- 相关推荐
如何培养学生的数学模型思想
数学模型就是对于一个特定的对象为了一个特定的目标,根据特有的内在规律,得到一个数学结构。为解决实际问题提供工具,帮助学生认识、理解数学的意义。小学知识的学习过程,实际就是对一系列数学模型的理解、构建过程。在教学中,要注重使学生经历从实际问题中通过观察、操作等活动建立数学模型。以下是小编为大家整理的如何培养学生的数学模型思想,仅供参考,希望能够帮助到大家。
如何培养学生的数学模型思想 篇1
一、创设有效问题情境,建模成象。
创设问题情境要将生活实际与数学有关的因素相结合,以情境的方式展示给学生,能有效的激发学生的认知冲动性和思维活跃性。使学生用积累的生活经验感受其中隐含的数学问题,从而将实际问题抽象成数学问题,感知数学模型思想的存在。
如《正比例的应用》出示李师傅到商店买了1捆电线,跟店老板说好,用后再把剩下的拿来退钱,结果李师傅剩下大半捆,店老板退钱得知道这大半捆电线的长度。用尺量太麻烦,老板用秤称这电线的重量,电线的重量和长度有什么关系呢?生:每米电线重量是一定的,所以电线的重量和长度之间成正比例关系。怎么求每米的重量呢?生:找一米粗细同一种电线称出重量,因而可以通过称重量就可以求出电线的长度。
二、重视学生亲身体验,建模悟理。
学生的数学学习活动是一个主动、活泼的、富有个性的过程,课堂应关注学生建构数学模型的形成过程。因此,要让学生在实践经历中构建数学模型。
如《重叠问题》让学生用浆糊把两张同样长10厘米的纸条左右粘在一起,用尺量一量粘成的纸条的长度,为什么粘成后的纸条比20厘米短了?生:两张纸条有两小段粘起来就变成一小段了。量出重叠部分长多少厘米,算出粘成的这张纸条长多少厘米?学生发现规律,只要用原来两部分的长度之和减去重叠部分的.长度就能求出粘后的长度了。
如在推导圆的面积时,让学生利用手中的学具,想办法获取圆面积的计算方法。学生利用以前所学知识通过割、补、平移、旋转等方法拼成学过的图形,从而找到新知识的内在模型。
三、加强学生应用数学知识,建模立意
学生用所建立的数学模型去解决遇到的问题,体会数学模型的实际应用价值。如平面图形面积模型,在遇到生活中的具体问题时,要想所给图形是什么图形,这种图型面积怎样计算。
如何培养学生的数学模型思想 篇2
《义务教育课程标准》指出:“模型思想的建立是学生体会和理解数学与外部世界联系的基本途径、建立和求解模型可以提高学习数学的兴趣和应用意识。”由此可见,模型思想是数学教学必须渗透的思想方法之一,而且与传统数学不同的是,新课改下的数学建模过程必须让学生积极参与,也就是说它是在学生自主理解、建构基础上的模型,而不是生硬地塞给学生的公式、法则等。让学生在小学阶段积累一定的数学模型思想,并逐步体会数学建模过程是数学教学的核心目标之一,是学生数学素养形成的重要体现。下面我结合概念课教学实践,谈一谈培养学生模型思想的几点做法。
一、抓住联系,建构模型
1.立足生活与数学的联系,搭建生活原型到数学模型的桥梁。数学概念比较抽象,而小学生,特别是低年级小学生,由于年龄、知识和生活的局限,其思维主要以形象思维为主。认识一个事物、理解一个数学道理,主要是凭借事物的具体形象。因此,教师在数学概念教学的过程中,要尽量从学生日常生活中所熟悉的事物入手,善于为学生创造条件,让学生沿着观察、思维、理解、表达的过程,由感性到理性的过程,由具体到抽象的过程去掌握概念。这样,学生学起来就有兴趣,思维就活跃,就乐于探究数学问题。
在教学《圆柱和圆锥的认识》一课时,我先出示许多圆柱、圆锥形状的冰激凌包装盒,这些学生都很感兴趣。这时我引导学生观察冰淇淋盒的形状,学生很快发现冰淇淋盒的形状有圆柱形,也有圆锥形。接着我引导学生想象:把这些盒子的形状画下来是什么样子?学生的.想象非常丰富,我没有给出结论,而是用电脑演示由冰淇淋盒抽象出圆柱、圆锥的几何图形。这样教学很形象,学生很容易懂。这样由物到形,学生脑海中建立起圆柱圆锥的直观模型。接着引导学生根据几何图形寻找生活中的圆柱和圆锥。这样由形再回到物,使建立起的直观模型有了足够的支撑。
2.把握数学知识的内在联系,实现数学模型的自主建构
(1)横向联系,在二维世界构建模型。期刊文章分类查询,尽在期刊图书馆在教《圆的认识》一课时,学生在感受极限和集合思想的同时建立起了圆的直观模型后,我引导学生横向对比:圆和前面学过的其他平面图形有什么不同之处?在探索出圆的本质特征“一中同长”之后,再一次把圆和其他平面图形进行对比,“其他平面图形也有一中同长的吗”,再度引发学生的想象和思考:正三角形只有3条一中同长的线段、正四边形有4条、正五边形有5条…,而圆有无数条。通过圆和其他平面图形的两次横向对比,在联系中找区别,学生不仅明确了圆的外在特征,而且理清了圆的本质属性。
(2)纵向联系,在三维空间建构模型。如在教学《圆柱和圆锥的认识》一课时,引领学生从直观感知到旋转剖析:长方形上面一条边变短,变成梯形,绕竖直边所在直线旋转会形成什么形体呢?上面一条边继续缩短,变成直角三角形,旋转后会形成什么形体呢?这样从旋转的角度由圆柱过渡到圆锥,建立起圆柱和圆锥的本质联系,使模型的本质属性更加突出。探究完圆柱和圆锥的特征后,引导学生对比:他们有什么相同点?有什么不同点?通过对底面、侧面、高的对比,以及对旋转形成过程的对比,异中求同,同中求异,模型之间的联系更紧密,学生会对模型的理解全面而深刻。
二、把握本质,剖析模型
数学的操作活动能够让学生的多种感官参与学习,通过看得见、摸得着的学具和动手“做”,将几何图形的特征直观化、具体化,使枯燥的特征变成丰富的直接经验和感性体验,有助于学生把握概念本质,完善认知结构。
例《圆柱和圆锥的认识》一课:“圆柱和圆锥有哪些特征?”引领学生从直观感知圆柱圆锥的特征,到通过旋转深入探究圆柱圆锥的特征,由浅入深、由表及里,进而从感性到理性建立起圆柱和圆锥的模型。
首先借助操作活动,使学生多种感官充分参与。先通过看一看、摸一摸发现圆柱两个底面都是圆形,大小一样,侧面是曲面;再量一量、比一比验证两个底面一样大。通过动手操作,将圆柱的特征直观化、具体化,在操作中积累丰富的感性体验。接下来引导学生想象将圆柱竖直剖开的切面,这个长方形绕一条边旋转会形成什么形体呢?长方形旋转的三条边分别形成了圆柱的哪一部分?不动手你还能证明圆柱两个底面一样大吗?这样从外到内,由果询因,使学生从感性的认识上升到理性认识。
真正的数学是研究客观世界在数与形方面的本质属性的,这样从直观操作到深入探究,从操作验证到逻辑推理,教学更具有“数学味”,实验得到的结论更完善、更可信,建立起来的数学模型更清晰、更准确。
三、学以致用,完善模型
课堂上引领学生经历由具体到抽象的过程提炼构建起数学模型,并不是认识活动的终结,还要组织学生从抽象的数学模型还原为具体可感的数学现实中,才能使已经构建的数学模型在抽象向具体回归的过程中不断得以扩充、提升。
如《圆的认识》一课:在学习了圆规画圆之后,引导学生思考:不用圆规还可以怎样画圆呢?怎样在操场上画一个大圆?学生利用材料,把铁钉、细线、铅笔组装画圆,到联系生活想到可以借助长绳、软尺等,一端固定,另一端系上粉笔在操场画圆。从数学课圆规画圆到生活中长绳画圆,在与生活的紧密联系中,借助画圆体验圆“一中同长”的本质特征,促进了对模型的理解。
数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型,数学在许多高新技术上起着十分关键的作用,因此数学建模有其重要的意义。
如何培养学生的数学模型思想 篇3
一、加强学生动手实践能力培养,激发学生的建模兴趣
作为小学数学教学中的重要组成部分,数学建模思想的渗透及相关教学活动的顺利开展,有利于提高复杂数学问题的处理效率,保持数学课堂教学的高效性。要实现这样的发展目标,增强小学生数学建模思想的实际培养效果,需要加强对学生动手实践能力的培养,激发学生的更高兴趣。建模的过程涉及问题表述、求解、必要解释及有效验证,在这四个环节中,可能会存在一定的问题,影响着数学教学计划的实施。因此,教师需要利用学生动手实践能力的作用,实现数学建模思想的有效培养,促使小学生能够在数学建模过程中享受到更多的快乐。比如,在讲解“认识角”知识的过程中,某些学生认为边越长角度也越大。为了使学生能够对其中的知识点有更加正确而全面的认识,教师可以通过在黑板上设置一些能够活动的三角板,让学生亲自动手操作,以此得出角与边长的正确关系,为后续教学计划的实施打下坚实的基础。通过这种教学方法的合理运用,可以激发出学生们在数学建模学习中的更高兴趣,丰富他们的想象力,从而使他们对数学建模思想有一定的了解,在未来学习过程中能够保持良好的数学建模能力。
二、构建良好的数学模型,加深学生对各知识点的理解
通过对小学阶段各种数学实践教学活动实际概况的深入分析,可知构建良好的数学模型有利于加深学生对各知识(福建省莆田市秀屿区东峤前江小学,福建莆田351164)点的深入理解,增强其主动参与数学建模教学活动的积极性。因此,为了使小学生数学建模思想培养能够达到预期的效果,教师需要结合实际的教学内容,建立必要的数学参考模型,提升学生对数学建模思想的整体认知水平。比如,在讲授“异分母分数加减法”这部分知识的过程中,可以设置“0.8千克+300克”“1.6千克-400克”等问题,向学生提问是否可以直接计算,并说出原因。当学生通过对问题的深入思考,总结出“单位不同不能直接计算”的结论后,继续向学生提问小数计算中为什么每一位都要对齐,实现“计数单位统一后才能计算”这一数学模型的构建。在这样的教学过程中,学生可以加深对知识点的理解,实现数学建模思想的有效培养。
三、注重数学思想的灵活运用,增强模型构建的可靠性
加强小学生数学建模思想的.有效培养,需要在具体的教学活动开展中注重对数学思想的灵活运用,增强相关模型构建的可靠性,促使学生在长期的数学学习中能够不断提高自身的数学能力,运用各种数学知识处理实际问题。比如,在“角的度量”这部分内容讲解的过程中,为了提高学生对角的分类及画角相关知识点的深入理解,教师可以将所有的学生分为不同的小组,让学生们通过小组讨论的方式,对角的正确分类及如何画角有一定的了解,并让每个小组代表在讲台上演示画角的过程。此时,教师可以通过对多媒体教学设备的合理运用,利用动态化的文字与图片对其中的知识要点进行展示,确保学生们能够在良好的教学模式中提升自身的认知水平,并在不断的思考过程中逐渐形成良好的创造性思维,强化自身的创新意识。比如,在讲解“图形变换”中的轴对称、旋转知识点的过程中,教师应通过对学生的正确引导,运用三角板、圆柱等教学辅助工具,让学生从不同的角度对各种轴对称图形、旋转后得到的图形进行深入思考,提高自身数学建模过程中的创新能力,从不同的角度深入理解图像变换过程,对这部分内容有更多的了解。因此,教师应注重小学生数学建模思想培养中多方位思考方式的针对性培养,提高学生的创新能力,优化学生的思维方式,全面提升小学数学建模教学水平。
总之,加强小学生数学建模思想培养策略的制定与实施,有利于满足素质教育的更高要求,实现对小学生数学能力的有效锻炼,确保相关的教学计划能够在规定的时间内顺利地完成。与此同时,结合当前小学数学教育教学的实际发展概况,可知灵活运用各种科学的数学建模思想培养策略,有利于满足学生数学建模学习中的多样化需求,为相关教学目标的顺利实现提供可靠的保障。
如何培养学生的数学模型思想 篇4
数学问题的解决,无不以数学思想为指导,以数学方法为手段。而数学方法孕育着数学思想,数学思想中又蕴含着数学思维。数学思想方法是数学知识的精髓,是数学内容的灵魂,是数学活动的指导思想和普遍适用的方法,它能使学生领悟数学的真谛,学会数学的思考和处理问题,是学习知识、发展智力和培养能力相结合的法宝,教师要让数学思想方法成为由知识转化为能力的纽带,促使学生良好思维品质的形成和发展。
一、渗透“数形结合”思想,培养学生的形象性、创造性
几何问题可以用代数方法来求解,一些代数问题也可以化为几何问题加以研究,这就是数形结合思想。“数”和“形”是数学研究中既有区别又有联系的两个对象,突出数形结合思想,有利于学生从不同的侧面加深对问题的理解。数形结合能使抽象复杂的数量关系通过图形直观形象地表现出来以帮助问题简捷获解,还能使图形性质通过数量计算、处理和分析达到更完整、严密、准确,从而自然地展现着数学的和谐美。如教材中在列方程(组)解应用题的分析中利用了直线型、圆型示意图;在线段和角的计算中利用了方程;将勾股定理的内容放到代数中讲,黄金分割内容却运用代数知识等。此外,还借助数轴这数形结合的良好载体,在“有理数”一节形象生动地介绍了相反数、绝对值、有理数等。前者减少了概念引入的困难,后者把抽象问题变得容易理解。这正是数形结合的玄妙之处。
二、渗透“分类思想”,培养学生思维的条理性、目的性
数学中的分类思想是根据数学对象本质属性的异同把数学对象分为不同种类的思想。分类是以比较为基础的,它能揭示数学对象之间内在的规律,有助于学生总结、归纳数学知识,使所学知识条理性。分类时应保证分类对象既不重复又不遗漏,每次分类都保持同一分类标准。如“整数和分数统称有理数”这是根据“整”和“不整”对有理数的外延进行分类的定义方法。事实上有理数还可以采用别的标准分类。如按数的性质分,有理数包括正有理数、负有理数、零;按“整”和“不整”及数的性质分,有理数包括正整数、正分数、零、负整数、负分数。这样学生懂得研究问题时,应根据问题的需要采取不同的标准,将讨论的对象不重复、不遗漏地分成若干情况,逐一加以研究,从
而使复杂问题简单化、条理化。
三、培养学生思维的灵活性、辩证性
化归思想是根据主体已有的知识经验,通过观察、类比、联想等手段把问题进行变换、转化直至化为已经解决或容易解决的问题的思想。“转化与变换”是化归思想的实质。如解方程(组)、解不等式就体现了化归思想:高次方程、分式方程、无理方程等各自使用不同的方法(因式分解、恒等变形、变量代换)使之降次、消元、整式化、有理化最后归结为一元一次方程或一元二次方程求解。为实现转化,相应地产生了许多方法如消元法、降次法、换元法、图像法、待定系数法、配方法等。通过这些数学思想方法的使用,使学生的辩证思维能力大大加强。
四、渗透“类比思想”,培养学生思维的广阔性、逻辑性
类比思想是通过联想迁移由一个事务的性质和变化规律去研究和发现另一事物相关内容的思想,类比是一种重要的推理方法,它具有猜想的性质,类比思想有助于发现创新、解决问题。当遇到一个数学命题时,我们往往联想起于它类似的问题、类似的条件、类似的形式、类似的解法……并联想到与它相关的概念、定理、公式、法则,从而开阔思路,启迪思维,起到由此及彼、由表及里、举一反三、触类旁通的作用。如整式的除法与整数的除法类比;分式的定义、性质、运算与分数的相应内容类比;平行线分线段成比例定理与平行线等分线段定理类比等,使学生顺利理解新知识,发展思维的广阔性。
五、渗透“函数思想”,培养学生思维的指向性、深刻性
函数思想是指用运动、变化的观点去观察、分析和处理问题的思想。变量变换、数形结合及用函数观点解题都是函数思想的表现形式。在教学过程中要全方位地用运动、变化的观点揭示知识的内在联系引入解释数学概念,使函数融进学生的认知机构,并引导学生用函数思想看待数学知识。如让学生明确一次二项ax+b可看作是以x为自变量的一次函数式;求代数式ax+b的.值就是求函数ax+b的函数值;一元一次方程ax+b=0的解就是一次函数y=ax+b的图象与x轴交点的横坐标;不等式ax+b>0的解集就是直线y=ax+b之图形在x轴上方时x取值范围等。函数思想牵动着数学思维线路的条条神经,但函数思想的建立非一日之功,须在实践中挖掘、提炼、领悟。教学中要激励学生在解题时随时启动这根“杠杆”,增强学生思维的深刻性。
六、小结
数学思想方法是科学的思想方法,它具有一般性和普遍适用性。我们认为,数学思想方法的学习其意义远不是停留在它对数学解题的指导作用,更重要的在于学生通过数学思想方法的学习,可以提高自己的数学化能力,掌握思考问题、分析问题的一般性思维方法,这种一般性的思维方法能够迁移转化为学生处理问题的一般能力,有利于提高学生的素质,为他们今后的发展打下良好的基础。
【如何培养学生的数学模型思想】相关文章:
思想品德课如何培养学生的综合素质02-16
初中思想品德教学中如何培养学生的学习兴趣07-04
如何培养学生的语感09-19
如何培养学生的积极心态09-23
如何培养学生的观察能力08-31
如何培养学生创新的能力10-13
如何培养学生归纳能力10-13
如何培养学生的运算能力09-22
如何培养学生的质疑习惯03-24