有着怎样的关系?

  【设计意图:通过“猜数”和“找位置”等活动,激发学生的参与热情,对本单元知识进行综合练习,加深学生对小数的意义的理解和掌握,提升对小数的近似数、小数的大小比较等的认识,直观地理解1、0、1、0、01之间的关系,提升学生的思维能力。在“猜数”活动过程中,让学生初步感知到近似数的取值范围;在“找位置”活动过程中,培养学生的数感,感知“找小数位置”的步骤:先确定这个小数在哪两个相邻的整数之间,再确定它在哪两个相邻的一位小数之间……感知“找小数位置”的方法:可以从左往右,也可以从右往左等。】

  四、课堂小结

  这节课我们是怎么复习的?对你以后的学习有什么启示?

  【设计意图:通过小结,让学生回顾这节课复习与整理的方法,提升学生的学习能力。】

  374650285750小数的意义和性质整理和复习

  小数的意义和性质整理和复习

  742950228600意义和读写

  意义和读写

  板书(部分):

  63500057150

  742950114300性质和大小比较

  性质和大小比较

  74295025400小数点的移动规律

  小数点的移动规律

  768350273050单位换算

  单位换算

  768350203200近似数

  近似数

  教学反思:

  这一单元涉及到的内容比较多,且知识点比较散,对于这一单元的复习,怎样对知识进行梳理?怎样可以做到高效?怎样能让学生形成新的认知?通过对这一节课的研究,感悟到上好复习课,可以从以下3个方面去展开。

  1、制定任务,高效梳理。

  学习任务好比承载教学内容的“舟”,复习课学习任务的选择要符合知识内在的逻辑,又要构建整体的学习框架。“介绍0.3”这一任务无疑是一具有挑战性的任务,学生需唤醒所有有用的知识,这充分地调动了学生的学习积极性和主动性。这个“0.3”,承载了本单元涉及的五块内容,学生通过“介绍0.3”,一个单元的知识点以各种方式表达了出来,高效地完成了本单元的知识梳理。

  2、基于学情,有效复习。

  复习的功能之一是查漏补缺,也就是说,要针对学生学习困难和错误进行复习。这一单元知识多又散,一节课中不可能做到面面俱到,通过前测,了解了学生的学情。

  小数的读写、性质与大小比较、小数点移动引起小数的大小比较,这些内容学生基本上没有问题,所以这节课中对这些内容的处理相对比较简单,如大小比较知识只是让学生沟通了小数大小比较与整数大小比较的联系;小数点的移动规律也只是让学生沟通了跟以前知识之间的联系。

  本节课的重点放在小数的意义、小数与单位换算、小数的近似数等内容上。如“找0.4”题,通过让学生思考“为什么都涂了4格,表示的小数却不一样”,通过比较、分析、总结,让学生感悟到“不仅要看涂的份数,还要看平均分成的总份数,平均分成10份、100份、1000份……的才能直接写成小数”,从而进一步理解了小数的意义以及小数与分数的联系。又如“单位换算”这块内容错误比较多,所以让学生经历了“说妙招——用妙招——说思路”这样一个过程,帮助学生掌握这块内容。

  这样针对学生错误的复习过程,极大地节省了时间,提高了课堂效率,并有效地对本单元内容进行了复习。

  3、精选练习,合理拓展。

  复习课除了查漏补缺,还要使学生进一步地熟练技能、拓展思维,本节课的练习设计关注恰当的拓展性。如:有关“小数与近似数”的题学生常碰到如“一个两位小数保留一位小数约是3.5,这个小数最大是( ),最小是( )”这样的题,所以学生以为“近似数是3.5的数只有两位小数这几个数”。针对这样的情况,教学中,通过让学生猜“近似数是1.7的数”,通过找符合要求的最小数和最大数,让学生从这种固定思维中走了出来,感悟到“近似数是1.7”的数有无数个,并初步感知近似数的取值范围。又如:找1.66的位置,学生经历了“说大概的位置——找确切位置”的过程,并在找确切位置的过程中,让学生用“顺着”和“倒着”等不同的方法来找,从而拓展了学生的思维。

【《小数的意义和性质》教学设计】相关文章:

小数的意义和性质教学反思12-07

《小数的意义和性质》教学反思06-13

小数的意义和性质教学反思06-05

《小数的意义和性质》的教学反思12-07

小数的意义和性质教学教案07-05

《小数的意义和性质》的教学反思范文12-07

《小数的意义和性质》教学反思(精选17篇)04-17

《小数的意义和性质》教学反思(精选10篇)02-06

《小数的意义和性质》教学反思(10篇)02-06