- 相关推荐
高中不等式证明练习题及参考答案
不等式证明是可以作文练习题经常出现的,这类的练习题是怎样的呢?下面就是百分网小编给大家整理的不等式证明练习题内容,希望大家喜欢。
不等式证明练习题解答
(1/a+2/b+4/c)*1
=(1/a+2/b+4/c)*(a+b+c)
展开,得
=1+2a/b+4a/c+b/a+2+4b/c+c/a+2c/b+4
=7+2a/b+4a/c+b/a+4b/c+c/a+2c/b
基本不等式, 得
>=19>=18用柯西不等式:(a+b+c)(1/a + 2/b + 4/c)≥(1+√2+2)^2=(3+√2)^2
=11+6√2≥18
楼上的,用基本不等式要考虑等号什么时候成立,而且如果你的式子里7+2a/b+4a/c+b/a+4b/c+c/a+2c/b直接用基本不等式得出的并不是≥18设ab=x,bc=y,ca=z
则原不等式等价于:
x^2+y^2+z^2>=xy+yz+zx
<=>2(x^2+y^2+z^2)>=2(xy+yz+zx)
<=>(x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2zx+x^2)>=0
<=>(x-y)^2+(y-z)^2+(z-x)^2>=0
含有绝对值的不等式练习。1.关于实数x的不等式|x-|7|x+1|成立的前提条件是:x7x+7, -1-7x-7, x>-2,因此有:-20的'解,∵a<0,不等式变形为x2+x-<0,它与不等式x2+x+<0比较系数得:a=-4,b=-9.
函数y=arcsinx的定义域是 [-1, 1] ,值域是 ,函数y=arccosx的定义域是 [-1, 1] ,值域是 [0, π] ,函数y=arctgx的定义域是 R ,值域是 .,函数y=arcctgx的定义域是 R ,值域是 (0, π) .直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。函数公式模型。一个函数是奇(偶)函数,其定义域必关于原点对称,它是函数为奇(偶)函数的必要条件.若函数的定义域不关于原点对称,则函数为非奇非偶函数.
七年级数学不等式测试题
1、一辆匀速行驶的汽车在11 :20距离A地50千米,要在12 :00之前驶过A地,车速应满足什么条件?
设车速是x千米/时
从时间上看,汽车要在12:00之前驶过A地,则以这个速度行驶50千米所用的时间不到2/3小时,即
设车速是x千米/时
从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶2/3小时的路程要超过50千米,即
2、不等式定义:用“<”或“>”、“≤”“≥” 表示大小关系的式子,叫做不等式,像a+2≠a-2这样用“ ≠”号表示不等关系的式子也是不等式。
注:“<” 、“>” 、“≠”、“ ≤”、“ ≥”都是不等号。
练习题:
下列式子哪些是不等式?哪些不是不等式?为什么?
-2<5 x+3>6 4x-2y≤0 a-2b a+b≠c
5m+3=8 8+4<7
3. 不等式的解
我们曾经学过“使方程两边相等的未知数的值就是方程的解”,与方程类似 , 能使不等式成立的未知数的值叫不等式的解.
代入法是检验某个值是否是不等式的解的简单、实用的方法;
练习题:
x=78是不等式 的解吗?x=75呢?x=72呢?
判断下列数中哪些是不等式 的解:
76 , 73 , 79 , 80, 74.9 , 75, 75.1, 90 , 60
你还能找出这个不等式的其他解吗?这个不等式有多少个解?你能说出他的解集吗?
4、不等式的解集
一般的,一个含有未知数的不等式的所有的解组成这个不等式的解集。求不等式的解集的过程叫解不等式。
想一想:
不等式的.解和不等式的解集是一样的吗?
不等式的解与解不等式一样吗?
练习题:
1、下列说法正确的是( )
A. x=3是2x+1>5的解
B. x=3是2x+1>5的唯一解
C. x=3不是2x+1>5的解
D. x=3是2x+1>5的解集
5. 解集的表示方法
:用式子(如x>2),即用最简形式的不等式(如x>a或x
如不等式 的解集可以用不等式x >75来表示。
练习题:
不等式的解集:
⑴ x+2>6 ⑵ 3x>9 ⑶ x-3>0
:用数轴,标出数轴上某一区间,其中的点对应的数值都是不等式的解.
注意:
1.用数轴表示不等式的解集的步骤:
①画数轴; ②定边界点; ③定方向.
2.用数轴表示不等式的解集,应记住下面的规律:
大于向右画,小于向左画;有等号(≥ ,≤)画实心点,
无等号(>,<)画空心圆.
练习题:
6、一元一次不等式
我们知道2x+1=5叫做一元一次方程,那么你觉得不等式2x+1>5应该如何命名吗?
定义类似于一元一次方程,含有一个未知数且未知数的次数是1的不等式叫做一元一次不等式
数学归纳法证明不等式的基本知识
数学归纳法的基本原理、步骤和使用范围
(1)在数学里,常用的推理方法可分为演绎法和归纳法,演绎法一般到特殊,归纳法是由特殊到一般.由一系列有限的特殊事例得出一般结论的推理方法,通常叫归纳法。在归纳时,如果逐个考察了某类事件的所有可能情况,因而得出一般结论,那么结论是可靠的.这种归纳法叫完全归纳法(通常也叫枚举法)如果考察的只是某件事的部分情况,就得出一般结论,这种归纳法叫完全归纳法.这时得出的结论不一定可靠。数学问题中,有一类问题是与自然数有关的命题,因为自然数有无限多个,我们不可能就所有的自然数一一加以验证,所以用完全归纳法是不可能的.然而只就部分自然数进行验证所得到的结论,是不一定可靠的
例如一个数列的通项公式是an(n25n5)2
容易验证a1=1,a2=1,a3=1,a4=1,如果由此作出结论——对于任何nN+, an(n25n5)2=1都成立,那是错误的.
事实上,a5=25≠1.
因此,就需要寻求证明这一类命题的一种切实可行、比较简便而又满足逻辑严谨性要求的新的方法——数学归纳法.
(2)数学归纳法是一种重要的数学证明方法,其中递推思想起主要作用。形象地说,多米诺骨牌游戏是递推思想的`一个模型,数学归纳法的基本原理相当于有无限多张牌的多米诺骨牌游戏,其核心是归纳递推.
一般地,当要证明一个命题对于不小于某正整数n0的所有正整数n都成立时,可以用一下两个步骤:(1)证明当n=n0(例如n0=1或2等)时命题成立;
(2)假设当n=k(kN,且k≥n0)时命题成立,证明当n=k+1时命题也成立.在完成了这两个步骤以后,就可以断定命题对于不小于n0所有自然数都成立.这种证明方法称为数学归纳法.
自然数公理(皮亚诺公理)中的“归纳公理”是数学归纳法的理论根据,数学归纳法的两步证明恰是验证这条公理所说的两个性质.数学归纳法的适用范围仅限于与自然数n有关的命题.这里的n是任意的正整数,它可取无限多个值.
附录:下面是自然数的皮亚诺公理,供有兴趣的同学阅读.
任何一个象下面所说的非空集合N的元素叫做自然数,在这个集合中的某些元素a与b之间存在着一种基本关系:数b是数a后面的一个“直接后续”数,并且满足下列公理:
①1是一个自然数;
②在自然数集合中,每个自然数a有一个确定“直接后续”数a’;
③a’≠1,即1不是任何自然数的“直接后续”数;
④由a’ =b’推出a=b,这就是说,每个自然数只能是另一个自然数的“直接后续”数;
⑤设M是自然数的一个集合,如果它具有下列性质:(Ⅰ)自然数1属于M,(Ⅱ)如果自然数a属于M,那么它的一个“直接后续”数a’也属于M,则集合M包含一切自然数.
其中第5条公理又叫做归纳公理,它是数学归纳法的依据.
(3)数学归纳法可以证明与自然数有关的命题,但是,并不能简单地说所有涉及正整数n的命题都可以用数学归纳法证明.
例如用数学归纳法证明(1+1)n(n N)的单调性就难以实现.一般来说,n
从k=n到k=n+1时,如果问题中存在可利用的递推关系,则数学归纳法有用武之地,否则使用数学归纳法就有困难.
【高中不等式证明练习题及参考答案】相关文章:
高中物理压力和压强相关练习题及参考答案07-13
语文《马说》练习题及参考答案01-26
推理与证明练习题 证明书10-15
醉翁亭记练习题及参考答案08-14
九年级物理暑假练习题及参考答案07-21
英语动词不定式专项练习题及参考答案07-18
初中数学几何证明题及参考答案10-23
七年级语文上册练习题及参考答案12-26
四年级下册英语练习题及参考答案04-02
高中贫困证明12-30