2018广东高考数学概论复习选择题及答案
高考数学是许多人感觉到非常头疼的一个科目,我们在考前必须做好复习准备。下面百分网小编为大家整理的广东高考数学概论复习选择题及答案,希望大家喜欢。
广东高考数学概论复习选择题及答案
1.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:
7527 0293 7140 9857 0347 4373 8636 6947
1417 4698 0371 6233 2616 8045 6011 3661
9597 7424 7610 4281
根据以上数据估计该射击运动员射击4次至少击中3次的概率为( )
A.0.852 B.0.819 2 C.0.8 D.0.75
答案:D 命题立意:本题主要考查随机模拟法,考查考生的逻辑思维能力.
解题思路:因为射击4次至多击中2次对应的随机数组为7140,1417,0371,6011,7610,共5组,所以射击4次至少击中3次的概率为1-=0.75,故选D.
2.在菱形ABCD中,ABC=30°,BC=4,若在菱形ABCD内任取一点,则该点到四个顶点的距离均不小于1的概率是( )
A. 1/2B.2
C. -1D.1
答案:D 命题立意:本题主要考查几何概型,意在考查考生的运算求解能力.
解题思路:如图,以菱形的四个顶点为圆心作半径为1的圆,图中阴影部分即为到四个顶点的距离均不小于1的区域,由几何概型的概率计算公式可知,所求概率P==.
3.设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线x+y=n上”为事件Cn(2≤n≤5,nN) ,若事件Cn的概率最大,则n的所有可能值为( )
A.3 B.4 C.2和5 D.3和4
答案:D 解题思路:分别从集合A和B中随机取出一个数,确定平面上的一个点P(a,b),则有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共6种情况,a+b=2的有1种情况,a+b=3的有2种情况,a+b=4的有2种情况,a+b=5的有1种情况,所以可知若事件Cn的概率最大,则n的所有可能值为3和4,故选D.
4.记a,b分别是投掷两次骰子所得的数字,则方程x2-ax+2b=0有两个不同实根的概率为( )
A. 3/4B.1/2
C. 1/3D.1/4
答案:B 解题思路:由题意知投掷两次骰子所得的数字分别为a,b,则基本事件有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),…,(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36个.而方程x2-ax+2b=0有两个不同实根的条件是a2-8b>0,因此满足此条件的基本事件有:(3,1),(4,1),(5,1),(5,2),(5,3),(6,1),(6,2),(6,3),(6,4),共有9个,故所求的概率为=.
5.在区间内随机取两个数分别为a,b,则使得函数f(x)=x2+2ax-b2+π2有零点的概率为( )
A.1- B.1- C.1- D.1-
答案:
B 解题思路:函数f(x)=x2+2ax-b2+π2有零点,需Δ=4a2-4(-b2+π2)≥0,即a2+b2≥π2成立.而a,b[-π,π],建立平面直角坐标系,满足a2+b2≥π2的点(a,b)如图阴影部分所示,所求事件的概率为P===1-,故选B.
6.袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于( )
A.5/6 B.11/12
C. 1/2D.3/4
答案:B 解题思路:将同色小球编号,从袋中任取两球,所有基本事件为:(红,白1),(红,白2),(红,黑1),(红,黑2),(红,黑3),(白1,白2),(白1,黑1),(白1,黑2),(白1,黑3),(白2,黑1),(白2,黑2),(白2,黑3),(黑1,黑2),(黑1,黑3),(黑2,黑3),共有15个基本事件,而为一白一黑的共有6个基本事件,所以所求概率P==.故选B.
如何适应高考数学复习阶段
原因一】高中数学与初中数学相比,难度提高。因此会有少部分新高一生一时无法适应。表现在上课都听懂,作业不会做;或即使做出来,老师批改后才知道有多处错误,这种现象被戏称为“一听就懂,一看就会,一做就错”。因此有些家长会认为孩子在初中数学考试都接近满分,怎么到了高中会考试不及格?!
高中的数学语言与初中有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及抽象的集合符号语言、逻辑运算语言、函数语言、图形语言等。高一年级的学生一开始的思维梯度太大,以至集合、映射、函数等概念难以理解,觉得离生活很远,似乎很“玄”。
高中数学思维方法与初中阶段大不相同。初中阶段,由于很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么,确定了常见的思维套路。因此,形成初中生在数学学习中习惯于这种机械的,便于操作的定势方式。而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了更高的要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降是高一学生产生数学学习障碍的另一个原因。
高中数学比初中数学的知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。这也使很多学习被动的、依赖心理重的高一新生感到不适应。
应对方法:要透彻理解书本上和课堂上老师补充的内容,有时要反复思考、再三研究,要能在理解的基础上举一反三,并在勤学的基础上好问。
【原因二】初、高中不同学习阶段对数学的不同要求所致。高中考试平均分一般要求在70分左右。如果一个班有50名学生,通常会有10个以下不及格,90分以上人数较少。有些同学和家长不了解这些情况,对初三时的成绩接近满分到高一开始时的不及格这个落差感到不可思议,重点中学的学生及其家长会特别有压力。
应对方法:看学生的成绩不能仅看分数值,关键要看在班级或年级的相对位置,同时还要看学生所在学校在全市所处的位置,综合考虑就会心理平衡,不必要的负担也就随之而去。
【原因三】学习方法的不适应。高中数学与初中相比,内容多、进度快、题目难,课堂听懂作业却常常磕磕绊绊,由于各科信息量都较大,如果不能有效地复习,前学后忘的现象比较严重。培养良好的学习方法和习惯,体会“死记硬背”与“活学活用”的区别。老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课不能抓重点难点,不能体会思想方法,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背,结果是事倍功半,收效甚微。
应对方法:课堂上不仅要听懂,还要把老师补充的内容适当地记下来,课后最好把所学的'内容消化后再做作业,不要一边做题一边看笔记或看公式。课后尽可能再选择一些相关问题来练习,以便做到触类旁通。
【原因四】思想上有所放松。由于初三学习比较辛苦,到高一部分同学会有松口气的想法,因为离高考毕竟还有三年时间,尤其是初三靠拼命补课突击上来的部分同学,还指望“重温旧梦”,这是很危险的想法。如果高一基础太差,指望高三突击,实践表明多数同学会落空。部分智力较好的男生“恃才傲物”,解题只追求答案的正确性,书写不规范,考试时丢分严重。
经过升中考后,高一年级的学生有的思想开始松懈,尤其在初一、二时并没有用功学习,只是在初三临考时才发奋了一、二个月就轻而易举地考上了高中同学,甚至错误的认为高一、高二根本就用不着那么用功,只要等到高三临考时再发奋一、二个月,也一样会考上一所理想的大学的。而高中数学的难度远非初中数学能比,需要三年的艰苦努力,加上高考的内容源于课本而高于课本,具有很强的选拨性,想等到高三临考时再发奋一、二个月,其缺漏的很多知识是非常难完成的。
高考数学压轴题解题方法
1、如果也没有好的老师,那就做题,刷题吧。自己总结方法。但刷题仅限于应试,对学数学本身不好。数学是有思想的。
2、浙大,中科大出版的书都很不错;还有很多数学竞赛老师编的高考书其实可以看看。不推荐《5.3》,太简单了,对130以上的不太好。还有市面上很多高考数学辅导书其实不太适合你,因为很多是对基础薄弱的120以下突破120适用。
如果是数学成绩普通的学生,小编建议不要浪费过多的时间,适当的取舍是很有必要的。如果是学霸类型的,想要在数学压轴题上提高,那么一定要多多刷题,把所有类型题都弄明白,也就差不多了。
【广东高考数学概论复习选择题及答案】相关文章:
2017广东高考数学代数复习选择题11-28
2017广东高考数学数列复习选择题11-28
2017广东高考数学集合复习选择题11-28
2017广东高考英语动词复习选择题及答案09-19
2017广东高考数学立体几何复习选择题11-28
2018广东高考数学一轮复习选择题08-22
2017广东高考语文实词复习选择题11-28
2017广东高考语文虚词复习选择题11-28