大学专业

广东高考数学几何复习解答题

时间:2021-11-27 19:09:09 大学专业 我要投稿

2017广东高考数学几何复习解答题

  解答题是高考数学考试中常考的题型之一,也是高考生重要的提分题型。以下是百分网小编给大家带来高考数学几何复习解答题,以供参阅。

2017广东高考数学几何复习解答题

  高考数学几何复习解答题

  1.如图,四边形ABCD与A′ABB′都是正方形,点E是A′A的中点,A′A平面ABCD.

  (1)求证:A′C平面BDE;

  (2)求证:平面A′AC平面BDE.

  解题探究:第一问通过三角形的中位线证明出线线平行,从而证明出线面平行;第二问由A′A与平面ABCD垂直得到线线垂直,再由线线垂直证明出BD与平面A′AC垂直,从而得到平面与平面垂直.

  解析:(1)设AC交BD于M,连接ME.

  四边形ABCD是正方形,

  M为AC的中点.

  又 E为A′A的中点, ME为A′AC的中位线, ME∥A′C  又 ME⊂平面BDE A′C⊄平面BDE,A′C∥平面BDE.
 (2)∵ 四边形ABCD为正方形, BD⊥AC.

  ∵ A′A⊥平面ABCD,BD平面ABCD,

  A′A⊥BD.

  又AC∩A′A=A, BD⊥平面A′AC.

  BD⊂平面BDE,

  平面A′AC平面BDE.

  2.在四棱锥P-ABCD中,平面PAD⊥平面ABCD,ABDC,PAD是等边三角形,BD=2AD=8,AB=2DC=4.

  (1)设M是PC上的一点,证明:平面MBD平面PAD;

  (2)求四棱锥P-ABCD的体积.

  命题立意:本题主要考查线面垂直的判定定理、面面垂直的判定定理与性质定理以及棱锥的体积的计算等,意在考查考生的逻辑推理能力与计算能力,考查化归与转化思想.

  解析:(1)证明:在ABD中,因为AD=4,BD=8,AB=4,所以AD2+BD2=AB2.

  故ADBD.

  又平面PAD平面ABCD,平面PAD∩平面ABCD=AD,BD平面ABCD,

  所以BD平面PAD,

  又BD平面MBD,

  所以平面MBD平面PAD.

  (2)过点P作OPAD交AD于点O,

  因为平面PAD平面ABCD,

  所以PO平面ABCD.

  因此PO为四棱锥P-ABCD的高.

  又PAD是边长为4的等边三角形,

  所以PO=×4=2.

  在四边形ABCD中,ABDC,AB=2DC,

  所以四边形ABCD是梯形.

  在Rt△ADB中,斜边AB上的高为=,此即为梯形ABCD的高.

  所以四边形ABCD的面积S=×=24.

  故四棱锥P-ABCD的体积VP-ABCD=×24×2=16.

  高考数学高频考点

  1.函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。

  2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;

  3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;

  4.选择与填空中出现不等式的题目,优选特殊值法;

  5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;

  6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;

  7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;

  8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的.步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);

  9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;

  10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;

  11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;

  12.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;

  13.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;

  14.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;

  15.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;

  高考数学函数复习讲义

  1、映射

  (1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B.

  注意点:(1)对映射定义的理解.(2)判断一个对应是映射的方法.一对多不是映射,多对一是映射

  2、函数

  构成函数概念的三要素 ①定义域②对应法则③值域

  两个函数是同一个函数的条件:三要素有两个相同

  二、函数的解析式与定义域

  1、求函数定义域的主要依据:

  (1)分式的分母不为零;

  (2)偶次方根的被开方数不小于零,零取零次方没有意义;

  (3)对数函数的真数必须大于零;

  (4)指数函数和对数函数的底数必须大于零且不等于1;

  三、函数的值域

  1求函数值域的方法

  ①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;

  ②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;

  ③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且 ∈R的分式;

  ④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);

  ⑤单调性法:利用函数的单调性求值域;

  ⑥图象法:二次函数必画草图求其值域;

  ⑦利用对号函数

  ⑧几何意义法:由数形结合,转化距离等求值域.主要是含绝对值函数

  四.函数的奇偶性

  1.定义:设y=f(x),x∈A,如果对于任意 ∈A,都有 ,则称y=f(x)为偶函数.

  如果对于任意 ∈A,都有 ,则称y=f(x)为奇

  函数.

  2.性质:

  ①y=f(x)是偶函数 y=f(x)的图象关于 轴对称,y=f(x)是奇函数 y=f(x)的图象关于原点对称,

  ②若函数f(x)的定义域关于原点对称,则f(0)=0

  ③奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇[两函数的定义域D1 ,D2,D1∩D2要关于原点对称]

  3.奇偶性的判断

  ①看定义域是否关于原点对称 ②看f(x)与f(-x)的关系

  五、函数的单调性

  1、函数单调性的定义:

  2 设 是定义在M上的函数,若f(x)与g(x)的单调性相反,则 在M上是减函数;若f(x)与g(x)的单调性相同,则 在M上是增函数.

 

【广东高考数学几何复习解答题】相关文章:

高考数学几何答题技巧08-25

2018广东高考数学立体几何复习试题08-29

关于高考数学几何题答题模式06-23

高考数学立体几何答题技巧01-26

2018广东高考数学平面解析几何复习方法08-15

2017广东高考数学立体几何复习选择题09-29

2018广东高考数学答题顺序08-29

2018广东高考数学一轮复习解答题08-22

2017广东高考数学二轮复习答题技巧09-29