分数线

广东高考数学平面解析几何复习方法

时间:2021-11-24 16:21:46 分数线 我要投稿

2018广东高考数学平面解析几何复习方法

  要想在广东高考的数学考试中取得好成绩,就必须复习好平面几何。下面百分网小编为大家整理的广东高考数学平面解析几何复习方法,希望大家喜欢。

广东高考数学平面解析几何复习

  广东高考数学平面解析几何复习方法

  突破第一点,夯实基础知识。

  对于基础知识,不仅一个知识点都要熟稔于心,还要有能力将这些零散的知识点串联起来。只有这样,才能形成属于自己的知识框架,才能更从容的应对考试。

  (一)对于直线及其方程部分,首先我们要从总体上把握住两突破点:①明确基本的概念。在直线部分,最主要的概念就是直线的斜率、倾斜角以及斜率和倾斜角之间的关系。倾斜角α的取值范围是突破[0,π),当倾斜角不等于90°的时候,斜率k=tanα;当倾斜角=90°的时候,斜率不存在。②直线的方程有不同的形式,同学们应该从不同的角度去归类总结。角度一:以直线的斜率是否存在进行归类,可以将直线的方程分为两类。角度二:从倾斜角α分别在[0,π/2)、α=π/2和(π/2,π)的范围内,认识直线的特点。以此为基础突破,将直线方程的五种不同的形式套入其中。直线方程的不同形式突破需要满足的条件以及局限性是不同的,我们也要加以总结。

  (二)对于线性规划部分,首先我们要看得懂线性规划方程组所表示的区域。在这里我们可以采用原点法,如果满足条件,那么区域包含原点;如果原点带入不满足条件,那么代表的区域不包含原点。

  (三)对于圆及其方程,我们要熟记圆的标准方程和一般方程分别代表的含义。对于圆部分的学习,我们要拓展初中学过的一切与圆有关的知识,包括三角形的内切圆、外切圆、圆周角、圆心角等概念以及点与圆的位置关系、圆与圆的位置关系、圆的内切正多边形的特征等。只有这样,才能更加完整的掌握与圆有关的所有的知识。

  (四)对于椭圆、抛物线、双曲线,我们要分别从其两个定义出发,明白焦点的来源、准线方程以及相关的焦距、顶点、突破离心率、通径的概念。每种圆锥曲线存在焦点在X轴和Y轴上的情况,要分别进行掌握。

  突破第二点,学习基本解题思想。

  对于平面几何部分的学习,最基本的解题思想就是数形结合,还包括函数思想、方程思想、转化思想等。要想掌握数形结合这种思想方法,首先同学们心中要有坐标轴,要掌握好学过的各种平面几何的概念。

  其次,要掌握解决不同问题的方法。对于不同的题型,同学们要掌握不同的解题方法,并将这种解题方法及其例题记录在笔记本上。对于向量方法,最长用的地方就解决与斜率有关的问题;对于“设而不求”的方法,最常用到的地方就是两种不同的平面几何图形相交的情况下求弦长的问题;设点法,最长用到的地方就是两种曲线相切以及求最值得问题等。同学们要分门别类的进行总结,才能达到事半功倍的效果。

  突破第三点,要进行反复的`思考。

  对于每一个平面解析几何的题目,做题之前,要想一想,应该怎么做,有几种办法可以解决,哪种办法可能更有效,更简便。在做题的过程中,要养成良好的解题习惯,包括将解题步骤清晰的写下来,以便检查的时候核对。在解完题之后,对解题之前的各种疑问做出总结,错的地方为什么错了,对的地方是否还有改进的余地。只有这样,才能起到举一反三的效果

  突破第四点,锻炼自己的口算能力。

  在解决解析几何的问题的过程中,要涉及到大量的计算问题。要在平时自觉的锻炼自己的口算能力。在解题的过程中要有耐心,给自己信心,一步一步的往下走。因为同学们掌握的方法都是前辈屡试不爽的方法,因此肯定会有准确的答案的。

  突破第五点,在学习的过程中,将这部分知识与学过的知识进行糅合,多联想,做到有备无患,不至于慌手慌脚。

  总之,平面解析几何部分涉及到的很多的知识点,与前面学习过的函数、不等式、三角函数等知识都有很多的交叉。同学们要不断的进行总结提高,才能在高考中从容应对。

  高考数学复习习惯

  独立作业的习惯

  做作业的目的是巩固所学的知识,是培养独立思考能力,不是为了交老师的差,或是应付家长。

  有的学生做作业的目的不明确,态度不端正,采取“拖、抄、代。……等等”,会做的马马虎虎,不会做的就不动笔;有的学生好高骛远,简单的是会而不对,复杂的对而不全,这些不良习惯严重的影响了学习效果。

  所以我们要重视做作业,在做习题时要认真思考,总结概念、原理的运用方法、解题的思路、并且尽量多记忆一些有用的中间结论。

  仔细审题的习惯

  审题能力是学生多种能力的综合表现。要求学生仔细阅读材料内容,学会抓字眼,抓关键词,正确理解内容,对提示语、公式、法则、定律、图示等关键内容,更要认真推敲,反复琢磨,准确把握每个知识点上的内涵与外延。

  同时还要培养自己能从作业,考试中发现自己的错误,及时纠正的能力。

  练后反思的习惯

  一般说来,习题做完之后,要从五个层次反思:

  第一,怎样做出来的?想解题采用的方法;

  第二,为什么这样做?想解题依据的原理;

  第三,为什么想到这种方法?想解题的思路;

  第四,有无其它方法?哪种方法更好?想多种途径,培养求异思维;

  第五,能否变通一下而变成另一习题?想一题多变,促使思维发散。

  当然,如果发生错解,更应进行反思:错解根源是什么?解答同类试题应注意哪些事项?如何克服常犯错误?“吃一堑,长一智”,不断完善自己。

  高考数学复习试题

  1.已知集合表示的平面区域为Ω,若在区域Ω内任取一点P(x,y),则点P的坐标满足不等式x2+y2≤2的概率为________.

  答案: 命题立意:本题考查线性规划知识以及几何概型的概率求解,正确作出点对应的平面区域是解答本题的关键,难度中等.

  解题思路:如图阴影部分为不等式组表示的平面区域,满足条件x2+y2≤2的点分布在以为半径的四分之一圆面内,以面积作为事件的几何度量,由几何概型可得所求概率为=.

  2.从5名学生中选2名学生参加周六、周日社会实践活动,学生甲被选中而学生乙未被选中的概率是________.

  答案: 命题立意:本题主要考查古典概型,意在考查考生分析问题的能力.

  解题思路:设5名学生分别为a1,a2,a3,a4,a5(其中甲是a1,乙是a2),从5名学生中选2名的选法有(a1,a2),(a1,a3) ,(a1,a4),(a1,a5),(a2,a3),(a2,a4),(a2,a5),(a3,a4),(a3,a5),(a4,a5),共10种,学生甲被选中而学生乙未被选中的选法有(a1,a3),(a1,a4),(a1,a5),共3种,故所求概率为.

  3.已知函数f(x)=kx+1,其中实数k随机选自区间,则对x∈[-1,1],都有f(x)≥0恒成立的概率是________.

  答案: 命题立意:本题主要考查几何概型,意在考查数形结合思想.

  解题思路:f(x)=kx+1过定点(0,1),数形结合可知,当且仅当k[-1,1]时满足f(x)≥0在x[-1,1]上恒成立,而区间[-1,1],[-2,1]的区间长度分别是2,3,故所求的概率为.

  4.若实数m,n{-2,-1,1,2,3},且m≠n,则方程+=1表示焦点在y轴上的双曲线的概率是________.

  解题思路:实数m,n满足m≠n的基本事件有20种,如下表所示.

  -2 -1 1 2 3 -2 (-2,-1) (-2,1) (-2,2) (-2,3) -1 (-1,-2) (-1,1) (-1,2) (-1,3) 1 (1,-2) (1,-1) (1,2) (1,3) 2 (2,-2) (2,-1) (2,1) (2,3) 3 (3,-2) (3,-1) (3,1) (3,2) 其中表示焦点在y轴上的双曲线的事件有(-2,1),(-2,2),(-2,3),(-1,1),(-1,2),(-1,3),共6种,因此方程+=1表示焦点在y轴上的双曲线的概率为P==.

 

【广东高考数学平面解析几何复习方法】相关文章:

2018广东高考数学高效复习方法08-22

2017广东高考数学考前冲刺复习方法09-18

浅谈高考数学解析几何技巧07-01

2017广东高考数学三轮复习方法11-28

平面解析几何高三数学复习口诀03-07

2018广东高考数学模拟题复习方法08-22

高考数学解析几何知识点07-14

2017广东高考数学平面向量复习资料11-27

数学高考的复习方法06-27