方程的意义课堂实录

时间:2022-11-23 17:27:00 意义 我要投稿
  • 相关推荐

方程的意义课堂实录

  方程是指含有未知数的等式。小编收集了方程的意义课堂实录,欢迎阅读。

方程的意义课堂实录

  一、创设情景,感知等式

  1、出示天平:

  师:认识吗?它在生活中有什么用?(称物体的重量、使得左右平衡)

  生:天平是用来称物体的重量的。

  2、鸡蛋天平图

  A、演示:平衡

  在左放两个鸡蛋,右放上100克砝码,天平平衡。

  师:天平这时怎么呢?说明了什么?

  生:天平平衡了,说明这两个鸡蛋重100克。

  师:你能用一个数学式子来表示吗?

  生:50+50=100(板书:50 + 50 = 100或 50 × 2 = 90)

  师:谁来给这种式子起个名字吗?

  生:可以叫等式。(板书:等式)

  B、演示:天平不平衡

  师:左边拿走一个鸡蛋,天平会怎样?说明了什么?

  生:天平就不平衡了,说明左右两边不相等。

  师:能不能也用一个数学式子表示呢?

  生:50<100(板书)

  师:这是等式吗?

  生:不是等式。

  【反思】学生先要观察天平的现象,再独立的思考该如何解答?这样的一个思考过程是十分必要的。因为,随后出现的式子70 + X=9070 + X < 9070 + X > 90

  等都是在此基础上建立来的。这样的教学设计,一方面是为了使知识之间的联系更紧密,以便于后续教学活动的进行;另一方面也可以借此来培养学生独立思考的能力。)

  3、饮料,糖果天平图

  A、演示:左边70克糖果,右边90克饮料,天平向右倾斜

  师:天平怎么了?说明什么?

  生:饮料比糖果重。

  师:谁来用式子表示?

  生:70 < 90 (板书)

  B、如果在天平的左边加上x克的牙签。

  师:这时天平可能会发生什么情况?

  生一一说出“3种情况”

  师:你能分别用数学的式子表示吗?

  根据学生回答板书: 70 + X=9070 + X < 9070 + X > 90

  师:这几个式子同上面的式子比,有什么不同?

  生:它们含有未知数。

  4、教材中的杯、水、砝码天平图。

  A、演示:左边空杯,右边100克砝码,天平平衡。

  师:通过你的观察,你知道了什么?

  生:我知道了一个空杯的重量是100克。

  B、师:往空杯中加入水,天平会怎样?

  生:天平会向左倾斜。

  师:有其他可能吗?

  生:不会有其他可能。

  师:可以用y表示倒入的水,还可以用其他字母表示吗?你能用一个式子表示这个现象吗?

  生:可以用其他的字母。

  生:100+y>100(板书)

  C、演示;往天平的右边加了100克和50克的砝码,天平再次平衡

  师:能不能又用一个式子表示此时的现象呢?

  生:100+y=250(板书)

  师:到底倒入的水有多少克,你能知道吗?

  生:水有150克,因为250-100=150克

  二、主动探究方程的意义

  1、分组尝试、引导分类

  过渡:刚才我们通过观察、思考得出了这么多的式子,你能按照一定的标准将它们分分类吗?把你思考的在小组中交流,然后派代表全班交流。(教师指着黑板上的各种式子说)

  50+50=100

  50<100

  70 < 90

  70 + X=90

  100+y>100

  100+y=250

  70 + X < 90

  70 + X > 90

  2、提供给学生观察的时间、尝试分类

  3、反馈

  (注意:让学生说说这样分的理由是什么?多指名几位学生说)

  第一次分类:按照等式不等式分

  第二次分类:按既含有字母有是等式分

  A、让学生说自己是怎么分的?

  B、如果学生按照多种标准分时,指出:“分类一次时只能是一个标准”。

  C、引导学生分

  师:那么按照是不是等式分应该怎么分?

  D、第二次分类:

  师:你能把这些等式再分分类吗?

  4、 概括概念

  过渡:看来同学们都能按自己的标准对式子进行分类。

  (老师把黑板上不是方程的式子擦掉)

  A、教师指着黑板说:那么,像这样的等式我们叫做方程(注意语气语速)。

  (板书: 方程)

  B、你能说说什么叫方程吗?

  C、学生发言,概括出:“含有字母的等式叫做方程”(板书)

  ……

  【反思】设计分类有两个目的:第一,通过学生找到一定的分类标准,自主对式子进行比较,辨别,明确什么是方程。第二,明确“分”的标准虽然不同,但通过连续两次“分”,最后的结果是一致的。在分类过程中,我的打算本是把学生的两种分法的结果一一抄写在黑板上,可由于黑板有些小,我就图简便,第一种分法我就在原算式上调整了位置,没重抄。当学生说到第二种分法的结果时,我们的原始算式没有了,给人一种将第一种分法的结果又再分的错觉,听课的老师有这种错觉,我想学生肯定有的没把两种分法弄清楚。

  三、拓展练习、巩固概念

  1、判断:下面的式子哪些是方程,哪些不是方程?(书上练习)

  8x=06  x+24+2>102   y÷5=10    n—5m = 15

  17—8 = 9  10<3m     6x +3 = 11+2x    4+3z =10

  提问:在判断的过程中,你有哪些新的体会以下几点:

  学生可能会说:

  (未知数)也可以在等号的右边;

  未知数可以用x、y等多个字母表示;

  一个等式中可以含有多个未知数;

  小结:看来我们要判断是否是方程,必须要具备什么条件。

  师:认识了方程,以前见过吗?

  师;其实一年级就见过。(生奇怪)比如8+□=10

  学生恍然大悟,原来方程离我们并不遥远。

  2、讨论、辨析概念

  A、判断,下面的说法对吗?

  所有的方程都是等式。

  所有的等式都是方程。

  B、你能用一个图(或表)来形象地反映出等式和方程的关系吗?

【方程的意义课堂实录】相关文章:

方程的意义08-03

方程的意义说课稿05-16

方程的意义说课稿11-16

方程的意义说课稿07-23

《方程的意义》说课稿12-14

方程的意义教案12-21

《方程的意义》说课稿09-27

《方程的意义》教案09-16

方程的意义的教学反思12-30

《方程的意义》的教学反思12-23